70
City Profile Template The aim of this document To provide a template for your City Profile coving development, risk and adaptation as the three lines of interest to TRUC. The City Profile needs to be a detailed and well referenced document.. It is OK if there are gaps in information, but it needs to be clear that this is a result of a lack of existing data. Please follow the subject headings provided in this template and provide referenced material throughout, all figures and graphics must be fully referenced. The final document should be around 40 pages, single spacesd text. This will vary, the key is that there is sufficient information and the underlying references are sufficiently clear to allow any member of TRUC to analyse the data you will be generating through City Workshops, Modelling and Adpatation Interviews. This is very important for allowing comparison across cases and the template can become the basis for city case study papers for a journal special edition. Sources to consult Start with the peer review academic literature, then also include reviews from government and civil society agencies including the UN. Finally, the news media can be used. The news media can sometimes be useful in showing perspectives, for example on risk management or perception, that does not come from official or academic documents. Quotations can be used. If in doubt it is better to include rather than exclude material. Keep a publications archive Please submit all referenced material to the TRUC Dropbox account managed by Michael Dorsch at CUNY ([email protected]). We will all then have access to 1

Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Embed Size (px)

Citation preview

Page 1: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

City Profile Template

The aim of this document To provide a template for your City Profile coving development, risk and adaptation as the three lines of interest to TRUC.

The City Profile needs to be a detailed and well referenced document.. It is OK if there are gaps in information, but it needs to be clear that this is a result of a lack of existing data.

Please follow the subject headings provided in this template and provide referenced material throughout, all figures and graphics must be fully referenced.

The final document should be around 40 pages, single spacesd text. This will vary, the key is that there is sufficient information and the underlying references are sufficiently clear to allow any member of TRUC to analyse the data you will be generating through City Workshops, Modelling and Adpatation Interviews. This is very important for allowing comparison across cases and the template can become the basis for city case study papers for a journal special edition.

Sources to consultStart with the peer review academic literature, then also include reviews from government and civil society agencies including the UN. Finally, the news media can be used. The news media can sometimes be useful in showing perspectives, for example on risk management or perception, that does not come from official or academic documents. Quotations can be used.

If in doubt it is better to include rather than exclude material.

Keep a publications archivePlease submit all referenced material to the TRUC Dropbox account managed by Michael Dorsch at CUNY ([email protected]). We will all then have access to each others source documents.Please contract Michael direct for any queries relating to Dropbox.

The aim of the City ProfileThe aim of the city profile is to feed directly into analysis through helping to:

(1) identify critical physical and social infrastructure sectors, case study Boroughs and questions for adaptation interviews to be conducted during the second half of 2015

(2) contextualise results of scenario workshops, risk modelling and adaptation interviews.

1

Page 2: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

DeadlinesFirst draft to Mark Pelling: 31 March 2015Mark to provide feedback for each report by 30 AprilFinal report submitted to Mark Pelling 29 May

These deadlines are very important, they will allow the report to feed into the early June Stuttgart modelling analysis workshop and adaptation interview training session. Once a final draft has been accepted by Mark, the city profile will be placed on the TRUC website and become a public document.

Queries and Questions?Please contact Mark Pelling [email protected]

[Title]

[Authors and affiliation]

1.0 Executive Summary – 1 page[A short summary of the most important features of your city’s urban development trajectory (land use, inequality, economy) and how this interacts with adaptation status and movement (CRRT), and risk (hazard, vulnerability and capacity) trends. Summarise the overall status of adaptation policy for the city and its movement over the last decade including comment on the major drivers for any identified movement, for example city or national legislation, policy or political change, popular pressure, a disaster event, new technology, economic change].

2.0 Development: Trends and Context – 8 pages[Please explain how contemporary vulnerability, hazard exposure or adaptive capacity are associated with development context and trends, where relevant and available include historical material, comment on national and international or rural-urban linkages etc] 2.1 Geographical context (2 pages)[The city’s physical site and rationale for this and its expension. Position within the regional and glbal economy: connection to global flows of finance, migration etc]

Summary (from Wikipedia)Tokyo Metropolis, Kanto region, Honshu Island, JapanTokyo is the most populous metropolitan area in the world. ["Japan's Local Government System". Tokyo Metropolitan Government. Retrieved August 5, 2013]Tokyo is in the Kanto region on the southeastern side of the main island Honshu and includes the Izu Islands and Ogasawara Islands.

2

Page 3: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Formerly known as Edo it has been the de facto seat of government since 1603 when Shogun Tokugawa Ieyasu made the city his headquarter but only became the capital and was renamed Tokyo after Emperor Meiji moved his seat to the city from the old capital of Kyoto in 1868.Tokyo Metropolis was formed in 1943 from the merger of the former Tokyo Prefecture (東京府) and the city of Tokyo (東京市).Tokyo is officially known and governed as a "metropolitan prefecture", which differs from and combines elements of both a city and a prefecture; a characteristic unique to Tokyo.The Tokyo metropolitan government administers the 23 Special Wards of Tokyo (each governed as an individual city), which cover the area that was formerly the City of Tokyo before it merged and became the subsequent metropolitan prefecture in 1943.The metropolitan government also administers 39 municipalities in the western part of the prefecture and the two outlying island chains.The population of the special wards is over 9 million people, with the total population of the prefecture exceeding 13 million.The prefecture is part of the world's most populous metropolitan area with upwards of 37.8 million people and the world's largest urban agglomeration economy.The city hosts 51 of the Fortune Global 500 companies, the highest number of any city. [Fortune. "Global Fortune 500 by countries: Japan". CNN. Retrieved July 22, 2011]

The city is considered an alpha+ world city (as listed by the GaWC's 2008 inventory [GaWC – The World According to GaWC 2008". Lboro.ac.uk. April 13, 2010. Retrieved October 29, 2010])in 2014, Tokyo was ranked first in the "Best overall experience" category of TripAdvisor's World City Survey (the city also ranked first in the following categories: "Helpfulness of locals", "Nightlife", "Shopping", "Local public transportation" and "Cleanliness of streets"). ["Tokyo Tops Among Global Travelers, According To TripAdvisor World City Survey". TripAdvisor. TripAdvisor LLC. May 20, 2014. Retrieved September 1, 2014]In 2013, Tokyo was named the third most expensive city for expatriates, according to the Mercer consulting firm, ["2013 Cost of Living Rankings". Mercer. Mercer LLC. July 23, 2013. Retrieved February 23, 2014] and the world's most expensive city, according to the Economist Intelligence Unit's cost-of-living survey. [George Arnett; Chris Michael (February 14, 2014). "The world's most expensive cities". The Guardian. Retrieved February 23, 2014] In 2009 Tokyo was named the third Most Liveable City by the magazine Monocle. [Fawkes, Piers (June 18, 2009). "Top 25 Most Liveable Cities 2009 – Monocle". PSFK.com. Retrieved July 6, 2009]The Michelin Guide has awarded Tokyo by far the most Michelin stars of any city in the world.["「ミシュランガイド東京・横浜・鎌倉 2011 」を発行 三つ星が 14 軒、二つ星が 54 軒、一つ星が 198 軒に", Michelin Japan, November 24, 2010]

3

Page 4: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

************************ Geography and administrative divisionsThe mainland portion of Tokyo lies northwest of Tokyo Bay and measures about 90 km east to west and 25 km north to south. Coordinates: 35°41′N 139°41′E

Area- Metropolis 2,187.66 km2 (844.66 sq mi)- Metro 13,572 km2 (5,240 sq mi)- Area rank 45thThe average elevation in Tokyo is 40 m (131 ft). Chiba Prefecture borders it to the east, Yamanashi to the west, Kanagawa to the south, and Saitama to the north. Mainland Because of these islands and mountainous regions to the west, Tokyo's overall population density figures far underrepresent the real figures for urban and suburban regions of Tokyo.

National parksMarch 31, 2008: 36% of the total land area of Tokyo prefecture was designated as Natural Parks

************************ Climate- The majority of mainland Tokyo lie in the humid subtropical climate

zone (Koppen climate classification Cfa), [Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, 2007] with hot humid summers and generally mild winters with cool spells.

- The region, like much of Japan, experiences a one-month seasonal lag, with the warmest month being August, which averages 27.5 °C, and the coolest month being January, averaging 6.0 °C.

- The record low temperature is -9.2 °C, and the record high is 39.5 °C (though there was once an unofficial reading of 42.7 °C at the Primary School Station. ["Extreme temperatures around the world". Herrera, Maximiliano. Retrieved December 3, 2011])

- Annual rainfall averages nearly 1,530 millimetres, with a wetter summer and a drier winter. Snowfall is sporadic, but does occur almost annually.[ "Tokyo observes latest ever 1st snowfall". Tokyo. Kyodo News. March 16, 2005. Archived from the original on March 19, 2007. Retrieved October 18, 2008.]

- 3.1 typhoons/yr in mainland Kanto [" 気象統計情報 / 天気予報・台風 / 過去 の 台風資料 / 台風の 統計資料 / 台風の 平年値 ". Japan Meteorological

Agency]), though few are strong. - The wettest month since records began in 1876 has been October

2004 with 780 millimetres [ 気象庁 Japan Meteorological Agency. "観測史 上 1 ~ 10 位 の 値 ( 年 間 を 通 じ て の 値 ) ". Data.jma.go.jp. Retrieved December 4, 2011] including 270.5 millimetres Oct 9th, 2004. [気象庁 Japan Meteorological Agency. "観測史上 1~10 位の値(10 月としての値)". Data.jma.go.jp. Retrieved December 4, 2011]

- The western mountainous area of mainland Tokyo, Okutama also lies in the humid subtropical climate (Koppen classification Cfa).

4

Page 5: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

- The climate of Chichi-jima in Ogasawara village is on the boundary between the tropical savanna climate (Koppen classification Aw) and the humid subtropical climate (Koppen classification Cfa).

- Tokyo's easternmost territory, the island of Minamitorishima (Marcus Island) in Ogasawara village, is in the tropical savanna climate zone (Koppen classification Aw). Tokyo's Izu and Ogasawara islands are affected by an average of 5.4 typhoons a year [" 気象統計情報 / 天気予

報・台風 / 過去の台風資料 / 台風の統計資料 / 台風の平年値 ". Japan Meteorological Agency.]

************ HistoryPre-1869 (Edo Period): Tokyo was originally a small fishing village named

Edo, in what was formerly part of the old Musashi Province.[Nussbaum, "Provinces and prefectures" at p. 780, p. 780, at Google Books]

12th century: Edo was first fortified by the Edo clan1457: Ota Dokan built Edo Castle. 1590: Tokugawa Ieyasu made Edo his base1603: Tokugawa Ieyasu became shogun; Edo became the center of his

nationwide military government. *** Edo periodEdo grew into one of the largest cities in the world with a population

topping one million by the 18th century.[McClain, James, James et al. (1994). Edo and Paris: Urban Life and the State in the Early Modern Era. p. 13]; Edo became the de facto capital of Japan even while the emperor lived in Kyoto, the imperial capital.

During this time, the city enjoyed a prolonged period of peace known as the Pax Tokugawa, and in the presence of such peace, Edo adopted a stringent policy of seclusion, which helped to perpetuate the lack of any serious military threat to the city.[Naitō, Akira (2003). Edo, the City That Became Tokyo: An Illustrated History. p. 33,55.]

