Transcript

Computer-Aided Design, Analysis and Load Rating of Precast-PrestressedSpliced Girder Bridges

Western Bridge Engineers’ SeminarReno, NV September 2015

Lynn PetersonSecretary of Transportation

Richard Brice, PESoftware Applications Engineer

Outline

β€’ LRFD Requirements for Spliced Girder Bridgesβ€’ Overview of Spliced Girder Analysisβ€’ Computer Aided Design, Analysis, and Load Rating

Design, Analysis, and Rating of Spliced Girder Bridges

β€’ Basic requirements of conventional precast-prestressed girder bridges – Service stress limitations, ultimate strength

requirements, etc.β€’ LRFD 5.14.1.3 – Spliced Precast Girders

– Additional requirements for contract documents – Additional service stress limitations– Additional analysis requirements

LRFD Requirement for Time-Step Analysis

LRFD 5.9.5.4.1For segmental construction and post-tensioned spliced precast girders, other than during preliminary design, prestress losses shall be determined by the time-step method... including consideration of the time-dependent construction stages and schedule shown in the contract documents.

For components with combined pretensioning and post-tensioning, and where post-tensioning is applied in more that one stage, the effects of subsequent prestressing on the creep loss of previous prestressing shall be considered.

Introduction to Time-Step Analysis

β€’ Models design life through discrete time intervalsβ€’ Uses fundamental principles of engineering mechanicsβ€’ Accounts for time-dependent material properties and

responses (𝑓𝑓𝑐𝑐′, πœ“πœ“, πœ€πœ€π‘ π‘ π‘ π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ, relaxation)

β€’ Step-wise pseudo-linear solution to a nonlinear problem

β€’ Structural response at the end of any interval is the summation of the responses of all the preceding intervals

Challenge of Time-Step Analysis

β€’ Sheer quantity of computations that must be performed– Deformations are computed at many locations– Deformations are computed in every piece of the spliced girder– Deformations are computed for the design life of the structure– Transformed section properties change with time and location

β€’ Non-prismatic segments (haunches, varying tendon locations)β€’ 𝐸𝐸𝑐𝑐 and thus the modular ratios vary with time

– Loading conditions change with timeβ€’ Staged application of superimposed loadsβ€’ Multi-staged post-tensioning

– Statical structural system changes with timeβ€’ Composite closure jointsβ€’ Composite deckβ€’ Temporary support removal

Composition of Spliced Girders

β€’ Precast concrete segments

β€’ CIP concrete closure joints and deck

β€’ Prestressing Strands and Tendons

β€’ Non-prestressedreinforcement

Time Variation of Material Properties

β€’ Three distinct materialsβ€’ Concrete

– Strength (𝑓𝑓𝑐𝑐′) and stiffness (𝐸𝐸𝑐𝑐) vary with time– Creep rate varies with time and time of loading– Shrinkage rate varies with time

β€’ Prestressing steel– Relaxation rate varies with time and loading

β€’ Non-prestressed Reinforcement– Constant with time. Obeys Hooke’s Law

Timeline Modeling

β€’ Modeled as a sequence of discrete intervals– Begins when segments are constructed– Ends at conclusion of design life

β€’ Interval duration is based on changes in loading and the statical structural system

β€’ Intervals are sub-divided to capture time-dependent material responses immediately following a change in forces

Typical Timeline

Construction Event Day of Occurrence

Construct Segments 0Erect Segments 28Cast Closure Joints and Deck 35Install tendons 42Install traffic barrier 60Open to traffic 70

Incremental Deformations

β€’ Time-step analysis is simply computing incremental deformations during each interval

β€’ Axial strain and curvature– Computed for every part of the girder– Caused by

β€’ externally applied loadsβ€’ change in statical structural systemβ€’ creep and shrinkage of concreteβ€’ relaxation of prestressing strands and tendons

Computing Incremental Deformations

βˆ†πœ€πœ€π‘π‘ π‘–π‘–π‘Ÿπ‘Ÿ , 𝑖𝑖𝑏𝑏 =βˆ†π‘ƒπ‘ƒπ‘π‘ π‘–π‘–π‘šπ‘šπ΄π΄π‘π‘πΈπΈπ‘π‘ π‘–π‘–π‘šπ‘š

