1969 - Condition Numbers and Equilibration of Matric

Embed Size (px)

Citation preview

  • 8/3/2019 1969 - Condition Numbers and Equilibration of Matric

    1/10

    Numer. Math. 14, t4--23 (t969)

    Condition Numbers and Equilibration of MatricesA. VAN DER SLU IS

    Received March 6, 1969Introduct ion

    In nu me rica l l inea r alg ebra one m eet s co nd it ion nu mb ers [[AII []A-11[and s imi la rqu an tit ies su ch as (m ax [a,i[)[[A-1H an d [[Ai[[ [[A-l[], wh ere A = (a,i) an d A i is the/ ' - th co lumn of A . The norms a re ve ry d ive rse .

    The problem then i s to de te rmine a row- and/or co lumn-sca l ing of A whichm i n im i z es t he qua n t i t y unde r c ons ide r a ti on .

    I t i s the purpose of th is p aper to spec i fy a c lass o f such qu ant i t i e s fo r whichthose scal ings can be given expl ic i t ly . The resul ts wi l l be extens ions of someresul ts in [2] . They wi l l a lso hold for non-square matr ices . Al l proofs wi l l bec om pl e t e l y e l e m e n t a r y .

    Also, in some cases where the min imiz ing scal ing can not be g iven expl i c i tly ,i t can be sa id how fa r a t mos t fo r a ce r t a in sca l ing the qua nt i t y un der cons ide ra t ionm a y b e a w a y f r o m it s m i n im u m .

    Convent ions~c2~ wil l deno te the se t o f rea l o r com plex m n mat r i ces , m>=n, and A wil l

    a l w a ys be a n e l e m e n t o f ~ , ~ . A n wil l denote the t ransposed of .~. ~,n and ~wi ll denote th e c las s o f non-s ingula r rea l o r complex m m or n n d iagona lmat r i ces .

    X and Y wi l l a lways denote rea l o r complex ca r t es i an spaces of d imens ion nan d m res pe cti ve ly, an d wi th no rm s ][. []a an d ][. I[~ res pe cti ve ly.

    Al l of ~X,~n, ~,n, ~ , X an d Y wil l be real or a l l of th em will be complex.Thi s induces the quant i t i e s lub~a(A)=maxtlAx[[Jl[x[~ a n d g l b ~ a ( A ) =min [A ~ILIII-II~ fo r a n y A E~J~m~.x*0 lub m and glb m, p and q real num ber s or o% will den ote the case tha t [[. It~an d [[. [~ are th e H61d er p - an d q-no rm resp ectiv ely, def ined as [[xIlp= (2 [xj[p) l /p,and s imi la rly for q.

    []A [[p = lu bpp (A ).[x[ wil l deno te the vec tor whose coord ina tes a re the modul i o f the cor responding

    coord ina tes o f x ; s imi la rly for a ma t r ix [A I.A ve c t o r xEX, x4=O, will be called a maximizing vec to r for A wi th respec t

    to the given norms i f [ [A xl[,,/[[x[~=tub~,a(A ). Also, x will be called a minimizingvector if ][Ax[IJ[[x[[a= glb~,~ (A ).

    Def. wiU indicate a def ini t ion, Th. wi l l indicate a smal l or intermediate resul t .

  • 8/3/2019 1969 - Condition Numbers and Equilibration of Matric

    2/10

    Condition Num bers an d Equ ilibration of Matrices t 51 . Monotonic Matr ix Funct ions

    Def. 1.1. A vectornorm is called absolute if N = lllxl II, it is ca lled monoticif lxl < l y t = tlxl[

  • 8/3/2019 1969 - Condition Numbers and Equilibration of Matric

    3/10

    16 A. va n der Sluis:for a certa in y e Y. T here exists a m atr ix A E ~J~,n, and a ve ctor x E X such tha ty = A x and t [yl]~=lub~a(A)IIx[~ (cf. 6 . t ) . Then lub ~p (D A) >l ub ,~ (A ) and hencelub~a cannot be lef t -monotonic (cf . t . t0) .

    There a lso exists a DE~)m with ]D I = I such t ha t [IDylls< ]IY[]~for a certainyE Y. P u t [tDy[]~ = [[y][~/(l + e). Th ere exi sts a m at ri x A E~02~ an d a v ect or x E Xsuch tha t y = A x an d Ib~i]~

  • 8/3/2019 1969 - Condition Numbers and Equilibration of Matric

    4/10

    Condition Numbers and Equilibration of Matrices 172. Equilibration Theorems

    Def. 2.1. In the following P will be a ma tri x wit h m rows if B is left-multipliedb y DE~,~, B wilt have n columns if B is rig ht -m ult ipl ied b y DE~)~. A lso, If. I~wi ll denote an y vec tornorm.

    Def. 2 .2 . For a ny two matr ices A an d B and an y two m atr ix func t ions ~band ~ we def ine ~(B, A) =~v(B)/~(A).i f the r ight hand side exists .

    We then h ave the fo llowing two theoremsTheorem 2.3. Column Equil ibrat ion Theorem. I f w(B)=max I[Bi[b (where B itdeno tes the ] - th colum n of B) and ~ is r ight-mono tonic on A ~D, and D6~D, is such

    th at B/~ is colum n-equil ibrated in the sense of i t ( ie all columns of B/5 haveequal y-norm). Then(a) ~ (B /5 , A D) ---- ra in ~ (BD, A D)(b) An y matr ix D for which the m inimu m in (a) is a t ta ined m ay be obta ined

    by m ul t ip ly ing /~ by a d i a gona lm a t r ix whose d i a gona l e l e m e n t s ha ve e qua lmod ulus if and onl y if $ is s trong ly r ight-m onoto nic a t A/5 (hence in this casecolumn -equil ibrat ion of th e arg um ent of ~p is a lso a necessary cond it ion for them in im u m to be a t t a ine d ).

    Proo/. (a) I t is no restr ic t ion to assume that D=I , i .e . that B alreadyis column -equil ibrated. The n m ax [Ie oj l lv : m ax ]di i I. m ax IIBjI/r and (A D) --