Download pdf - ACC_slides_MHE_v1.pdf

Transcript
  • 7/25/2019 ACC_slides_MHE_v1.pdf

    1/13

    Speed Sensorless State Estimation for Induction

    Motors: A Moving Horizon Approach

    Lei Zhou1, Yebin Wang21 Massachusetts Institute of Technology

    2 Mitsubishi Electric Research Laboratories

    cMERL June 28, 2016 1 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    2/13

    Motivations

    The tracking bandwidth of speed sensorless induction drive islimited by the state estimation: estimation scheme with fastconvergence is needed;

    The tuning of the classic model reference adaptation estimation isdifficult: systemetic estimation scheme is desired.

    The moving horizon estimation (MHE) provides a systematicframework and demonstrates fast estimation convergence, but issensitive to model parameter mismatch.

    In this work, we study:

    The application of MHE for induction motor speed sensorlessestimation;

    Dual-stage adaptive MHE that accounts for parametric modeluncertainties.

    cMERL June 28, 2016 2 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    3/13

    Moving Horizon Estimation

    Moving horizon estimation and fullinformation problem[1].

    [1] Rawlings, James B. Moving horizonestimation. Encyclopedia of Systems andControl (2015): 799-804.

    Full information estimation:

    minx0,{wk}

    T1k=0

    (x0) +T1k=0

    Lk(wk, vk),

    where

    (x0) = x0 x02

    P10

    ,

    Lk(wk, vk) = wk2Q1k

    + yk h(xk)2R1k

    .

    Moving horizon estimation:

    minz,{wk}

    T1k=TN

    ZTN(z)+T1

    k=TN

    Lk(wk, vk).

    ZTN(z): arrival cost, summarizing theinformation fromk= 0 toT N.

    cMERL June 28, 2016 3 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    4/13

    Induction Motor Model

    The classical induction motor model in the stationary two-phase reference frame canbe written as:

    ids = ids+ dr+ qr+ 1

    uds,

    iqs = iqs Lm

    dr+ qr +

    1

    uqs,

    dr =Lmids dr qr,qr =Lmiqs+ dr qr ,

    =

    J(idsqr + driqs)

    TLJ

    .

    The parameters are

    =Ls 1 L2mLsLr

    ; = Rs

    ; = RrLr

    = LmLr

    ; = 32

    LmLr

    ,

    where (Rs, Ls) and (Rr, Lr) are the resistance and inductance of the stator and rotorrespectively, and Lm is the mutual inductance between stator and rotor.

    cMERL June 28, 2016 4 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    5/13

    Adaptive MHE: Problem Formulation

    Consider a general nonlinear, discrete system:xk+1=fk(xk, uk, wk),

    yk =hk(xk) +vk.

    The MHE formulation for state and parameter estimation at time T is

    minp,z,{wk}

    T1k=TN

    ZTN(z, p) +T1

    k=TN

    Lk(wk, vk, p)

    subject to xk(k; z, {wj}, uk) Xk, k=TN, ..., T

    wk Wk, k= (TN), ..., (T1)vk =ykhk(xk) Vk, k=TN, ..., T1

    p P

    Remark: the conventional (non-adaptive) MHE does not have parameters p in the

    decision variables.cMERL June 28, 2016 5 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    6/13

    MHE for Induction Motor State Estimation

    Stage costs Lk(wk, vk)

    Lk(wk, vk) =wTkQ

    1wk+ vTkR

    1vk.

    where Q and R are the covariance matrices for process noise and measurementnoise respectively.

    Arrival cost ZTN(z)Define the cost for the initial estimation error as (x0) = (x x0)

    T10 (x x0).The approximated arrival cost can be calculated by

    ZTN(z) = (z xTN)T1TN(z xTN) +

    TN

    where TN is updated by the one-step predictor equation as

    k+1=GQGT + AkkA

    Tk AkkC

    T(R + CTkCT)1CkA

    Tk .

    ConstraintsInequality constraints are removed to simplify the computation. Theoptimization problem only subject to the system dynamics.

    cMERL June 28, 2016 6 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    7/13

    Dual-stage MHE for parameter adaption

    In an augmented-state MHE, estimating parameters and states together can leadto highly nonlinear optimization problems and add difficulties to solving;

    In dual-stage adaptive MHE, the state estimation and parameter estimation areseparated into two sequential steps, and significantly simplify the solvingdifficulties.