1 + πœ“πœ“ π‘–π‘–π‘Ÿπ‘Ÿ , π‘–π‘–π‘šπ‘š + �𝑗𝑗=1

π‘Ÿπ‘Ÿβˆ’1βˆ†π‘ƒπ‘ƒπ‘π‘ π‘—π‘—π‘šπ‘šπ΄π΄π‘π‘πΈπΈπ‘π‘ π‘—π‘—π‘šπ‘š

πœ“πœ“ π‘–π‘–π‘Ÿπ‘Ÿ , π‘—π‘—π‘šπ‘š βˆ’ πœ“πœ“ 𝑖𝑖𝑏𝑏, π‘—π‘—π‘šπ‘š + βˆ†πœ€πœ€π‘ π‘ π‘  π‘–π‘–π‘Ÿπ‘Ÿ , 𝑖𝑖𝑏𝑏

βˆ†πœ‘πœ‘π‘π‘ π‘–π‘–π‘Ÿπ‘Ÿ , 𝑖𝑖𝑏𝑏 =βˆ†π‘€π‘€π‘π‘ π‘—π‘—π‘šπ‘šπΌπΌπ‘π‘πΈπΈπ‘π‘ π‘—π‘—π‘šπ‘š

1 + πœ“πœ“ π‘–π‘–π‘Ÿπ‘Ÿ , π‘–π‘–π‘šπ‘š + �𝑗𝑗=1

π‘Ÿπ‘Ÿβˆ’1βˆ†π‘€π‘€π‘π‘ π‘—π‘—π‘šπ‘šπΌπΌπ‘π‘πΈπΈπ‘π‘ π‘—π‘—π‘šπ‘š

πœ“πœ“ π‘–π‘–π‘Ÿπ‘Ÿ , π‘—π‘—π‘šπ‘š βˆ’ πœ“πœ“ π‘–π‘–π‘Ÿπ‘Ÿ , π‘—π‘—π‘šπ‘š

βˆ†πœ€πœ€π‘π‘π‘ π‘  π‘–π‘–π‘Ÿπ‘Ÿ , 𝑖𝑖𝑏𝑏 = βˆ†π‘ƒπ‘ƒπ‘π‘π‘π‘ π‘Ÿπ‘Ÿπ‘šπ‘šπ΄π΄π‘π‘π‘π‘πΈπΈπ‘π‘π‘π‘

+ βˆ’βˆ†π‘“π‘“π‘Ÿπ‘Ÿ π‘Ÿπ‘Ÿπ‘’π‘’,π‘Ÿπ‘Ÿπ‘π‘πΈπΈπ‘π‘π‘π‘

βˆ†πœ€πœ€π‘Ÿπ‘Ÿπ‘ π‘  π‘–π‘–π‘Ÿπ‘Ÿ , 𝑖𝑖𝑏𝑏 = βˆ†π‘ƒπ‘ƒπ‘›π‘›π‘π‘(π‘Ÿπ‘Ÿπ‘šπ‘š)𝐴𝐴𝑛𝑛𝑝𝑝𝐸𝐸𝑛𝑛𝑝𝑝

βˆ†π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ = βˆ†π‘ƒπ‘ƒπ΄π΄π‘‘π‘‘π‘Ÿπ‘ŸπΈπΈπ‘‘π‘‘π‘Ÿπ‘Ÿ

+ βˆ†π‘€π‘€ π‘Œπ‘Œπ‘‘π‘‘π‘Ÿπ‘Ÿβˆ’π‘Œπ‘Œπ‘˜π‘˜πΌπΌπ‘‘π‘‘π‘Ÿπ‘ŸπΈπΈπ‘‘π‘‘π‘Ÿπ‘Ÿ

π΄π΄π‘Ÿπ‘ŸπΈπΈπ‘Ÿπ‘Ÿ, βˆ†π‘€π‘€π‘Ÿπ‘Ÿ = βˆ†π‘€π‘€ πΌπΌπ‘˜π‘˜πΈπΈπ‘˜π‘˜πΌπΌπ‘‘π‘‘π‘Ÿπ‘ŸπΈπΈπ‘‘π‘‘π‘Ÿπ‘Ÿ