The absence of war-inflicted devastation allowed Edo to devote the majority of its resources to rebuilding in the wake of the consistent fires, earthquakes, and other devastating natural disasters that plagued the city.

1853: Edo period of seclusion came to an end with the arrival of American Commodore, Matthew C. Perry

Commodore Perry negotiated the opening of the ports of Shimoda and Hakodate, leading to an increase in the demand for new foreign goods and subsequently a severe rise in inflation.[ Naitō, Akira (2003). Edo, the City That Became Tokyo: An Illustrated History. p. 182,183.]

Social unrest mounted in the wake of these higher prices and culminated in wide spread rebellions and demonstrations, especially in the form of the "smashing" of rice establishments.[26]

1967: Supporters of the Meiji Emperor overthrow last Tokugawa shogun, Yoshinobu [27]; the Pax Tokugawa came to an end.

*** Post Edo period

5

Page 6: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

1869: the 17-year-old Emperor Meiji moved to Edo, and in accordance the city was renamed Tokyo (meaning Eastern Capital). Tokyo was already the nation's political and cultural center,[28] and the emperor's residence made it a de facto imperial capital as well, with the former Edo Castle becoming the Imperial Palace. The city of Tokyo was established.

Central Tokyo, like Osaka, has been designed since about 1900 to be centered on major railway stations in a high-density fashion, so suburban railways were built relatively cheaply at street level and with their own right-of-way. This differs from many cities in the United States that are low-density and automobile-centric. Though expressways have been built in Tokyo, the basic design has not changed.

1923: the 1923 Great Kanto earthquake, which left 140,000 dead or missing,[29]

1943: the city of Tokyo merged with the "Metropolitan Prefecture" of Tokyo.

1944-45: bombing of Tokyo during World War II is estimated to have killed between 75,000 and 200,000 civilians and left more than half of the city destroyed.[30] Between 1940 and 1945, the population of Tokyo dwindled from 6,700,000 to less than 2,800,000, with the majority of those who lost their lives living in "ramshackle, makeshift huts".[33]

1964: Tokyo completely rebuilt and showcased to the world during the 1964 Summer Olympics

1978: construction of the controversial[34] airport at Narita1980’s: real estate prices skyrocketed during a real estate and debt

bubble1990’s: The bubble burst, and many companies, banks, and individuals

were caught with mortgage backed debts while real estate was shrinking in value. A major recession followed, making the 1990s Japan's "Lost Decade"[36] from which it is now slowly recovering.

2011: The Tohoku earthquake and tsunami that devastated much of the northeastern coast of Honshu was felt in Tokyo. However, due to Tokyo's earthquake-resistant infrastructure, damage in Tokyo was very minor compared to areas directly hit by the tsunami,[39] although activity in the city was largely halted.[40] The subsequent nuclear crisis caused by the tsunami has also largely left Tokyo unaffected, despite occasional spikes in radiation levels.[41][42]

2013, September 7: the IOC selected Tokyo to host the 2020 Summer Olympics. Tokyo will be the first Asian city to host the Olympic Games twice.[43]

Urban development: Tokyo still sees new urban developments on large lots of less profitable land. Recent projects include Ebisu Garden Place, Tennozu Isle, Shiodome, Roppongi Hills, Shinagawa (now also a Shinkansen station), and the Marunouchi side of Tokyo Station.

Land reclamation projects: been going on in Tokyo for centuries. The most prominent is the Odaiba area, now a major shopping and

6

Page 7: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

entertainment center. Various plans have been proposed[37] for transferring national government functions from Tokyo to secondary capitals in other regions of Japan, in order to slow down rapid development in Tokyo and revitalize economically lagging areas of the country. These plans have been controversial[38] within Japan and have yet to be realized.

*************** Economy

Tokyo has the largest metropolitan economy in the world. 2012: the Tokyo urban area (35.2 million people) had a total GDP of US$1.91 trillion (at purchasing power parity) (study conducted by PricewaterhouseCoopers)51 of the companies listed on the Global 500 are based in Tokyo, almost twice that of the second-placed city (Paris).[75]

During the centralised growth of Japan's economy following World War II, many large firms moved their headquarters from cities such as Osaka (the historical commercial capital) to Tokyo, in an attempt to take advantage of better access to the government.

The Tokyo Stock Exchange is Japan's largest stock exchange, and third largest in the world by market capitalization and fourth largest by share turnover. In 1990 at the end of the Japanese asset price bubble, it accounted for more than 60% of the world stock market value.[79] Tokyo had 8,460 ha (20,900 acres) of agricultural land as of 2003,[80] according to the Ministry of Agriculture, Forestry and Fisheries (last place among the nation's prefectures)Currently, most of Tokyo's fish production comes from the outer islands, such as Izu Oshima and Hachijojima.

Tourism in Tokyo is also a contributor to the economy. In 2006, 4.81 million foreigners and 420 million Japanese visits to Tokyo were made; the economic value of these visits totaled 9.4 trillion yen according to the government of Tokyo.

The Tsukiji Fish Market in central Tokyo is the biggest wholesale fish and seafood market in the world and also one of the largest wholesale food markets of any kind. The Tsukiji market serves some 50,000 buyers and sellers every day. [81]

********** Transportation5 Airports:Haneda Airport (Ota ward)Narita International Airport (Chiba Prefecture)Hachijo-jima (Hachijojima Airport)

7

Page 8: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Miyakejima (Miyakejima Airport)Izu Oshima (Oshima Airport)

Rail: the most extensive urban railway network in the world and an equally extensive network of surface lines. JR East operates Tokyo's largest railway networkThe subway network operated by the private Tokyo Metro and the governmental Tokyo Metropolitan Bureau of TransportationThe metropolitan government and private carriers operate bus routes and one tram route

Expressways: In order to build them quickly before the 1964 Summer Olympics, most were constructed above existing roads.[83]

Long-distance ferries serve the islands of Tokyo and carry passengers and cargo to domestic and foreign ports.

****** EducationTokyo has many universities, junior colleges, and vocational schools. Many of Japan's most prestigious universities are in Tokyo, including University of Tokyo, Hitotsubashi University, Tokyo Institute of Technology, Waseda University, and Keio University.[84] Publicly run kindergartens, elementary schools (years 1 through 6), and Primary schools (7 through 9) are operated by local wards or municipal offices. Public Secondary schools in Tokyo are run by the Tokyo Metropolitan Government Board of Education and are called "Metropolitan High Schools". Tokyo also has many private schools from kindergarten through high school.

********* OTHER STUFFCuisine in Tokyo:In November 2007, Michelin released their first guide for fine dining in Tokyo, awarding 191 stars in total, or about twice as many as Tokyo's nearest competitor, Paris. Eight establishments were awarded the maximum of three stars (Paris has 10), 25 received two stars, and 117 earned one star. Of the eight top-rated restaurants, three offer traditional Japanese fine dining, two are sushi houses and three serve French cuisine.[87]

Olympics:Despite the International Gymnastics Federation's initial doubt in Tokyo's ability to host the championships following the March 11 tsunami.[88] Tokyo was selected to host the 2020 Summer Olympics on September 7, 2013.

Cityscape:Architecture in Tokyo has largely been shaped by Tokyo's history. Twice in recent history has the metropolis been left in ruins: first in the 1923 Great Kanto earthquake and later after extensive firebombing in World

8

Page 9: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

War II.[89] Because of this, Tokyo's urban landscape consists mainly of modern and contemporary architecture, and older buildings are scarce.[89] Tokyo features many internationally famous forms of modern architecture including Tokyo International Forum, Asahi Beer Hall, Mode Gakuen Cocoon Tower, NTT Docomo Yoyogi Building and Rainbow Bridge. Tokyo also features two distinctive towers: Tokyo Tower and the new Tokyo Skytree which is the tallest tower in Japan and the second tallest structure in the world after the Burj Khalifa in Dubai.[90]

Tokyo also contains numerous parks and gardens. There are four national parks in Tokyo Prefecture, including the Fuji-Hakone-Izu National Park, which includes all of the Izu Islands.

**** International relationsTokyo is the founder member of the Asian Network of Major Cities 21 and is a member of the Council of Local Authorities for International Relations. Tokyo was also a founding member of the C40 Cities Climate Leadership Group.

Tokyo is twinned with the following cities and states:[91] United States New York City, United States (since 1960)[92] China Beijing, China (since 1979) France Paris, France (since 1982) Australia New South Wales, Australia (since 1984) South Korea Seoul, South Korea (since 1988)[93][94] Indonesia Jakarta, Indonesia (since 1989) Brazil Sao Paulo State, Brazil (since 1990) Egypt Cairo, Egypt (since 1990) Russia Moscow, Russia (since 1991) Germany Berlin, Germany (since 1994)[95] Italy Rome, Italy (since 1996) Taiwan Taipei, Taiwan (since 2012)In addition, Tokyo has a "partnership" agreement with: United Kingdom London, United Kingdom (since 2006)[96]

9

Page 10: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

2.2 Governance context (2 pages)[Working culture and legal structure for public policy making within which the city government and other actors sit. Is planning centralised, decentralised to local authorities, led by civil society or the private sector? Comment on rule-of-law, free-and-fair elections, corruption, politicisation of the public sector, clientalism of low-income settlements etc should be commented upon]

Under Japanese law, Tokyo is designated as a “to” ( 都 ), translated as metropolis.[45] Its administrative structure is similar to that of Japan's other prefectures.Tokyo Metropolitan Government headquarters are in the ward of Shinjuku. They govern all of Tokyo, including lakes, rivers, dams, farms, remote islands, and national parksThe Tokyo Metropolitan Government is headed by a publicly elected governor and metropolitan assemblyGovernor: Yoichi Masuzoe (Independent – not affiliated with any party)

Tokyo is subdivided into 23 special wards, 26 cities, 1 district, 4 subprefectures, 5 towns (町), 8 villages (村)

The 23 special wards ((特別区) (occupying the eastern half): - Until 1943, these wards constituted the city of Tokyo. - Now, while falling under the jurisdiction of Tokyo Metropolitan

Government, each ward is also a separate, self-governing municipality, each having a mayor, a council, and the status of a city (like other cities of Japan - the special wards use the word "city" in their official English name (e.g. Chiyoda City)).

- The wards differ from other cities in having a unique administrative relationship with the prefectural government: certain municipal functions, such as waterworks, sewerage, and fire-fighting, are handled by the Tokyo Metropolitan Government. To pay for the added administrative costs, the prefecture collects municipal taxes, which would usually be levied by the city.[46]

- The "three central wards" of Tokyo - Chiyoda, Chuo and Minato - are the business core of the city, with a daytime population more than seven times higher than their nighttime population.[47]

The Tama area ( 多 摩 地 域 – also western Tokyo): 26 cities, 3 towns, 1 village- 26 cities, each of which has a local government and enjoy the same

legal status as cities elsewhere in Japan- The Tokyo Metropolitan Government has designated Hachioji,

Tachikawa, Machida, Ome and Tama New Town as regional centers of the Tama area,[48] as part of its plans to disperse urban functions away from central Tokyo.

