12
CNT-REINFORCED IRON AND TITANIUM NANOCOMPOSITES: STRENGTH AND DEFORMATION MECHANISMS BRUNO FARIA 1 , CÁTIA GUARDA 1 , NUNO SILVESTRE 2 , JOSÉ N. CANONGIA LOPES 1 1 Centro de Química Estrutural, Department of Chemical and Biological Engineering, Instituto Superior Técnico, Universidade de Lisboa, Portugal 2 IDMEC, Dept. of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Portugal SUPPLEMENTAL INFORMATION

YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

CNT-REINFORCED IRON AND TITANIUM NANOCOMPOSITES: STRENGTH AND DEFORMATION MECHANISMS

BRUNO FARIA1, CÁTIA GUARDA1, NUNO SILVESTRE2, JOSÉ N. CANONGIA LOPES1

1 Centro de Química Estrutural, Department of Chemical and Biological Engineering, Instituto Superior Técnico,

Universidade de Lisboa, Portugal

2 IDMEC, Dept. of Mechanical Engineering, Instituto Superior Técnico,

Universidade de Lisboa, Portugal

SUPPLEMENTAL INFORMATION

Page 2: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

SI.1 Potential Energy and Stress vs Equilibration time for pure Metals and for

Nanocomposites.

a) b)

Figure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti

nanocomposites. Note that equilibration time used in all simulations is 150 ps. In the Figures, equilibration time is

extended to 750 ps to show that longer equilibration times are not necessary, since the variation interval in

potential energy and stress remains constant.

a) b)

Figure S.2. Evolution of a) Potential energy and b) Stress with Equilibration time, in Fe and Fe-CNT

nanocomposites. Note that equilibration time used in all simulations is 150 ps. In the Figures, equilibration time is

extended to 750 ps to show that longer equilibration times are not necessary, since the variation interval in

potential energy and stress remains constant.

2

Page 3: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

a) b)

Figure S.3. Variation, with the strain (-0.60≤ ≤+0.90) of: a) Interfacial Energy for CNT-Fe/ case A (green) and

CNT-Fe/case B (blue); b) Interfacial Energy for CNT-Ti/ case A (green) and CNT-Ti/case B (blue).

3

Page 4: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

SI.2 Deformed configurations for pristine Fe and Fe nanocomposites under tensile

and compressive loading

a1) = 0.15 a2) = 0.20 a3) = 0.30

b1) = 0.15 b2) = 0.20 b3) = 0.25

Dislocations: -Red:Other - Magenta: <100> -Blue: <110> -Green: ½ <111>

Orientation Z (rad)

0.3 -0.3

Figure S.4. Structural deformations of pristine Fe: a) for several strains under tensile loading; b) for several

strains under compressive loading (Longitudinal/diagonal slice view)

4

Page 5: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

a1) = 0.15 a2) = 0.20 a3) = 0.30

b1) = 0.15 b2) = 0.20 b3) = 0.25

Dislocations: -Red:Other - Magenta: <100> -Blue: <110> -Green: ½ <111>

Orientation Z (rad)

0.3 -0.3

Figure S.5. Structural deformations of CNT-Fe/A: a) for several strains under tensile loading; b) for several

strains under compressive loading (Longitudinal/diagonal slice view)

5

Page 6: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

a1) = 0.15 a2) = 0.20 a3) = 0.30

b1) = 0.15 b2) = 0.20 b3) = 0.25

Dislocations: -Red:Other - Magenta: <100> -Blue: <110> -Green: ½ <111>

Orientation Z (rad)

0.3 -0.3

Figure S.6. Structural deformations of CNT-Fe/B: a) for several strains under tensile loading; b) for several

strains under compressive loading (Longitudinal/diagonal slice view)

6

Page 7: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

SI.2 Deformed configurations for pristine Ti and Ti nanocomposites under tensile

and compressive loading

a1) = 0.15 a2) = 0.20 a2) = 0.30

b1) = 0.15 b2) = 0.20 b3) = 0.25

Dislocations: -Red: Other - Magenta: ¿1100>¿ -Blue: ¿0001>¿ -Yellow: 13<12 13>¿

-Green: 13<12 10>¿ -Orange:

13<11 00>¿

Orientation Z (rad)

0.3 -0.3

Figure S.7. Structural deformations of pristine Ti: a) for several strains under tensile loading; b) for several strains

under compressive loading (Longitudinal/diagonal slice view)

7

Page 8: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

a1) = 0.15 a2) = 0.20 a2) = 0.30

b1) = 0.15 b2) = 0.20 b3) = 0.25

Dislocations: -Red: Other - Magenta: ¿1100>¿ -Blue: ¿0001>¿ -Yellow: 13<12 13>¿

-Green: 13<12 10>¿ -Orange:

13<11 00>¿

Orientation Z (rad)

0.3 -0.3

Figure S.8. Structural deformations of CNT-Ti/A: a) for several strains under tensile loading; b) for several

strains under compressive loading (Longitudinal/diagonal slice view)

8

Page 9: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

a1) = 0.15 a2) = 0.20 a2) = 0.30

b1) = 0.15 b2) = 0.20 b3) = 0.25

Dislocations: -Red: Other - Magenta: ¿1100>¿ -Blue: ¿0001>¿ -Yellow: 13<12 13>¿

-Green: 13<12 10>¿ -Orange:

13<11 00>¿

Orientation Z (rad)

0.3 -0.3

Figure S.9. Structural deformations of CNT-Ti/B: a) for several strains under tensile loading; b) for several strains

under compressive loading (Longitudinal/diagonal slice view)

9

Page 10: YIC2012 Word Template  · Web viewFigure S.1. Evolution of a) Potential energy and b) Stress with Equilibration time, in Ti and CNT-Ti nanocomposites. Note that equilibration time

10