οΏ½π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ = βˆ’πΈπΈπ‘Ÿπ‘Ÿπ΄π΄π‘Ÿπ‘Ÿπœ€πœ€π‘Ÿπ‘Ÿ, οΏ½π‘€π‘€π‘Ÿπ‘Ÿ = βˆ’πΈπΈπ‘Ÿπ‘ŸπΌπΌπ‘Ÿπ‘Ÿπœ‘πœ‘π‘Ÿπ‘ŸοΏ½π‘ƒπ‘ƒ = βˆ‘π‘Ÿπ‘Ÿ=1π‘Ÿπ‘Ÿ οΏ½π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ, �𝑀𝑀 = βˆ‘π‘Ÿπ‘Ÿ=1π‘Ÿπ‘Ÿ οΏ½π‘€π‘€π‘Ÿπ‘Ÿ + οΏ½π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ π‘Œπ‘Œπ‘‘π‘‘π‘Ÿπ‘Ÿ βˆ’ π‘Œπ‘Œπ‘Ÿπ‘ŸΜ…πœ€πœ€ =

οΏ½π‘ƒπ‘ƒπΈπΈπ‘‘π‘‘π‘Ÿπ‘Ÿπ΄π΄π‘‘π‘‘π‘Ÿπ‘Ÿ

, οΏ½πœ‘πœ‘ =�𝑀𝑀

πΈπΈπ‘‘π‘‘π‘Ÿπ‘ŸπΌπΌπ‘‘π‘‘π‘Ÿπ‘Ÿ

Time-Step Analysis By Example

β€’ Simple span reinforced concrete beamβ€’ Self-weight loading

Time Variation of Material Properties

0

1

2

3

4

5

6

7

1 10 100 1000 10000

f'c (k

si)

Time (days)

Time Variation of Concrete Strength

0

1000

2000

3000

4000

5000

6000

1 10 100 1000 10000

Ec (k

si)

Time (days)

Time Variation of Concrete Modulus

0

1

2

3

4

5

1 10 100 1000 10000

Cre

ep C

oeffi

cien

t

Time (days)

Time Variation of Creep Coefficient

Day 1

Day 2

Day 3

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Shrin

kage

Str

ain

X 10

00

Time (days)

Time Variation of Shrinkage Strain

Time Step 1 – Analyze Loading Condition

β€’ Moment due to self-weight (external force)β€’ Use transformed section analysis

– Neglect bending stiffness of reinforcement

�𝑃𝑃 = 0 = 𝑃𝑃𝑐𝑐 βˆ’ π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ �𝑀𝑀 = 𝑀𝑀 = 𝑀𝑀𝑐𝑐 + π‘ƒπ‘ƒπ‘π‘π‘Œπ‘Œπ‘π‘ βˆ’ π‘ƒπ‘ƒπ‘Ÿπ‘Ÿπ‘Œπ‘Œπ‘Ÿπ‘Ÿ

Time Step 1 – Incremental Deformations

β€’ Incremental forces on the various parts of the cross section are determined by a transformed section analysis– βˆ†π‘ƒπ‘ƒπ‘π‘1 = 𝑃𝑃𝑐𝑐 ,βˆ†π‘€π‘€π‘π‘1 = 𝑀𝑀𝑐𝑐 ,βˆ†π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ1 = π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ

