Transcript
Page 1: Cosmological Perturbations and Numerical Simulations

Cosmological Perturbations andNumerical Simulations

Ian Huston

Astronomy Unit

24th March 2010

arXiv:0907.2917, JCAP 0909:019

Page 2: Cosmological Perturbations and Numerical Simulations

perturbations

Long review: Malik & Wands 0809.4944

Short technical review: Malik & Matravers 0804.3276

Page 3: Cosmological Perturbations and Numerical Simulations
Page 4: Cosmological Perturbations and Numerical Simulations

T(η, xi) = T0(η) + δT(η, xi)

δT(η, xi) =∞∑

n=1

εn

n!δTn(η, xi)

ϕ = ϕ0 + δϕ1 +1

2δϕ2 + . . .

Page 5: Cosmological Perturbations and Numerical Simulations

T(η, xi) = T0(η) + δT(η, xi)

δT(η, xi) =∞∑

n=1

εn

n!δTn(η, xi)

ϕ = ϕ0 + δϕ1 +1

2δϕ2 + . . .

Page 6: Cosmological Perturbations and Numerical Simulations

Gauges

Background split notcovariant

Many possible descriptions

Should give same physicalanswers!

Page 7: Cosmological Perturbations and Numerical Simulations
Page 8: Cosmological Perturbations and Numerical Simulations
Page 9: Cosmological Perturbations and Numerical Simulations

First order transformation

ξµ1 = (α1, β

i1, + γi

1)

⇓δ̃ϕ1 = δϕ1 + ϕ′0α1

Page 10: Cosmological Perturbations and Numerical Simulations

Perturbed FRW metric

g00 = −a2(1 + 2φ1) ,

g0i = a2B1i ,

gij = a2 [δij + 2C1ij] .

Page 11: Cosmological Perturbations and Numerical Simulations

Choosing a gauge

Longitudinal: zero shear

Comoving: zero 3-velocity

Flat: zero curvature

Uniform density: zero energydensity

. . .

Page 12: Cosmological Perturbations and Numerical Simulations

δGµν = 8πGδTµν

⇓Eqs of Motion

Page 13: Cosmological Perturbations and Numerical Simulations

non-Gaussianity

Some reviews: Chen 1002.1416, Senatore et al. 0905.3746

Page 14: Cosmological Perturbations and Numerical Simulations

Sim 1

Simulations from Ligouri et al, PRD (2007)

Page 15: Cosmological Perturbations and Numerical Simulations

Sim 2

Simulations from Ligouri et al, PRD (2007)

Page 16: Cosmological Perturbations and Numerical Simulations

Gaussian fields:All information in

〈ζ(k1)ζ(k2)〉 = (2π)3δ3(k1 + k2)Pζ(k1) ,

where ζ is curvature perturbation on uniformdensity hypersurfaces.

〈ζ(k1)ζ(k2)ζ(k3)〉 = 0 ,

〈ζ4(ki)〉 = 〈ζ(k1)ζ(k2)〉〈ζ(k3)ζ(k4)〉+ 〈ζ(k2)ζ(k3)〉〈ζ(k4)ζ(k1)〉+ 〈ζ(k1)ζ(k3)〉〈ζ(k2)ζ(k4)〉 .

Page 17: Cosmological Perturbations and Numerical Simulations

Bispectrum:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ3(k1+k2+k3)B(k1, k2, k3)

Local (squeezed) Equilateral

Page 18: Cosmological Perturbations and Numerical Simulations

B(k1, k2, k3) ' fNLF (x2, x3) ,

xi = ki/k1 , 1− x2 ≤ x3 ≤ x2 .

Local

0.50.6

0.70.8

0.91

x2

0.20.40.60.81 x3

0

2

4

6

8

FHx2 , x3L

0

2

4

Higher Deriv.

0.50.6

0.70.8

0.91

x2

0.20.40.60.81 x3

00.25

0.5

0.75

1

FHx2 , x3L

00.25

0.5

Babich et al. astro-ph/0405356

Page 19: Cosmological Perturbations and Numerical Simulations

WMAP7 bounds (95% CL)

−10 < f locNL < 74

f locNL > 1

rules out ALL single fieldinflationary models.

Page 20: Cosmological Perturbations and Numerical Simulations

WMAP7 bounds (95% CL)

−10 < f locNL < 74

f locNL > 1

rules out ALL single fieldinflationary models.

Page 21: Cosmological Perturbations and Numerical Simulations

One way of getting local fNL

ζ(x) = ζL(x) + 35f

locNLζ2

L(x)

∆T

T' −1

5ζ , f loc

NL > 0

⇓∆T < ∆TL

Page 22: Cosmological Perturbations and Numerical Simulations

Sim 1: fNL = 1000

Simulations from Ligouri et al, PRD (2007)

Page 23: Cosmological Perturbations and Numerical Simulations

Sim 2: fNL = 0

Simulations from Ligouri et al, PRD (2007)

Page 24: Cosmological Perturbations and Numerical Simulations

code():

Paper: Huston & Malik 0907.2917, JCAP

2nd order equations: Malik astro-ph/0610864, JCAP

Page 25: Cosmological Perturbations and Numerical Simulations

Approaches:

δN formalism

Moment transport equations

Field Equations

Page 26: Cosmological Perturbations and Numerical Simulations

ϕ = ϕ0 + δϕ1 +1

2δϕ2

Page 27: Cosmological Perturbations and Numerical Simulations

δϕ′′2 (ki) + 2Hδϕ

′2(ki) + k

2δϕ2(ki) + a

2[V,ϕϕ +

8πG

H

(2ϕ′0V,ϕ + (ϕ′0)2

8πG

HV0

)]δϕ2(ki)