- Nishi-Tama District (gun): The far west. Much of this area is mountainous and unsuitable for urbanization. The highest mountain in Tokyo, Mount Kumotori, is 2,017 m high; other mountains in Tokyo include Takasu (1737 m), Odake (1266 m), and Mitake (929 m). Lake

10

Page 11: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Okutama, on the Tama River near Yamanashi Prefecture, is Tokyo's largest lake. The district is composed of three towns (Hinode, Mizuho and Okutama) and one village (Hinohara).

Two island chains in the Pacific Ocean directly south: 2 towns, 7 villages- extend as far as 1,850 km (1,150 mi) from central Tokyo- administered by local offices - The Izu Islands: a group of volcanic islands that form part of the Fuji-

Hakone-Izu National Park: Izu Oshima and Hachijojima are towns; the remaining islands are six villages

- The Ogasawara Islands: the islands form both Ogasawara Subprefecture and the village of Ogasawara, Tokyo.

********* Environmental legislation

Governor Shintaro Ishihara created Japan's first emissions cap system in Tokyo, aiming to reduce greenhouse gas emission by a total of 25% by 2020 from the 2000 level.[65] In 2006, Tokyo enacted the "10 Year Project for Green Tokyo" to be realised by 2016. It set a goal of increasing roadside trees in Tokyo to 1 million (from 480,000), and adding 1,000 ha of green space 88 of which will be a new park named "Umi no Mori" (sea forest) which will be on a reclaimed island in Tokyo Bay which used to be a landfill.[69] From 2007 to 2010 436 ha of the planned 1,000 ha of green space was created and 220,000 trees were planted bringing the total to 700,000. By 2014 road side trees in Tokyo will increase to 950,000 and a further 300 ha of green space will be added.[70]

11

Page 12: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

2.3 Human Context (2 pages)[Demographic (especially aging), social and economic status including inequality, political and social instability/violence, major health concerns.]

Population (August 1, 2011)[3][4]- Metropolis: 13,185,502; Density: 6,000/km2- Metro: 35,682,460: Metro density: 2,629/km2- 23 Wards: 8,967,665 (2011 per prefectural government)

Registered foreign nationals[71]Nationality Population (2012) China 161,169 North Korea and South Korea 99,880 Philippines 27,929 United States 15,901 India 8,313 Nepal 8,669 Thailand 6,906 United Kingdom 5,522 Myanmar 4,781 France 4,635

Oct 2012: the official intercensal estimate showed 13.22 million people in Tokyo with 8.996 million living within Tokyo's 23 wards.[72] During the daytime, the population swells by over 2.5 million as workers and students commute from adjacent areas. 2005: The three central wards of Chiyoda, Chuo, and Minato have collective population of 326,000 at night, and 2.4 million during the day.[3]Oct 2007: The entire prefecture had 12,790,000 residents in October 2007 (8,653,000 in 23 wards), with an increase of over 3 million in the day. Tokyo is at its highest population ever, while that of the 23 wards peak official count was 8,893,094 in the 1965 Census, with the count dipping below 8 million in the 1995 Census.[72] People continue to move back into the core city as land prices have fallen dramatically.[citation needed]1889: the Ministry of Home Affairs recorded 1,375,937 people in Tokyo City and a total of 1,694,292 people in Tokyo-fu.[73] In the same year, a total of 779 foreign nationals were recorded as residing in Tokyo. The most common nationality was British (209 residents), followed by United States nationals (182) and nationals of the Qing dynasty (137).[74]

2.4 Disaster Context (2 pages)[disaster risk context (include extensive everyday riks eg waterlogging) and recent extreme events including outcomes of response and reconstruction.]

12

Page 13: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

SeismicityPowerful earthquakes in 1703, 1782, 1812, 1855, 1923, and 2011.[50][51] The 1923 earthquake, with an estimated magnitude of 8.3, killed 142,000 people. Tokyo is near the boundary of three plates.

13

Page 14: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

3.0 Hazards: Risk and Impact – 8 pages [Detailed information on observed, modelled or anticipated risk and impact. Discussion should give priority to risk and impacts on human health and mortality, which we will be able to model thorugh the WRI, but also include discussion of risk and impacts on physical infrastructure and ecomic assets where these might have multiplier effects on human health and wellbeing, including through producing inequality and extended vulnerability to future risk, for example thorgh forced relocation, evictions or land-use change. Include extensive and intensive risk and everyday and catastrophic events.]

3.1 Heatwave (2 pages)Tokyo is an example of an urban heat island, and the phenomenon is especially serious in its special wards.[55][66] According to the Tokyo Metropolitan Government,[67] the annual mean temperature has increased by about 3 °C (5.4 °F) over the past 100 years. Tokyo has been cited as a "convincing example of the relationship between urban growth and climate."[68]- The record low temperature is -9.2 °C, and the record high is 39.5 °C

(though there was once an unofficial reading of 42.7 °C at the Primary School Station.[53])

Heat-related deaths were most prone to occur on days with a peak daily temperature above 38°C, and the incidence of these deaths showed an exponential dependence on the number of hot days. Thus, even a small rise in atmospheric temperature may lead to a considerable increase in heat-related mortality, indicating the importance of combating global warming (Nakai et al., 1999). Half (50.1%) of the deaths occurred in children (4 years and under) and the elderly (70 years and over) irrespective of gender, indicating the vulnerability of these specific age groups to heat.

Over the past 22 years (1990–2011), the inland part of the Tokyo metropolitan area has had 75 days with an extreme high temperature (EHT) higher than 37.20C in Kumagaya, Saitama Prefecture.

Sachiho et al., 2012 demonstated in their study that the increase in the surface air temperature from the 1990s to the 2070s is about 2.00C as a result of global climate changes under the A1B scenario in the Intergovernmental Panel on Climate Change’s Special Report on Emissions Scenarios (SRES) and about 0.50C as a result of urbanization in the Tokyo Metroplitan Area. Sachiho et al., 2012 also noticed that Considering the current urban heat island intensity (UHII) of 1.00C, the possible UHII in the future reaches an average of 1.58C in the Tokyo Metroplitan Area.

14

Page 15: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

87 deaths from heat-related maladies and record-breaking downpours that triggered landslides across the country (Japan times, 2013)Japan is hit particularly hard by extreme temperatures because of its aging population. About 25 percent of Japanese citizens are age 65 or older, compared to just 14 percent in the United States. In Tokyo age distribution of patients affected by heatwave is shown by following graph (heatstroke study 2008)

15

Page 16: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Distribution of heatwave affected patients by their work, most of the young people (age 11-20) have heatwave stike are in exercise profession and age 21-60 is in physical labor profession

Most of the patients with the heatstroke are those who work outdoors with lots of physical labour.

Most of the old age people are hospitalized after the heat stroke, but the young people are usually just outpatients.

16

Page 17: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

In order to reduce morbidity and mortality of multiple organ failure secondary to heatstroke, it is importantto identify the early signs and symptoms suggesting the possible onset of heatstroke and to provide first aidtreatment as soon as possible.

17

Page 18: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

3.2 Sea Level Rise (2 pages)

No clear long-term trend of rise in sea levels in Japanese coastal areas has been observed over the last 100 years. The maximum sea level appeared around 1950, and near-20-year (bidecadal) variation was dominant until the 1990s. From then onward, a trend of sea level rise has been seen with near-10-year (decadal) variation. Sea level data for the Tokyo station are available from 1968 onward.

Time-series representation of annual mean sea level values (1906 - 2013) The 1981 - 2010 average is used as the normal.

Time-series representation of annual mean sea level anomalies (1960 - 2013) for the four regions shown in the image below

18

Page 19: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

http://www.data.jma.go.jp/gmd/kaiyou/english/sl_trend/sea_level_around_japan.html

In contrast to the globally averaged rate noted in the IPCC report, rate of sea level rise in Tokyo coastal areas is 0.2 mm/year higher for the period 1993-2010.

An increase of such magnitude seriously threatens Tokyo’s of coastline, which contains a large part of Japan’s population and economic activity (Kojima, 2004).

Compared to other countries, Japan has the sixth largest number of people (more than 30 million) living within 10km of the sea (IIED, 2007). While coastal municipalities occupy only about 32% of the total area of Japan, they hold about 46% of the total population and produce about 47% of the industrial output, and amazingly 77% of the total expenditure for retail business or market goods is spent in the coastal municipalities (Kojima, 2004). Unfortunately, sea-level rise together with storm surges, typhoons, tsunamis, and beach erosion, are major threats to coastal communities and economic productivity (Kojima, 2004). Impacts associated with a rise in sea-levels are inundation and submergence, exacerbation of flooding, saline intrusion in rivers and ground water aquifers, and erosion of Japan’s coastal zone. People and wildlife species will experience the impacts of increased levels of storm surges, flooding and inundation and the encroachment of tidal waters into estuaries and river systems (McLean et al., 2001).

The Japanese government estimates that the costs associated with defending the country from a 1 m rise in sea levels would be about US$115 billion, whereas the value of assets at risk from the same amount of sea-level rise exceeds US$1 trillion (Kojma, 2006).

19

Page 20: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

More than 90% of Japan’s beaches would disappear with a 1 meter sea-level rise, along with many of the tidal wetlands where migratory birds feed (Hulme and Sheard, 1999; MOE, 2004; Harasawa 2006).

However, these areas are already protected by high dikes which are likely to be raised, so the problem is one of changing flood risk rather than population displacement. (http://eprints.soton.ac.uk/350873/1/sealevel.pdf) Nicholls, Rob J. and Mimura, Nobuo (1998) Regional issues raised by sea-level rise and their policy implications. Climate Research, 11, (1), 5-18. (doi:10.3354/cr011005).

Many studies have estimated a inundation risk assuming no coastal protection, because data for coastal protection facilities were not easily available. Though these results give an indicator for a potential risk of inundation, a more realistic assessment was needed. Recently, a study was undertaken to estimate the inundation risks in the three major bays (Tokyo, Osaka and Ise Bays) in the 2090s, using the heights of the present seawalls along these bays. This study indicated that for the typhoon (tropical cyclone) that is 1.3 times stronger than the Ise Bay Typhoon in 1959, the inundation areas and people at risk will be 63–72 km2 and 300–350 thousand, respectively, and economic damage will amount to 1.8–2.3 trillion JPY.

The range of estimates comes from the three different scenarios for sea-level rise. This study also showed that, if sea level rise and intensified storm surges are superposed, the current return period of 1/several hundred years for a high water level will be shortened to 1/several decades. The significance of this result is that the current design heights of seawalls might be insufficient for the higher sea level expected in the future. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758961/pdf/pjab-89-281.pdf , Sea-level rise caused by climate change and its implications for society, Nobuo Mimura, Proc. Jpn. Acad., Ser. B 89 (2013))

A case study for the coastal area in Tokyo Bay suggested an increase of liquefaction potential as a result of the combined effect of sea-level rise and higher river level (K. Yasuhara, H. Komine, S. Murakami, G. Chen, Y. Mitani, D.M. Duc, Effects of climate change on geo-disasters in coastal zones and their adaptation, Geotextiles and Geomembranes, Volume 30, February 2012, Pages 24-34, ISSN 0266-1144, http://dx.doi.org/10.1016/j.geotexmem.2011.01.005.(http://www.sciencedirect.com/science/article/pii/S0266114411000069))

Some coastal areas have more to fear from climate change than others. Tokyo and Sydney, for instance, are likely to see bigger sea-level rises than Vancouver or London, according to a new study that attempts to model the oddities of the rising oceans. (Why Tokyo has more to fear from sea-level rise than Vancouver - http://www.washingtonpost.com/blogs/wonkblog/wp/2013/02/12/why-tokyo-has-more-to-fear-from-sea-level-rise-than-vancouver/)

M. Perrette et al.: A scaling approach to regional sea level projections. http://www.earth-syst-dynam.net/4/11/2013/esd-4-11-2013.pdf Perrette has modelled all of these effects and calculated local sea level rises in 2100 for the entire planet. While the global average rise is predicted to be between 30 and 106 centimetres, he says tropical seas will rise 10 or 20 per cent more, while polar seas will see a below-average rise. Coasts

20

Page 21: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

around the Indian Ocean will be hard hit, as will Japan, south-east Australia and Argentina (Earth System Dynamics, doi.org/kbf).