β€’ Incremental Deformations– Computed using modulus at time of loading and net

section properties

– βˆ†πœ€πœ€π‘π‘1 = βˆ†π‘ƒπ‘ƒπ‘π‘π‘πΈπΈπ‘π‘π‘π΄π΄π‘π‘π‘›π‘›

,βˆ†πœ‘πœ‘π‘π‘1 = Δ𝑀𝑀𝑐𝑐𝑐𝐸𝐸𝑐𝑐𝑐𝐼𝐼𝑐𝑐𝑛𝑛

– Ξ”πœ€πœ€π‘Ÿπ‘Ÿ1 = Ξ”π‘ƒπ‘ƒπ‘Ÿπ‘Ÿπ‘πΈπΈπ‘π‘π΄π΄π‘π‘

Time Step 1 – End of Interval

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Nor

mal

ized

Axi

al S

trai

n

Time Step

Incremental Axial Deformation in Concrete

βˆ†Ξ΅c1

Time Step 2 – Time-Dependent Effects

β€’ Only Time Passesβ€’ Time-dependent response of materials

– Unrestrained Creep of Concreteβ€’ Ξ”πœ€πœ€π‘π‘π‘Ÿπ‘Ÿ = Δ𝑃𝑃𝑐𝑐𝑐

πΈπΈπ‘π΄π΄π‘π‘πœ“πœ“(𝑑𝑑2, 𝑑𝑑1)

β€’ Ξ”πœ‘πœ‘π‘π‘π‘Ÿπ‘Ÿ = Δ𝑀𝑀𝑐𝑐𝑐𝐸𝐸𝑐𝐼𝐼𝑐𝑐

πœ“πœ“(𝑑𝑑2, 𝑑𝑑1)

– Unrestrained Shrinkageβ€’ Ξ”πœ€πœ€π‘ π‘ π‘ (𝑑𝑑2, 𝑑𝑑1)

Time Step 2 – Initial Strain Analysis

β€’ Reinforcing causing internal restraintβ€’ Compute restrained deformations and

internal restraining forces, Ξ”πœ€πœ€π‘π‘2,Ξ”πœ‘πœ‘π‘π‘2,Ξ”πœ€πœ€π‘Ÿπ‘Ÿ2, Δ𝑃𝑃𝑐𝑐2,Δ𝑀𝑀𝑐𝑐2,Ξ”π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ2

Time Step 2 – End of Interval

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5

Nor

mal

ized

Axi

al S

trai

n

Time Step

Incremental Axial Deformation in Concrete

βˆ†Ξ΅c1

βˆ†Ξ΅c2

Time Step 3 – Time-Dependent Effects

β€’ Only Time Passesβ€’ Time-dependent response of materials

– Unrestrained Creep of Concreteβ€’ Ξ”πœ€πœ€π‘π‘π‘Ÿπ‘Ÿ = Δ𝑃𝑃𝑐𝑐𝑐

πΈπΈπ‘π΄π΄π‘π‘πœ“πœ“ 𝑑𝑑3, 𝑑𝑑1 βˆ’ πœ“πœ“ 𝑑𝑑2, 𝑑𝑑1 + Δ𝑃𝑃𝑐𝑐𝑐

πΈπΈπ‘π΄π΄π‘π‘πœ“πœ“ 𝑑𝑑3, 𝑑𝑑2

β€’ Ξ”πœ‘πœ‘π‘π‘π‘Ÿπ‘Ÿ = Δ𝑀𝑀𝑐𝑐𝑐𝐸𝐸𝑐𝐼𝐼𝑐𝑐

πœ“πœ“ 𝑑𝑑3, 𝑑𝑑1 βˆ’ πœ“πœ“ 𝑑𝑑2, 𝑑𝑑1 + Δ𝑀𝑀𝑐𝑐𝑐𝐸𝐸𝑐𝐼𝐼𝑐𝑐

πœ“πœ“ 𝑑𝑑3, 𝑑𝑑2

– Unrestrained Shrinkageβ€’ Ξ”πœ€πœ€π‘ π‘ π‘ (𝑑𝑑3, 𝑑𝑑2)

Time Step 3 – Incremental Unrestrained Deformations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6Time Step

Unrestrained Axial Creep Strain

πœ€πœ€1 𝑑𝑑 =𝑃𝑃𝑐𝑐1

𝐸𝐸𝑐𝑐1π΄π΄π‘π‘π‘Ÿπ‘Ÿπœ“πœ“(𝑑𝑑, 𝑑𝑑1)

πœ€πœ€2 𝑑𝑑 =𝑃𝑃𝑐𝑐2

𝐸𝐸𝑐𝑐2π΄π΄π‘π‘π‘Ÿπ‘Ÿπœ“πœ“(𝑑𝑑, 𝑑𝑑2)