+1

(2π)3

∫d

3pd

3qδ

3(ki − pi − q

i)

{16πG

H

[Xδϕ

′1(pi)δϕ1(qi) + ϕ

′0a

2V,ϕϕδϕ1(pi)δϕ1(qi)

]

+

(8πG

H

)2ϕ′0

[2a

2V,ϕϕ

′0δϕ1(pi)δϕ1(qi) + ϕ

′0Xδϕ1(pi)δϕ1(qi)

]

−2

(4πG

H

)2 ϕ′0X

H

[Xδϕ1(ki − q

i)δϕ1(qi) + ϕ′0δϕ1(pi)δϕ

′1(qi)

]

+4πG

Hϕ′0δϕ

′1(pi)δϕ

′1(qi) + a

2[V,ϕϕϕ +

8πG

Hϕ′0V,ϕϕ

]δϕ1(pi)δϕ1(qi)

}

+1

(2π)3

∫d

3pd

3qδ

3(ki − pi − q

i)

{2

(8πG

H

)pkqk

q2δϕ′1(pi)

(Xδϕ1(qi) + ϕ

′0δϕ

′1(qi)

)

+p2 16πG

Hδϕ1(pi)ϕ′0δϕ1(qi) +

(4πG

H

)2 ϕ′0H

[ plql −

piqjkjki

k2

ϕ′0δϕ1(ki − q

i)ϕ′0δϕ1(qi)

]

+2X

H

(4πG

H

)2 plqlpmqm + p2q2

k2q2

[ϕ′0δϕ1(pi)

(Xδϕ1(qi) + ϕ

′0δϕ

′1(qi)

) ]

+4πG

H

[4X

q2 + plql

k2

(δϕ′1(pi)δϕ1(qi)

)− ϕ

′0plq

lδϕ1(pi)δϕ1(qi)

]

+

(4πG

H

)2 ϕ′0H

[plqlpmqm

p2q2

(Xδϕ1(pi) + ϕ

′0δϕ

′1(pi)

) (Xδϕ1(qi) + ϕ

′0δϕ

′1(qi)

) ]

+ϕ′0H

[8πG

plql + p2

k2q2δϕ1(pi)δϕ1(qi) −

q2 + plql

k2δϕ′1(pi)δϕ

′1(qi)

+

(4πG

H

)2 kjki

k2

(2

pipj

p2

(Xδϕ1(pi) + ϕ

′0δϕ

′1(pi)

)Xδϕ1(qi)

)]}= 0

Page 28: Cosmological Perturbations and Numerical Simulations

2� Single field slow roll

2 Single field full equation

2 Multi-field calculation

Page 29: Cosmological Perturbations and Numerical Simulations

∫δϕ1(q

i)δϕ1(ki − qi)d3q

Page 30: Cosmological Perturbations and Numerical Simulations

code():

1000+ k modes

python & numpy

parallel

Page 31: Cosmological Perturbations and Numerical Simulations

Four potentials

10−61 10−60 10−59 10−58

k/MPL

1.8

2.0

2.2

2.4

2.6

2.8

3.0P2 R

1×10−9

V (ϕ) = 12m2ϕ2

V (ϕ) = 14λϕ4

V (ϕ) =σϕ23

V (ϕ) =U0 + 12m2

0ϕ2

Page 32: Cosmological Perturbations and Numerical Simulations

Source term

0 10 20 30 40 50 60N − Ninit

10−17

10−13

10−9

10−5

10−1|S|

V (ϕ) = 12m2ϕ2

V (ϕ) = 14λϕ4

V (ϕ) =σϕ23

V (ϕ) =U0 + 12m2

0ϕ2

Page 33: Cosmological Perturbations and Numerical Simulations

Second order perturbation

61626364Nend −N

−4

−3

−2

−1

0

1

2

3

4

1 √2πk

3 2δϕ

2

×10−95

Page 34: Cosmological Perturbations and Numerical Simulations

Future Plans:

Full single field equation

Multi field equation

Vector & Vorticity similarities

Rework code for efficiency

Page 35: Cosmological Perturbations and Numerical Simulations

Summary:

Perturbations seed structure

2nd order needed for fNL

Numerically intensive calculation

Page 36: Cosmological Perturbations and Numerical Simulations

IA(k) =

∫dq3δϕ1(q

i)δϕ1(ki − qi) = 2π

∫ kmax

kmin

dq q2δϕ1(qi)A(ki, qi) ,

IA(k) = −πα2

18k

{3k3

[log

(√kmax − k +

√kmax√

k

)+ log

(√k + kmax +

√kmax√

kmin + k +√

kmin

)

2− arctan

( √kmin√

k − kmin

)]

−√

kmax

[ (3k2 + 8k2

max

) (√k + kmax −

√kmax − k

)+ 14kkmax

(√k + kmax +

√kmax − k

)]

+√

kmin

[ (3k2 + 8k2

min

) (√k + kmin +

√k − kmin

)+ 14kkmin

(√k + kmin −

√k − kmin

)]}.

Page 37: Cosmological Perturbations and Numerical Simulations

10−61 10−60 10−59 10−58 10−57

k/MPL

10−10

10−9

10−8

10−7

10−6

ε rel

k ∈ K1

k ∈ K2

k ∈ K3

K1 =[1.9× 10−5, 0.039

]Mpc−1 , ∆k = 3.8× 10−5Mpc−1 ,

K2 =[5.71× 10−5, 0.12

]Mpc−1 , ∆k = 1.2× 10−4Mpc−1 ,

K3 =[9.52× 10−5, 0.39

]Mpc−1 , ∆k = 3.8× 10−4Mpc−1 .


Recommended