Some impacts Sea level rise caused by global warming expands brackish river water regions, thereby

degrading the levee strength. Sea level rise and anomalous rainfall raise the groundwater level and expand areas that

suffer geotechnical hazards through liquefaction in the event of an earthquake. When rainfall and an earthquake are combined, the risk of mid-depth middle-scale

sliding and surface sliding increase too, but the risk of deep large-scale slides does not become so high. If countermeasure costs are considered, measures against surface sliding, considering a partial mid-depth slide, are the most cost-beneficial.

Among possible adaptation measures against climate-change-induced geo-disasters, geosynthetics are and will be more powerful options in the near future for protection of coastal zones.

K. Yasuhara, H. Komine, S. Murakami, G. Chen, Y. Mitani, D.M. Duc, Effects of climate change on geo-disasters in coastal zones and their adaptation, Geotextiles and Geomembranes, Volume 30, February 2012, Pages 24-34, ISSN 0266-1144, http://dx.doi.org/10.1016/j.geotexmem.2011.01.005.(http://www.sciencedirect.com/science/article/pii/S0266114411000069

21

Page 22: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

3.3 Coastal cyclones, extreme wind events and storm surge (2 pages)- Annual rainfall averages nearly 1,530 millimetres, with a wetter

summer and a drier winter. Snowfall is sporadic, but does occur almost annually.[54]

- 3.1 typhoons/yr in mainland Kanto [64]), though few are strong. - The wettest month since records began in 1876 has been October

2004 with 780 millimetres [56] including 270.5 millimetres Oct 9 th, 2004.[57]

Tokyo is situated in a floodplain, between rivers and the sea, and has always been subject to flood risk. Measures against floods have been taken since the Tokugawa Shogunate, about 400 years ago, when it was decided to divert Edo River and make it flow to Pacific Ocean through Japanese East Coast instead of Tokyo Bay. Besides the morphological location characteristics (low elevation, proximity or rivers and sea), Tokyo Bay suffers the consequences of frequent typhoons, tropical cyclones that grow in the Western part of North Pacific Ocean and move Northwards reaching Japan several times a year. These characteristics make Tokyo Bay an area predisposed to flood disasters.

A large number of flood events have been registered in the past in Tokyo area (C40 Tokyo Conference on Climate Change, 2008). The most harmful storm surge event happened in 1917, when 87 km2 were flooded, leaving 180,000 inundated houses and causing 1,524 deaths. This disaster was surpassed regarding material damage in 1958, due to floods caused by a typhoon (nº22 on Kano River). This time 311 km2 were flooded and 340,000 houses were inundated, though the number of deaths was lower (203 deaths).

In the second half of 20th century no casualties due to floods were registered, indicating that flood protection measures taken in last decades seem to have been effective. Nevertheless, several decades is not a period long enough to guaranty that current flood defences are sufficient to ensure the desired safety levels. The current state of coastal defences needs to be analyzed in order to estimate the existing safety margins and possible future performance. María José Ruiz Fuentes, STORM SURGE BARRIER TOKYO BAY ANALYSIS ON A SYSTEM LEVEL AND CONCEPTUAL DESIGN, MSc Thesis June 2014

Sea level rise and an increase in typhoon intensity are two of the expected consequences from future climate change. In the present work a methodology to change the intensity of tropical cyclones in Japan was developed, which can be used to assess the inundation risk to different areas of the country. An example of how this would affect one of the worst typhoons to hit the Tokyo Bay area in the 20th century was thus developed, highlighting the considerable dangers associated with this event, and how current sea defences could be under danger of failing by the end of the 21st century. S. HOSHINO, M. E., T. MIKAMI, T. TAKABATAKE, T. SHIBAYAMA 2012. Climate change and coastal defences in Tokyo Bay.

Japan has many shallow bays that are only about a few dozen meters deep, but not all are protected. “Some bays are equipped with measures for disasters, but there still can be unexpected events,” said Shinji Sato, a coastal engineering professor at the University of Tokyo. In 2010, the Cabinet Office’s Central Disaster Prevention Council unveiled a worst-case scenario that projected 7,600 people would die if a storm about the size of the 1934 Muroto Typhoon hit Tokyo Bay, assuming global warming causes ocean levels to rise. http://www.japantimes.co.jp/news/2013/11/23/national/japans-coast-menaced-by-storm-surges/#.VRlBpvmUcpU

22

Page 23: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

http://www.kensetsu.metro.tokyo.jp/c40/act6_E/PDF/Historical_Floods.pdf

There are studies about increasing trends in typhoon intensity that calculate representative parameters like wind velocities and pressure difference at the eye of the typhoon (H. Kawai, 2010). The typhoon Taisho, from October of 1917, is used to simulate the consequences over Tokyo Bay.

Taisho 6th year (1917) typhoon The Taisho (1917) Typhoon was the worst typhoon to affect Tokyo Bay in the last 100 years. It caused widespread damage in the Tokyo Bay area, and from past historical records it flooded an area of over 200 km2, with the number of dead and missing estimated to be over 1300 people (Table. 2). The typhoon did not pass directly above Tokyo Bay but slightly to the west. The lowest pressure of the typhoon was said to be 952.7hPa according to Miyazaki (2003), though the way in which pressure was measured in 1917 is slightly different to the way it is done now (the original way to measure the central pressure of a typhoon was to carry out plane observations).

The selected design typhoon is the most harmful registered in the 20th century, which corresponds approximately to a return period of 100 years. Then a simulation is done taking into account the expected increase in intensity, in order to calculate the consequences for Tokyo Bay area. An increase in storm surge is found.

23

Page 24: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

The obtained storm surge levels are combined with sea level rise producing different scenarios. Then, coastal defences’ performance is evaluated. As the results lead to the conclusion that coastal defences might be insufficient to protect the area in the future, an estimation of the damage that could occur and the necessary investment to upgrade the defences is made. Several authors calculated the values of expected storm surge for different return periods (H. Kawai, 2008) corresponding to Tokyo Bay and other large bays in Japan. Besides that, there are studies where the convenience of using a determined return period is analyzed (T. Takayama, 2004). María José Ruiz Fuentes, STORM SURGE BARRIER TOKYO BAY ANALYSIS ON A SYSTEM LEVEL AND CONCEPTUAL DESIGN, MSc Thesis June 2014

Esteban, M., Mikami, T., Shibayama, T., Takagi, H., Jonkman, S., & Ledden, M. (2014). CLIMATE CHANGE ADAPTATION IN TOKYO BAY: THE CASE FOR A STORM SURGE BARRIER. Coastal Engineering Proceedings, 1(34), management.35. doi:http://dx.doi.org/10.9753/icce.v34.management.35Increases in typhoon intensity and sea level rise could pose significant challenges to coastal defences around Tokyo Bay. In order to analyse the extent of future problems the authors determined the increase storm surge that could result from an increase in typhoon intensity and sea level rise to this area around the turn of the 21st century. Results show how the various settlements around Tokyo Bay are at considerable risk of storm surges and sea level rise in the future. If defences are breached the potential direct economic consequences could be significant, potentially in excess of 100 trillion yen, with the indirect costs likely to be even greater. As a result it is likely that sea defences will have to be strengthened around Tokyo Bay in the future, which could cost in the order of 370bn yen to defend against a 1 in 100 year storm by the year 2100. Alternatively, a storm surge barrier could be built, which would be more expensive (possibly in the range of 700-800bn yen), though it could increase the protection level and would be able to cope with 1 in 200 or 500 year events, amongst other benefits.

Since 22 April 2009, the Japan Meteorological Agency (JMA) has issued five-day tropical cyclone (TC) track forecasts to encourage early public attention to and preparation for TCs. JMA’s Five-day Tropical Cyclone Track Forecast, Kenji KISHIMOTO, Forecast Division, Forecast Department, Japan Meteorological Agency

24

Page 25: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/techrev/text12-2.pdf

How giant tunnels protect Tokyo from flood threat http://www.water-technology.net/projects/g-cans-project-tokyo-japan/ G-Cans Project, or the Metropolitan Area Outer Underground Discharge Channel, is the world's largest underground flood water diversion facility. It is located between Showa in Tokyo and Kasukabe in Saitama prefecture, on the outskirts of the city of Tokyo in the Greater Tokyo Area, Japan. The complex, which was built between 1993 and 2006 at a cost of nearly $3 billion, is an example of how Japan's capital, which lies in a region at high risk from flooding and tropical cyclones, is trying to figure out how to contain the elements to protect its 13 million inhabitants.The project aims to protect the city of Tokyo itself from floods during heavy rainfall and typhoons. The project operates by channelling the overflowing flood waters from the rivers within Tokyo to five silos through tunnels.The water is then stored in a huge storage tank and pumped out into the Edogawa River, which is located at a lower altitude on the outskirts of Japan's capital city.Construction work for the G-Cans project started in 1992 and was completed in early 2009. The project was undertaken by the Japanese Government, guided by the Japan Institute of Wastewater Engineering Technology. The facility is capable of withstanding a once-in-200 years flood.

http://www.kensetsu.metro.tokyo.jp/c40/act6_E/PDF/Massive_flood_damage_of_Kano_River_Typhoon.pdf

Additional readings1. http://www.jsce.or.jp/kokusai/civil_engineering/2007/91-4-1.pdf - Exploring Tokyo

Bay Present problems and future prospects of Tokyo Bay

25

Page 26: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

2. http://www.mlit.go.jp/river/toukei_chousa/kasen/jiten/nihon_kawa/map_83.html Rivers of Japan Online

http://www.kensetsu.metro.tokyo.jp/c40/act6_E/PDF/Gentle-Slope_Levees_and_Super_Levees.pdf

26

Page 27: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

3.4 Waterlogging, salt-water intrusion, subsidence, coastal erosion – others (2 pages)

Land subsidence in Tokyo has been rapidly reduced since about 1973 due to the restrictions for extraction of groundwater by means of the laws and the ordinance (Tanaka et al., 2004).Figure shows the changes in groundwater head and land subsidence in the subsidence areas of Tokyo and Osaka. This data shows that the groundwater heads declined by around 10m from the beginning of the observation periods in 1933 to 1943, then rose by up to 5m, before resuming a declining trend from 1951. It shows that subsidence occurred until 1973 continously, but after that it reduced because of decreased pumping. Recently, underground railroad stations have been constructed deeper than 50m below the surface in the metropolitan city of Tokyo. On the other hand, regulation of groundwater pumping has been forced, following the land subsidence, since the 1970s. Constuction of subsurface dams has been successful to store groundwater, which would quickly discharge into the sea and prevent saltwater intrusion (Sakura et al., 2013).Groundwater withdrawals that have been increased due to urbanization had a marked impact on the distribution of hydraulic head and groundwater flow in the region.After the implementation of groundwater pumping regulations in the Tokyo Bay area, groundwater levels are still increasing (Hayashi et al., 2009). The recovery of groundwater levels induces new groundwater problems that affect the subsurface structures and induces an increase of demand for groundwater. Increased groundwater withdrawals may further alter groundwater levels and groundwater flow conditions. Consequently, to ensure the sustainability of groundwater resources, the groundwater environment must be continuously monitored (Hayashi et al., 2009).