Ξ”πœ€πœ€ 𝑑𝑑3, 𝑑𝑑2 = πœ€πœ€ 𝑑𝑑3 βˆ’ πœ€πœ€(𝑑𝑑2)

Time Step 3 – Initial Strain Analysis

β€’ Reinforcing causing internal restraintβ€’ Compute restrained deformations and

internal restraining forces, Ξ”πœ€πœ€π‘π‘3,Ξ”πœ‘πœ‘π‘π‘3,Ξ”πœ€πœ€π‘Ÿπ‘Ÿ3, Δ𝑃𝑃𝑐𝑐3,Δ𝑀𝑀𝑐𝑐3,Ξ”π‘ƒπ‘ƒπ‘Ÿπ‘Ÿ3 If reinforcement were

prestressed, this would be the change in prestress force (aka loss)

Time Step 3 – End of Interval

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5

Nor

mal

ized

Axi

al S

trai

n

Incremental Axial Deformation in Concrete

βˆ†Ξ΅c1

βˆ†Ξ΅c2

βˆ†Ξ΅c3

Time Step i – Repeat, Repeat, Repeat

β€’ This procedure is repeated for every cross section and every time interval

β€’ Analysis is more involved for spliced girders– Continuity externally restrains free deformations– Several concrete types cast at different times– Changes in statical structural system– Pretensioning and multi-stage post-tensioning– Intrinsic and reduced relaxation of prestressed steel

β€’ Computers are great at performing repetitive computations and keeping track of numbers!

Computer Aided Design of Spliced Girders

β€’ NCHRP Report 517 – Extending Spans– Suggests DOT produced software was a

significant contributing factor for wide-spread use of PT Box Girder technology

– Implies same will be true for adoption of spliced girder technology

– Notes the lack of a preferred industry standard– Recommends owner agencies and industry

pursue development of high quality software tools for spliced girder bridges

PGSpliceβ„’

β€’ Part of the new WSDOT BridgeLinkβ„’ suite of softwareβ€’ Design, analyze, and load rate continuous precast-prestressed spliced

girder bridgesβ€’ Modeling

– Cantilever pier segments– Drop-in field segments– Temporary erection towers– Strong back hangers– Multi-stage post-tensioning

β€’ Analysis– Non-linear time step analysis– AASHTO, ACI 209 and CEB-FIP Model Code

β€’ User interface, modeling, graphing and reporting features are very similar to PGSuperβ„’

Bridge Configurations4 Span Variable Depth Girder with Cantilever Piers Segments and Drop In Field Segments

Bridge Configurations3 Span U-Beam with Segments Supported at Permanent Piers and Temporary Erection Towers

Bridge ConfigurationsEnd Spans are pretensioned girders - center span three segment spliced girder

Graphical Results

β€’ Visualize Complex Results with Simple Graphical Representations

Detailed Reporting

β€’ Transparent – eliminate frustration with β€œblack boxes”

Case Study

β€’ Two Span Continuous Spliced Girder Bridgeβ€’ Presented in PCI State-of-the-Art of Spliced-

Girders report

PGSpliceβ„’ Models

Baseline Comparison

-2.5

-2

-1.5

-1

-0.5

01 10 100 1000 10000

Stre

ss (K

SI)

Time (Days)

Top of Girder Stress at 0.4L in Span 1 without Time Dependent Effects

Abdel-Karim

PGSplice

Comparison including Time-Dependent Effects

-2.5

-2

-1.5

-1

-0.5

01 10 100 1000 10000

Stre

ss (K

SI)

Time (Days)

Top of Girder Stress at 0.4L in Span 1 with Time Dependent Effects

Abdel-Karim

PGSplice

Software Availability

β€’ Free download from WSDOTβ€’ http://www.wsdot.wa.gov/eesc/bridge/software

β€’ Open Sourceβ€’ BridgeLinkβ„’ v1.0

– PGSuperβ„’ v3.0 (Beta)– PGSpliceβ„’ v3.0 (Beta)– BEToolboxβ„’ v3.0

http://www.wsdot.wa.gov/eesc/bridge/software


Recommended