    !"#"$ &'(

    !"#$

    )#*#+$"$* &'(

    !"%$

    &'()*+,-*&.)*+,- /

    *+0 &1)*+,-*

    &.)*+,2 /*+0 &1)*+,2

    *

    3+0

    45

    State estimation:

    minz,{wk}

    T1TNx

    xT=ZTNx(z)+

    T1

    k=TNx

    Lxk(wk,vk)

    Parameter estimation:

    minp

    pT=

    pTNp

    +

    T1

    k=TNp

    vTkR1vk

    cMERL June 28, 2016 7 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    8/13

    Dual-stage MHE with RLS parameter estimation

    Define parameter vector as = [,,, 1/]T. The current equations can be written into the regression form:

    ik+1ds

    ikdsdt

    ik+1

    qs ik

    qsdt

    y

    = ikds

    kds

    kqsk ukds

    ikqs kqs kdsk ukqs T

    1/

    ,

    The recursive least square (RLS) estimation can be readily applied as

    min RLST =

    1

    T

    Tk=1

    yk| yk2. Remark: for induction motor parameter estimation (linear, unconstrained system

    with no dynamics), RLS estimation is equivalent to MHE parameter estimationwith infinite estimation horizon.

    cMERL June 28, 2016 8 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    9/13

    MHE Simulation for Induction Motor

    !"#$

    !

    !

    "

    #

    !"##$

    %& "

    !

    '()*+#

    %&

    -.+/ %&

    $%&'()*+%,+)+-

    &01#)2# %3)4

    ')3025()6378(0

    %3)4

    ')3025()6378(0

    9(180:

    ;()8 "?32#

    @A

    B "?32#

    !%

    !

    %

    &'"#$('

    ()

    (*+, &'-&'

    &)

    (.

    (/

    (0

    (., &.

    12

    (3+, &)-

    (/, &/

    (0, &0

    ('-

    ()-

    "

    &)"#$

    B "?32#

    @A

    > "?32#

    Block diagram of induction motor field-oriented control.

    cMERL June 28, 2016 9 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    10/13

    MHE Simulation for Induction Motor

    20-steps horizon. Samping rate 10 kHz. P0 =I66 103. Initial values

    x= [1, 1, 0, 0, 5, 0]T; x= [0, 0, 0, 0, 0, 0.1]T.

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4MotorSp

    eed(rad/s)

    0

    50

    100

    150

    Reference SpeedPlant SpeedEstimated Speed

    Time (s)0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    SpeedEstimation

    Error(rad/s)

    -2

    0

    2

    4

    6

    MHE Speed Estimation ErrorEKF Speed Estimation Error

    State estimation for induction motor with MHE and EKF.cMERL June 28, 2016 10 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    11/13

    MHE Simulation for Induction Motor

    20-steps horizon. Samping rate 10 kHz. P0 =I66 103. Initial values

    x= [1, 1, 0, 0, 10, 0]T; x= [0, 0, 0, 0, 0, 0.1]T.A torque disturbance of1 Nm is added to motor at T = 0.2 s.

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    Motor

    Speed(rad/s)

    0

    50

    100

    150

    Reference SpeedPlant Speed Q

    TL= 1

    Plant Speed QTL= 10Plant Speed Q

    TL= 100

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    SpeedEstimation

    Error(rad/s)

    -20

    -10

    0

    10

    20Speed Error Q

    TL= 1

    Speed Error QTL

    = 10

    Speed Error QTL

    = 100

    Time (s)0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    Loadtorque(Nm

    )

    -0.5

    0

    0.5

    1

    1.5

    True load torqueEstimated, Q

    TL= 1

    Estimated, QTL

    = 10

    Estimated, QTL

    = 100

    Induction motor speed with MHE under step torque disturbance.

    cMERL June 28, 2016 11 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    12/13

    Dual-stage MHE with RLS for parameter estimation

    Initial parameters: 0 = 0.7true; 0 = 0.7true; 0 = 0.9true; 0 = 0.9true.

    Dynamic horizon length is used for better convergence.

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4M

    otorSpeed(rad/s)

    0

    50

    100

    150

    ReferencePlant speedEstimated

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4SpeedEstimation

    Error(rad/s)

    -20

    0

    20

    40

    Time0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

    Parameter

    EstimationError(%)

    -50

    0

    50

    Dual-stage adaptive MHE with RLS parameter estimation for induction motor system.

    Non-adaptive MHE cannot provide converging estimation.

    cMERL June 28, 2016 12 / 13

  • 7/25/2019 ACC_slides_MHE_v1.pdf

    13/13

    Conclusion

    Moving horizon estimation scheme for induction motor stateestimation considering the rotor mechanical dynamics is studied;

    Dual-stage adaptive MHE can successfully achieve convergingparameter and state estimation despite the initial model parametricerror.

    Future work

    Analysis and tuning for the dual-stage adaptive MHE;

    Computational cost reduction of MHE for real-time implementation.

    cMERL June 28, 2016 13 / 13


Recommended