27

Page 28: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Groundwater in the southern region of the Ashigara plain, the coastal aquifer in Odawara region near Tokyo, constitutes an important source of water for the industry, agriculture and municipal supplies. However, it is threatened by many problems such as water level decline and salinization due to seawater intrusion or water-rock interactions. For these reasons many authors were interested in studying on this groundwater. Yokoyama et al. (1999) reported a significant depression of water level due to over extraction. This resulted in salinization of the groundwater quality due to intrusion by seawater, the chloride content of groundwater reached 409 ppm in the industrial area in Odawara city. This high chloride concentration seems to have been caused by overextraction since the groundwater head has dropped more than 20 m below sea level.The land subsidence is a compaction phenomenon of soil layer due to lowering water pressure of aquifer system and dehydration of the pore water. Since 1920 to 1975 subsidence of the lowland in Tokyo has been considered to be due to groundwater withdrawal. The maximum subsidence rate during this period is 4.57m in Koto ward. Water quality in these alluvial lowlands are worsening overt time and chloride content reached more than 100 ppm along Tokyo Bay. Following these observations, the Japanese government took initiatives and put regulations on water withdrawal rate to minimize the land subsidence as well as to return the water quality back to normal (Environmental Protection Agency (1995)).

28

Page 29: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

4. Adaptation: Status and Trajectories for Critical Infrastructure – 14 pages[We are interested in the adaptive qualities of management regimes – this will be indicated by mandates in legislation, attitudes and skill levels of staff, access to technology, appropriateness of budget lines, scope for learning and responseiveness in management culture and the degree to which there are effective relationshsips with other sectors/agencies. It will be important to indicate the degree of a sector that is influenced by state planning, eg how much of the housing provisoin in Kolkata is regulated by land-use and construction law. This is helpful in showing the challenges for adapting.

Each entry should include: (1) An overview of each sector’s management regime, its strengths and weaknesses. (2) An account of past adpatations in respsone to disaster events or predicted risk. (3) A characterization of adaptation status for each infrastructure type (CRRT), with examples in the text to support your judgement. (4) A judgement on the management regimes position in the CRRT table (see the end of this template) to summarise your analysis. This work will involve your judgement but will nonetheless be helpful in guiding selection of infrastructures and local Boroughs for detailed modelling and adaptation analysis. If relevant this judgement can draw from comments made on specific adaptation capacities during City Workshop 1. While only two of these infrastructures will be taken forward to the adaptation interview analysis it is necessary to have a broader overview analysis to provide context for adpatative status and subsequent publication]

4.1 Housing (1.5 pages)[formal and informal, public and private, owned and rented]

To be written later.

4.2 Water (1.5 pages)[land drainiage, subsidence, sanitation, potable water management and any interaction with poverty and risk.]

Land drainageTHE GREATER TOKYO REGION (hereafter Greater Tokyo), with its densely populated megacities, includes five river basins covering an area of about 22,600 square kilometres (km2), with a total population of 27 million and property value assets totalling about US$2.9 trillion. http://waterwiki.net/images/c/ca/Japanfull.pdf

29

Page 30: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

The total number of rivers in Tokyo is 107, with a total distance of about 858 km. Due to their topological configuration, Tokyo's rivers generally have their source to the west and flow into Tokyo Bay. Among the 107 rivers, 92 are specified by the Minister of Land, Infrastructure and Transport as Class A rivers in the Tamagawa, Arakawa, Tonegawa, and Tsurumigawa river systems. Another 15 are specified by the governor of Tokyo as Class B rivers. Among those, the TMG manages around 105 rivers spanning 711 km, excluding the Arakawa and Tonegawa Rivers that are managed by the Ministry of Land, Infrastructure and Transport. http://www.kensetsu.metro.tokyo.jp/english/kasen/gaiyo/02.html

http://www.kensetsu.metro.tokyo.jp/english/kasen/gaiyo/pdf_/02img01.pdf Of the rivers administered by the metropolitan government, 46 rivers in the 23 wards are managed by the wards in accordance with an ordinance governing TMG administration in special zones. In addition, the quasi-rivers specified and administered by the wards, cities, townships and villages in Tokyo number 20 and are approximately 33 km long in total.To safely deal with overflowing flood water during heavy rains, rivers are being widened and dug down the riverbed. Paths through lush greenery border the rivers, and in areas with

30

Page 31: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

sufficient space the revetments are built at a gentle slope, allowing visitors to enjoy the river and creating an environment preserving the local fish, insects, and birds. Regulating reservoirs have been installed to store a volume of flood water when water levels rise in heavy rain, while diversion channels route flood water to a different location. The Tokyo Metropolitan Government has been implementing measures to control river flooding with the aim of withstanding rainfall up to 50 mm per hour. In recent years, however, heavy rains exceeding that amount are increasingly, repeatedly causing floods in Tokyo. To address this problem, the TMG formulated its flood control policy for small and midsized rivers in November 2012. Specifically, the rainfall criteria were raised to 75 mm per hour for the ward area and 65 mm per hour for the Tama area based on different rainfall tendencies in the two areas. These are the levels of rainfall that occur once in 20 years. The policy also states that the portion exceeding 50 mm should be, in principle, controlled by detention basins.http://www.kensetsu.metro.tokyo.jp/english/kasen/gaiyo/03.html ------------------------------

The average precipitation in Greater Tokyo has been 1,551 millimetres (mm) per year for the past thirty years. During periods of drought, the average is 1,213 mm/year, which is 20 percent less than in normal years. Over the last one hundred years, overall precipitation has been decreasing. However, recently, there have been more and more rainfalls of over 100 mm/day (Water Resources Department, MLIT, 2002)http://waterwiki.net/images/c/ca/Japanfull.pdf

日本の降水量は梅雨期や台風期に集中しており、河川が急流であることから、降った雨が一気に流れ出すために、大量の雨が降れば瞬時に洪水となり、逆に日照りが続くと渇水となる特徴があります。また、河川水が少ない時には取水できない「不安定取水」に頼っている部分が多く(特に都市部)、それだけ河川流量の変動に影響されやすく、渇水や頻発しやすい状況となっていますhttp://www.ktr.mlit.go.jp/river/nyuusatu/river_nyuusatu00000041.html

Additional readings (Japanese)2013 fiscal year report on water quality of public waters http://www.kankyo.metro.tokyo.jp/water/tokyo_bay/measurements/data/25.html Water managementMost of the water resources of Tokyo come from rivers. The breakdown of the water from rivers is as follows: 78% from the Tonegawa and Arakawa River systems and 19% from the Tamagawa River system. Until the first half of the 1960s, most of the water resources depended on the Tamagawa River system. Since then the dependence on the Tonegawa River has increased in accordance with water resources development in the Tonegawa River system in order to respond to the sharp increase

31

Page 32: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

in demand. Tokyo Metropolis owns 6.3 million m3 per day of water resources. (as of 2014) - http://www.waterprofessionals.metro.tokyo.jp/pdf/wst_03.pdf

http://environmentportal.in/files/Water_Arab_World_full.pdf#page=159 Ueda, S., & Benouahi, M. (2009). Accountable water and sanitation governance: Japan’s experience. Water in the Arab World, 131.

The water supply system, which would use a modern waterworks infrastructure, was begun in 1898, with the first phase of construction completed in 1911 (Tokyo Metropolitan Government 1999). At the beginning of the 20th century, the total amount of water supplied by the system was about 100 liters per day per capita, which was one-quarter of today’s level. The amount of water supply stopped rising prior to the Second World War, and then started to increase again at a remarkable rate after the 1950s, along with the city’s high-growth rate. In 1972, the water supply system provided for a maximum consumption of 532 liter per day per person, which then decreased to around 400 l per day per person. Otaki, Y., Sakura, O., & Otaki, M. (2007). Water systems and urban sanitation: A historical comparison of Tokyo and Singapore. Journal of water and health,5(2), 259-265. http://www.iwaponline.com/jwh/005/0259/0050259.pdf Since the waterworks in Tokyo started to supply water from the Yodobashi purification plant in 1898, the Tokyo Metropolitan Government has been implementing measures to secure water resources and improve and expand facilities to provide a consistent, stable supply of clean water. As a result, the waterworks in Tokyo today has evolved into one of the largest facilities in the world with the highest level of technology. (http://www.waterworks.metro.tokyo.jp/eng/supply/)

32

Page 33: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

http://www.waterprofessionals.metro.tokyo.jp/pdf/wst_02.pdf

http://www.waterprofessionals.metro.tokyo.jp/pdf/wst_02.pdf

1. After the water shortage during the Tokyo Olympics (1964), a large-scale water shortage has occurred about once every 10 years.

2. The nationwide water shortage in 1994 affected about 16 million people due to troubles in tap water supply, while causing damage to agriculture with product losses of roughly 140 billion yen.

http://www.mlit.go.jp/tochimizushigen/mizsei/water_resources/contents/current_state2.html

Seismic design and preparednessWater utilities have taken various measures to ensure the best possible water supply for citizens immediately after earthquakes. Utilities have set high antiseismic design criteria for physical infrastructure and established emergency operation systems. They also have built auxiliary power

33

Page 34: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

plants and emergency water supply basins and tanks to secure water supply during emergencies. - http://environmentportal.in/files/Water_Arab_World_full.pdf#page=159

SanitationAt the beginning of the 20th century, sanitary conditions in Tokyo city were bad, and there was a high infant mortality rate (192 per 1,000). Cholera was brought under control at the end of 19th century, when the construction of water supply systems began (Figure 2). The worldwide level of cholera was also stable until the next epidemic began in the 1960s. Therefore, in Tokyo’s case, it is clear that the infection rate of cholera is not an adequate indicator for evaluating improvements to public sanitation resulting from the water supply systems. Otaki, Y., Sakura, O., & Otaki, M. (2007). Water systems and urban sanitation: A historical comparison of Tokyo and Singapore. Journal of water and health,5(2), 259-265. http://www.iwaponline.com/jwh/005/0259/0050259.pdf

http://environmentportal.in/files/Water_Arab_World_full.pdf#page=159 Ueda, S., & Benouahi, M. (2009). Accountable water and sanitation governance: Japan’s experience. Water in the Arab World, 131.

Significant improvements in the health status of children were noted in Japan during the second half of the 20th centuary. Improvements were observed in morality, morbidity and anthropometric indicators in children. The infant mortality rate in Japan declined from 60.1 to 3.2 per 1000 live births between 1950 and 2000. Between 1955 and 2000, the average height and weight of children in the first grade increased from 110.1 cm and 18.7 kg to 116.7 cm and 21.8 kg, respectively. Increased availability of safe water according to the development of sanitation infrastructure, such as water supply systems, was considered one of the factors contributing to the reduction of adverse consequences of child survival and healthy development.Ishitani, S., Nakamura, K., Fukuda, Y., Kizuki, M., Seino, K., & Inose, T. (2005). Critical contribution of sanitation infrastructure and primary medical care to child health status in Japan from 1955 to 2000. Journal of medical and dental sciences, 52(4), 213. http://lib.tmd.ac.jp/jmd/5204/07_ishitani.pdf -------------------------In order to distinguish the relationship between water systems and prevalence of enteric fever, we could divide Tokyo history into five periods as follows:1st stage (1881–1898): No treated water supply. No modern sewage treatment. 2nd stage (1899–1909): Percentage of treated water supply = 70%. No modern sewage treatment. The percentage of people who can use treated water increased year by year. 3rd stage (1910–1940): Percentage of treated water supply = 70%. No modern sewage treatment. The percentage of people who can use treated water stopped increasing. 4th stage (1946–1968): Percentage of treated water supply = 70%. Percentage of modern sewage treatment = 40%. 5th stage (1969– ): Percentage of treated water supply = 70%. Percentage of modern sewage treatment = 40%.

34

Page 35: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

The average enteric fever infection rate was 0.090% in the 1st stage, 0.084% in the 2nd stage, and 0.080% in the 3rd stage. Results of the Aspin-Welch-test (level of significance ,0.01) do not show a significant difference between the infection rates across these three historical stages. Therefore, it is clear that the introduction of treated water supply systems was insufficient to contain the spread of water-borne diseases. Otaki, Y., Sakura, O., & Otaki, M. (2007). Water systems and urban sanitation: A historical comparison of Tokyo and Singapore. Journal of water and health,5(2), 259-265. http://www.iwaponline.com/jwh/005/0259/0050259.pdf------------------------------

Sewerage systemJapan's modern sewerage system construction started in early Meiji era about 130 years ago, to prevent inundation by urban rainfall and outbreaks of infectious diseases caused by stagnating untreated wastewater. However, it was not defined as a major infrastructure until the revised Sewerage Law was amended in 1958, and the percentage of the population served by the sewerage system did not exceed 6% at that time. Since then, sewerage system construction focused on large cities and developed actively with the objective to improve the urban environment and to contribute to sound urban development and enhancement of public sanitation, as defined by the Law. Until the late 1980s, on-site sanitation, with night soil (or black water) and sludge collection, was the main way to treat wastewater in Japan. The public sewerage system quickly spread in densely populated urban areas to become the main sanitation system from the late 1980s, and today, it covers more than 70% of the population. However, even now on-site sanitation systems are widely used in Japan, accounting for about 30% of the total sanitation coverage. Night soil collection from vault toilets and sludge from septic tanks is regularly conducted using vacuum trucks, in compliance with the Johkasou Law. To date, 1,100 night soil/sludge treatment plants are in operation in Japan, playing an important role in the preservation of water resources. Currently, only 0.2% of the total population is not covered by either on-site or off-site systems. In about 40 years, Japanese sanitation has achieved outstanding results and rapid growth, while developing a tremendous amount of technologies and know-how. http://www.jsanic.org/inasia/japanhistoryx.html

http://environmentportal.in/files/Water_Arab_World_full.pdf#page=159 Ueda, S., & Benouahi, M. (2009). Accountable water and sanitation governance: Japan’s experience. Water in the Arab World, 131.

Future trendsIn the future, Japan plans to further develop the foundations for water, energy and reuse/recycling. Sanitation can also play an important role in mitigation of global warming. By using biomass and natural energies such as solar, hydro and wind power, greenhouse gas emissions can be reduced in wastewater treatment, which has led to the development and application of new technologies.

35

Page 36: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

http://www.jsanic.org/inasia/japanhistoryx.html

Wastewater treatment standards The water quality of discharged effluent from sewerage treatment plants is regulated by the Sewerage Law. Among many parameters, the limit for the BOD of effluents is set at 20 mg/l. For most sewerage treatment plants, the BOD of treated effluents outflow is below 5 mg/l—much lower than the regulatory limits. The BOD of inflowing raw effluents typically ranges between 100 mg–200 mg/liter. http://environmentportal.in/files/Water_Arab_World_full.pdf#page=159

SubsidenceSubsidence was first detected in Tokyo after 1910. Over the ensuing decades the water table dropped, falling to as low as 58 meters below sea level in 1965. The volume of groundwater pumped out continued to grow until 1970, when it peaked at close to 1.5 million cubic meters per day (m3/d). The depth of subsidence increased over the decades and the area affected continued to expand. At some places the ground surface was dropping over 10 centimeters per year (cm/yr), peaking at about 24 cm/yr in 1968. (Land Subsidence And Groundwater Management In Tokyo, International Review for Environmental Strategies (IRES) Volume6 Number2, Chikafusa Sato; Michiko Haga and Jiro Nishino 2006) http://pub.iges.or.jp/modules/envirolib/view.php?docid=2128

In 1923, a severe earthquake occurred near Tokyo, causing widespread damage in the Koto region, east of the city of Tokyo. In order to study the crustal disturbance which might have accompanied this severe earthquake, a precise leveling was rerun in this region. As a result, it was found that the land subsidence was as a whole increasing gradually year by year. It was also found that the extent of the region where the land subsidence was then advancing occupied an area of about 100 km2, situated between the Sumida and the Arakawa rivers, which flow through the region from north to south. The areas in Tokyo where land subsidence has taken place are the Musashino upland and the alluvial lowland. There are two groups of aquifers, shallow and deep ones. The main shallow aquifer on the lowland (Koto) is Holocene sand and gravels and that on the upland area is Musashino gravel which is extensively distributed. The large scale ground water development started in 1914 in Tokyo. After that time, the number of deep wells with large diameters increased rapidly. Land subsidence has occurred in the Koto district since around 1900 and in the eastern part of the alluvial lowland (Edogawa Ward) since 1920. On the other hand, in the Musashino upland, land subsidence began to occur in the latter half of the 1950’s. The maximum subsidence in Tokyo is about 4.6 m and the maximum rate is 27 cm/yr (Figure 9.4.7). The total subsiding area in the Kanto region (Tokyo, Chaiba, Kanagawa, and Saitama) amounts to 2420 km2, and the area where the subsidence is occurring at a rate of more than 10 cm/yr is still about 100 km2. However, since the pumping of ground water was restricted as stated above, the rate has dropped year after year since 1972. (Case History No. 9.4. Tokyo, Japan, by Soki Yamamoto, Rissho University, Tokyo, Japan - http://wwwrcamnl.wr.usgs.gov/rgws/Unesco/PDF-Chapters/Chapter9-4.pdf)

36

Page 37: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Land subsidence resumed in the middle of the 1950’s when industries began pumping up large quantities of groundwater to support increased production activity. The cumulative land subsidence at the benchmark of No.9832 amounted to over 4.5 m from 1918 to 2000. Land subsidence in Tokyo has been rapidly reduced since about 1973 due to the legal restrictions and ordinances for extraction of groundwater.(Tadashi Tanaka; Groundwater Resources, Development and Management in the Kanto Plain, Japan, http://www.nourin.tsukuba.ac.jp/~tasae/2004/Tadashi%20Tanaka.pdf)Groundwater resources are widely used in the region. One tenth of the water used to supply Tokyo metropolis is from groundwater resources. Groundwater resources make up 22.8 percent of total water use inland, and 13.1 percent in seaside areas. About 45 percent of households and industries rely on groundwater. So as to prevent land subsidence, groundwater withdrawals have been regulated. Limits on withdrawals of groundwater come in the form of two laws: the Industrial Water Law, which targets groundwater used for industrial purposes, and the Law Concerning the Regula tion of Pumping-up of Groundwater for Use in Buildings, which targets groundwater used for cooling and other building-related purposes. Groundwater withdrawal in the northern part of the Kanto plain has decreased from 13.1 bm3 in 1985 to 9.6 bm3 in 1999 (Water Resources Department, MLIT, 2001). As a result, the rate of land subsidence has stabilized (see figure 22.3) http://waterwiki.net/images/c/ca/Japanfull.pdf

Countermeasures to prevent the land subsidence Two groundwater laws are effective in Japan, but practical application of the laws to specific areas is decided by the local government. The Tokyo Metropolitan Government has succeeded in reducing the rate of land subsidence by converting water resources from groundwater to surface water and by making legislative guidance in order to save groundwater resources in factories and buildings. However, bordering prefectures such as Saitama, Chiba and Ibaraki, which are also in the Kanto Plain, are still suffering from the land subsidence. (Tadashi Tanaka; Groundwater Resources, Development and Management in the Kanto Plain, Japan, http://www.nourin.tsukuba.ac.jp/~tasae/2004/Tadashi%20Tanaka.pdf)

37

Page 38: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Pumpage declined and the rate of subsidence slowed dramatically. The water table began to rise again in the early 1970s and is now at 6-10 meters (m) below sea level. Even in the areas that were most affected, the rate of subsidence has slowed to about 1 cm/yr in the past five years. (Land Subsidence And Groundwater Management In Tokyo, International Review for Environmental Strategies (IRES) Volume6 Number2, Chikafusa Sato; Michiko Haga and Jiro Nishino 2006) http://pub.iges.or.jp/modules/envirolib/view.php?docid=2128

4.3 Energy (1.5 pages)adaptive qualities of management regimes:

mandates in legislation, attitudes and skill levels of staffaccess to technologyappropriateness of budget linesscope for learning and responseiveness in management culture degree to which there are effective relationshsips with other sectors/agencies.

the degree of a sector that is influenced by state planning

(1) An overview of each sector’s management regime, its strengths and weaknesses. Nature of electric power in Tokyo as originally controlled by TEPCO, but increasingly being deregulated: ref. 4Dissatisfaction with TEPCOCap and trade system implementedStrong citizen opposition to nuclear as conflicting with government plans

(2) An account of past adpatations in respsone to disaster events or predicted risk. Response of business sector to Fukushima: ref. 6Concept of administrative guidance in JapanReliance on greenspaces ref. 20

(3) A characterization of adaptation status for each infrastructure type (CRRT), with examples in the text to support your judgement. Resistance in the sense of “electricity system built to be infallible”Resilience: as demonstrated by response to FukushimaWillingness to pay references 8 (nuclear power), 11 (tsunami),

(4) A judgement on the management regimes position in the CRRT table

4.4 Transport (1.5 pages)(1) An overview of each sector’s management regime, its strengths and weaknesses. Ambulance research: ref. 12, Motor vehicle collisions related to high temperature and precipitation ref. 16

38

Page 39: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Access to grocery shopping ref. 23

(2) An account of past adpatations in respsone to disaster events or predicted risk. Measures to prevent flooding of subwaysAir circulation in subways?Hibiya accident and response

(3) A characterization of adaptation status for each infrastructure type (CRRT), with examples

(4) A judgement on the management regimes position in the CRRT table

4.5 Communications (1.5 pages)[telephone, internet connections, mobile phone coverage]For the Whole of Japan

The commercial use of the Internet in Japan began in 1993, and the number of users continues to increase. The number of people who used the Internet over the last year (individuals who are 6 years of age and older; Internet-connected equipment covers any and all types of Internet connection devices used, including PCs, cell phones, personal handyphone systems, smartphones, tablet terminals, and game machines) was 100.44 million people as of the end of 2013, which is 82.8 percent of the population 6 years of age and older. Observation by age group shows that the individual Internet usage rate exceeded 90 percent among people in each age group between 13 and 59, although the rate drops as the age increases.

According to the status of Internet use by terminal at the end of 2013, the usage rate of home PCs was the highest (58.4 percent), followed by smartphones (42.4 percent), and PCs outside the home (27.9 percent). Figures for the rate of Internet use by terminal by age group show that over 70 percent of people in each age group of between 13 and 49 use home PCs. In the 20-39 age groups, usage of smartphones surpassed that of home PCs.

39

Page 40: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

]

Progress of Communication Technologies

The number of broadband (connection) subscribers as of the end of March 2014 was 89.73 million. Among the number of broadband subscribers, those with subscriptions for 3.9G mobile phones (LTE) were the highest, amounting to 46.41 million subscriptions and accounting for 51.7 percent of the total. Compared to the previous year, 3.9G mobile phones (LTE) increased by 128 percent, and it is clear that they are popularizing rapidly. Those with FTTH (Fiber To The Home: enables for ultra-high-speed Internet access of several dozen to a maximum of 1 Gbps) using optical fiber was the second highest, with 25.35 million subscribers (6 percent increase as compared to the previous year), making up 28.3 percent of the total.

In addition, although its percentage within the total number of broadband subscribers is small, in recent years, the number of subscribers of BWA (Broadband Wireless Access) service (access service connecting to networks via broadband wireless access systems using the 2.5 GHz band [WiMAX, etc.]) has been increasing. As of the end of March 2014, the number of BWA subscribers was 7.46 million (up 40 percent as compared to the previous year).

40

Page 41: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

 Telephone

The number of fixed phone service subscription contracts has continued to decrease in recent years. As of the end of March 2014, the number of fixed phone subscribers was 26.09 million (down 8.3 percent from the previous year). Meanwhile, the number of mobile phone subscribers (cell phones and personal handyphone systems) totaled 141.13 million at the end of March 2013, marking a rise by 6.0 percent year-on-year to 149.56 million at the end of March 2014

41

Page 42: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Postal Service

As of the end of March 2014, Japan Post Co., Ltd. had 24,511 post offices nationwide. In fiscal 2013, post offices handled 22.28 billion pieces of domestic mail (including parcels), which was a 0.1 percent decrease from the previous fiscal year. Furthermore, the total quantity of international mail (letters, express mail services [EMS], and parcels) sent in fiscal 2013 amounted to 47.16 million pieces (a decrease of 1.5 percent from the previous fiscal year).

http://www.stat.go.jp/english/data/handbook/c0117.htm

42

Page 43: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

http://ppq.sagepub.com/content/9/1/105.full.pdf+html Leslie M. Tkach-KawasakiPolitics@Japan: Party Competition on the Internet in JapanParty Politics January 2003 9: 105-123, doi:10.1177/135406880391006Internet Usage and Population Statistics: http://www.internetworldstats.com/asia/jp.htm

YEAR Users Population % Pop. Usage Source2000 47,080,000 126,925,843 37.1 % ITU2005 78,050,000 128,137,485 60.9 % C+I+A2007 87,540,000 128,389,000 68.0 % ITU2008 94,000,000 127,288,419 73.8 % ITU2009 95,979,000 127,078,679 73.8 % ITU2010 99,143,700 126,804,433 78.2 % ITUAdditional readings

1. http://unfccc.int/resource/docs/natc/japnc3.pdf - Japan’s Third National Communication Under the United Nations Framework Convention on Climate Change, The Government of Japan 2002

2. http://www.worldinternetproject.com/_files/_Published/_oldis/Japan_Report_2002.pdf 3. Yoshio Arai, Mobile Internet and local information: a case in Japan. http://repository.dl.itc.u-

tokyo.ac.jp/dspace/bitstream/2261/18506/1/jinbun_1803.pdf 4. http://iwparchives.jp/files/pdf/iwp2014/iwp2014-ch01-06-p083.pdf

For the Tokyo region

InternetA survey by Fujitsu Research Institute revealed that at the end of February 2001, 1541 Internet companies were located in the 23 wards of Tokyo, and almost 70% of all Internet companies were located in the 5 wards in the city center: Shibuya, Minato, Shinjuku, Chiyoda, and Chuo.

43

Page 44: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Yukawa, K. (2003). A Cluster of Internet Companies in Tokyo—Review of Bit Valley—. Journal of Korean Regional Science, 18(3), 111-126.

http://jp.fujitsu.com/group/fri/downloads/en/economic/no3.pdf

PARTICIPANTS IN INTERNET USE BY GENDER AND AGE GROUP (2006) (単位 千人) (In thousands of persons)

Paticipants行 動 者 数 男 女 年 齢 階 級

a) Total E- mail b) Other Male男 5,718

10 14 years old~ 歳 250 190 15 24 ~ 725 686 25 34 ~ 1,070 989 35 44 ~ 1,032 911 45 54 ~ 771 631 55 64 ~ 866 500 65 74 ~ 627 226 75 and over歳以上 377 77

Female女 5,770 10 14 years old~ 歳 238 202 15 24 ~ 673 639 25 34 ~ 1,007 958 35 44 ~ 963 878 45 54 ~ 730 581 55 64 ~ 877 432 65 74 ~ 714 193 75 and over歳以上 567 44 a) Population 10 years and over b) Bulletin board / chat service c) Building or updating website or blog d) Information retrieval and acquisition of information such as news e) Acquisition of images, moving images, music data of software f) Reservations, purchases , payments for goods or services - -資料:都総務局統計部人口統計課「社会生活基本調査結果概要 都民の生活行動と生活時間 」 Source : Bureau of General Affairs , TMG

e) f)

153

総 数

Gender and age group

10歳以上推定人口

4,210c) d)

778

558 271312

3,928

画像・動画・音楽データ、ソフトウェアの

入手

その他

商品やサービスの予約・購入、支払い等の利

897 873

電子メール

620

3,643112

157

523

3,476

606

553,525

128

401

310

566

38 8

34515836

814509

186133

167

114826

掲示板・チャット

ホームページ、ブログの開設・更新

情報検索及びニュース等の情報入手

318

6171,094

46313339928

241

53191

95627

198

152583712

625

-

4152363

2349840

397

137563

15934

2,989

981,296

474251146

3011879849

2,21263

2,01917

1621

73

1,21852

264394274110

32218067

526 655475

25114742

535637 524

537493

350

54

91,606 1,899

23313

22 667 32

412

855702 322

154

63417- 3

2605555

http://www.toukei.metro.tokyo.jp/tnenkan/2012/tn12q3i005.htm

POST OFFICES BY DISTRICT (End of Fiscal Years 2011 and

44

Page 45: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

2012) 郵 便 局 Post offices

郵 便 郵便切手類

年 度 末 及 び 地 域 総 数 郵 便 局簡 易

差 出 箱 販 売 所

( 直 営 ) 郵 便 局 Stamp and

End of fiscal year and district Post offices Postal Mail revenue

Total(direct

management)agenci

es boxes stamp shops

平 成 23 年 度FY

2011 1,511 1,504 7 11,401 9,692

242012 1,512 1,506 6

11,017 10,334

区 部 All ku 1,067 1,066 1 7,723 7,590

千代田区Chiyoda-ku 53 53 - 419 405

中央区 Chuo-ku 51 51 - 405 311 港 区 Minato-ku 55 55 - 508 574

新宿区Shinjuku-ku 56 56 - 399 474

文京区Bunkyo-ku 34 34 - 238 200

台東区 Taito-ku 34 34 - 265 229

墨田区Sumida-ku 26 26 - 213 211

江東区 Koto-ku 43 43 - 361 372品川区 Shinagawa-ku 43 43 - 311 324

目黒区Meguro-ku 24 24 - 198 230

大田区 Ota-ku 72 72 - 490 455

世田谷区Setagaya-ku 80 80 - 574 524

渋谷区Shibuya-ku 37 37 - 313 386

中野区Nakano-ku 30 30 - 206 211

杉並区Suginami-ku 52 52 - 367 317

豊島区Toshima-ku 36 35 1 223 272

北 区 Kita-ku 42 42 - 367 239

荒川区Arakawa-ku 20 20 - 133 124

板橋区Itabashi-ku 48 48 - 338 326

練馬区Nerima-ku 62 62 - 394 352

足立区 Adachi-ku 68 68 - 385 400葛飾区 Katsushika-ku 45 45 - 270 270

江戸川区Edogawa-ku 56 56 - 346 384

45

Page 46: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

SUBSCRIPTIONS OF TELEPHONES, PUBLIC TELEPHONES, AND INTERNET SERVICES (End of Fiscal Years 2003 2012)~

Number of subscriber telephones 一般加入電話 一般加入電話

住宅用比率

Total Individual Establishments(%)

15平成 18 70.816 17 71.817 16 71.318 14 71.119 13 69.320 - 70.921 10 70.622 10 70.223 69.824 69.9

I S D N 契約数 a)移動体通信サーヒ ズ加入数 b) 公衆電話 e)ブロードバンド契約数Number of ISDN subscriptions 携 帯 PHS 総数 CATV DSL FTTH

ISDN 64ネット ISDN 1500ネット 電 話 Personal handy- Digital Subscriber Fiber to64kb/ s 1500kb/ s c) phone system Total f) Line The Home

15平成 22 1,477 67 29 1,822 …16 23 1,492 58 26 2,065 66317 23 1,663 51 23 2,087 1,17118 23 1,788 47 22 1,928 1,74919 22 … 42 21 1,688 2,24320 20 … 39 20 1,424 2,58421 18 … 36 19 1,209 2,93022 16 … 32 17 995 3,15923 14 … 29 16 820 3,34924 13 … 26 14 672 3,431

) 注 「単独」には 「構内交換」を含む。 資料:東日本電信電話株式会社東京支店,総務省関東総合通信局 Note: “Individual” includes PBX. a) Number of mobile communication service subscriptions b) Public telephones

Source : Nippon Telegraph and Telephone East Corp. Ministry of Internal Affairs and Communications

13,35112,268

612

56818,24716,770

784777

1,1971,077

982882

397

2012

年 度 末

End of fiscal year

FY 2003年度 35611,54411,348

1,3531,490

(単位 千件)

2011

2004

2004

年 度 末

End of fiscal year

FY 2003年度

2010

23,277682

549 26,1772011

20,456

200520062007

2010

2008

2012

3,1142,817

15,007

2009

976

437475518

872937

6,6066,624

4,286

単独

c) Cellular phone d) of which are digital payphones e) Number of broadband subscriptions f) Cable television

3,845

3,1243,451

2009

2,826

200620072008

2005

総数

4,286

5,8836,447

5,3175,034 5,021

3,442

6,4305,8675,303

3,835

(In thousand subscriptions)

9

うちデジタd)ル電話

Percentage of telephones for residential use

事業所集団

9

CABLE BROADCASTING FACILITIES (End of Fiscal Years 2008 2012)~

Radio broadcasting facilitiesラ ジ オ TV broadcasting facilitiesテ レ ビ 共同聴取, Registered登録設備 Filed届出設備

年 度 末 総 数 告知放送用 告知放送用 街頭放送用 共同聴取用 総 数 自主放送 自主放送 自主放送 自主放送を行う を行わな を行わな

End of fiscal year For joint For notice For street For joint もの いもの もの いもの

Total listening and notice listening Total No original

announcement program program program program平成 20 年度 1,052(61) 17(10) 76(51) 316 643 6,345 21 1,048(64) 20(12) 86(52) 192 750 6,389 22 975(49) 12(9) 69(40) 156 738 6,374 23 - - - - - 5,358 24 - - - - - 4,922

1) ( ) 注 内は,有線音楽放送施設の再掲である。 2) 23平成 年6月の放送法改正により有線ラジオの取り扱いが変わり,施設数の把握はできない。 資料:総務省情報流通行政局地域放送推進室 Note:1) Number in parentheses is a relisting of cable broadcasting facilities for music 2) Number of cable radio facilities is unknown due to revision of the Broadcast Act in June 2011 Source : Ministry of Internal Affairs and Communications

2012 5,000

6,5616,602

2010

782011

announcement

2008FY

2009

Supplies original

213

5,473

を行う

announcement

216

No original

209115

6,583

Supplies original

46

Page 47: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

4.6 Green and blue space and biodiversity (1.5 pages)Tokyo metropolitan area used to be a huge

wetland, which was regularly flooded by the Tone River whose drainage area is the largest in Japan. To change the wetland to into the Edo capital area, the first Tokugawa Shogun started a civil engineering work to change the direction of the river from flowing into Tokyo Bay into flowing to Pacific Ocean. This project was completed by the third Tokugawa Shogun. Thus, the original biodiversity of wetland in Tokyo had disappeared in 17th century.

Some wetland dependent species remained in river sides, ponds and rice paddies, but they have mostly disappeared in accordance with the rapid economic growth starting in mid 1950’s. As the urbanization and centralization of population progressed after 1950’s, the use of surface water decreased the water volume of small rivers, and they eventually dried up. In contrast, downstreams suffered from the waste water of the urbanized area, which transformed streams into smelly ditches (Fig. 4-6-1, 東 京 都 の公害風景http://www2.kankyo.metro.tokyo.jp/kouhou/fuukei/top.html). To hide the smell and ugly scenery, many rivers were transformed into underground drainage (Fig. 4-6-2).

47

Fig. 4-6-1 Typical small river at central Tokyo during 1970’s.

Page 48: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Fig, 4-6-2 Rivers at central Tokyo. Blue line: rivers and canals; Brown dot: rivers and canals that have disappeared; Orange line: recovered canals. From “Water of Mega-city Tokyo ~past, present and future” coordinated by M. Yamamuro in Civil Engineering, vol. 98-1, 8-13.

Due to the warm waste water from sewages, the water temperature of the Tama River is artificially higher in the downstream area. This enables the introduced tropical freshwater fishes to survive even in winter at the Tama River. There are many species of fish from the Amazon River living in the Tama River, and the Tama River is sometimes called “Tamazon River” as a joke. Vacant lots in the Tokyo metropolitan area are mostly covered by exotic plants i.e. Solidago canadensis var. scabra. In summer of 2014, 160 people suffered from dengue fever. They were infected by tropical mosquitoes, suggesting that global warming may already be threatening the biodiversity at Tokyo metropolitan area.

Most of the green areas in central Tokyo are related to the Imperial

Family (Fig. 4-6-3).

Fig. 4-6-3 Green area in central Tokyo (From Google Earth modified by M. Yamamuro)

4.7 Health services, especially for the elderly (1.5 pages)To be completed later.

4.8 Social care, especially for the elderly (1.5 pages)

48

Ara River

Meiji Shrine

Hama Imperial Villa

Palace

Tama River

Akasaka Detached Palace

Page 49: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

[pension rights, community development and elderly care homes and care at home service provision]To be completed later.

4.9 Emergency management (1.5 pages)[Emergency services, civil defence, community based risk management, resilience planning as a specific sector]To be completed later.

5.0 Synthesis: Development, Risk and Adaptation at the City and Borough Scales – 6 pages [This section is both a synthesis and feeds inot analysis of the future oriented Risk Model outputs. The synthesis can draw on Section 2 and also the development and adaptation narratives produced by City Workshop 1. To inform analysis of the Risk Modellling output structure text around 1990, 2000, 2015, 2035 and 2050. Try to idenitify specific distinctions in development trends for your city that could be brought forward to enable comparison with the other cities.

5.1 City scale (2 pages)[This sub-section will provide context for the Borough level analyses of risk and adaptive capacity, for example if there is a large amount of dynamism or stability across the city or in specific places. This can help us to explain the line of comparison across the city core (more stable?) and periphery (more dynamic?) sites.]To be completed later.

5.2 Urban core location (2 pages)[If there is a clear candidate site based on local and expert judgement this shuld be rveiwed in full. For some cities it might only be posisle to complete this sectionimmediately following the confirmation of the local case study at the June meeting in Stattgart.]To be completed later.

5.3 Urban periphery location (2 pages)[If there is a clear candidate site based on local and expert judgement this shuld be rveiwed in full. For some cities it might only be posisle to complete this sectionimmediately following the confirmation of the local case study at the June meeting in Stattgart.]To be completed later.

6.0 References[Please follow Harvard style, see Harvard Quick Guide document]

Abe, T., Tokuda, Y., Ohde, S., Ishimatsu, S., Nakamura, T. & Birrer, R.B. 2008, "The influence of meteorological factors on the occurrence of trauma and motor vehicle collisions in Tokyo", Emergency medicine journal: EMJ, vol. 25, no. 11, pp. 769-772.

Arai, Y. 2007, "Mobile Internet and local information: a case in Japan", [Online] Available at: http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/18506/1/jinbun_1803.pdf

49

Page 50: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Armstrong, B. 2006, "Models for the relationship between ambient temperature and daily mortality", Epidemiology (Cambridge, Mass.), vol. 17, no. 6, pp. 624-631.

Bureau of Construction, Tokyo Metropolitan Government. [Online] Available at: http://www.kensetsu.metro.tokyo.jp/english/kasen/gaiyo/02.html. [Accessed 28 March 2015]

Bureau of Environment, Tokyo Metropolitan Government. [Online] Available at: http://www.kankyo.metro.tokyo.jp/water/tokyo_bay/measurements/data/25.html [Accessed 28 March 2015]

Bureau of Waterworks, Tokyo Metropolitan Government. Stable supply of potable Delicious water. [Online] Available at:http://www.waterprofessionals.metro.tokyo.jp/pdf/wst_03.pdf [Accessed 28 March 2015]

Bureau of Waterworks, Tokyo Metropolitan Government, 2012. Water supply in Tokyo. [Online] Available at:http://www.waterprofessionals.metro.tokyo.jp/pdf/wst_03.pdf [Accessed 28 March 2015]

Bureau of General Affairs, Tokyo Metropolitan Government, 2012. Tokyo Metropolitan Statistical Yearbook. [Online] Available at: http://www.toukei.metro.tokyo.jp/tnenkan/tn-index.htm [Accessed 28 March 2015]

Bureau of Construction, Tokyo Metropolitan Government. Major Floods in Tokyo. [Online] Available at: http://www.kensetsu.metro.tokyo.jp/c40/act6_E/PDF/Historical_Floods.pdf [Accessed 28 March 2015]

Communication research Laboratory, 2003. Internet Usage Trends in Japan-Survey Report 2002. [Online] Available at: http://www.worldinternetproject.com/_files/_Published/_oldis/Japan_Report_2002.pdf [Accessed 28 March 2015]

Economic and Social Research Institute, Cabinet Office, Government of Japan 2010. Annual Report on Prefectural Accounts 2001. Available from: http://www.esri.cao.go.jp/jp/sna/data/data_list/kenmin/files/contents/main_h22.html (in Japanese). Accessed on

Esteban, M., Mikami, T., Shibayama, T., Takagi, H., Jonkman, S.N. & van Ledden, M. 2014, "Climate change adaptation in Tokyo Bay: The case for a storm surge barrier", Coastal Engineering Proceedings, vol. 1, no. 34, pp. management. 35.

Fujimi, T. & Chang, S.E. 2014, "Adaptation to electricity crisis: Businesses in the 2011 Great East Japan triple disaster", Energy Policy, vol. 68, pp. 447-457.

Gasparrini, A. & Armstrong, B. 2011, "The impact of heat waves on mortality", Epidemiology (Cambridge, Mass.), vol. 22, no. 1, pp. 68-73.

Geospatial Information Authority of Japan, Ministry of Land, Infrastructure, Transport and Tourism 2005. Land Survey of Prefectures and Municipalities. Available from: http://www.gsi.go.jp/KOKUJYOHO/MENCHO-title.htm (in Japanese). Accessed on

Gibson, W. 2011, "Life in the meta city", Scientific American, vol. 305, no. 3, pp. 88-89.

Honda, Y., Kondo, M., McGregor, G., Kim, H., Guo, Y., Hijioka, Y., Yoshikawa, M., Oka, K., Takano, S. & Hales, S. 2014, "Heat-related mortality risk model for climate change impact projection", Environmental health and preventive medicine, vol. 19, no. 1, pp. 56-63.

Hoshino, S., Esteban, M., Mikami, T., Takabatake, T. & Shibayama, T. 2012, "Climate change and coastal defences in Tokyo Bay", Coastal Engineering Proceedings, vol. 1, no. 33, pp. management. 19.

50

Page 51: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Ishitani, S., Nakamura, K., Fukuda, Y., Kizuki, M., Seino, K. & Inose, T. 2005, "Critical contribution of sanitation infrastructure and primary medical care to child health status in Japan from 1955 to 2000", Journal of medical and dental sciences, vol. 52, no. 4, pp. 213.

Itaoka, K., Saito, A., Krupnick, A., Adamowicz, W. & Taniguchi, T. 2006, "The effect of risk characteristics on the willingness to pay for mortality risk reductions from electric power generation", Environmental and Resource Economics, vol. 33, no. 3, pp. 371-398.

Japan Meteorological Agency, 2013. Sea levels around Japan. [Online] Available at: http://www.data.jma.go.jp/gmd/kaiyou/english/sl_trend/sea_level_around_japan.html [Accessed 28 March 2015]

Japanese Nursing Association, 2012. Statistical data on nursing service in Japan. Available from: https://www.nurse.or.jp/home/publication/toukei/index.html (in Japanese). [Accessed XX March 2015]

Japan Sanitation Consortium, History of sanitation in Japan. [Online] Available at: http://www.jsanic.org/inasia/japanhistoryx.html [Accessed 28 March 2015]

Japanís Third National Communication Under the United Nations Framework Convention on Climate Change, 2002. [Online] Available at:http://unfccc.int/resource/docs/natc/japnc3.pdf [Accessed 28 March 2015]

Kable, 2015. G-Cans Project, Kasukabe, Saitama, Greater Tokyo Area, Japan. [Online] Available at: http://www.water-technology.net/projects/g-cans-project-tokyo-japan/ [Accessed 28 March 2015]

Kachi, N., Kato, H., Hayashi, Y. & Black, J. 2005, "Making cities more compact by improving transport and amenity and reducing hazard risk", Journal of the Eastern Asia Society for Transportation Studies, vol. 6, pp. 3819-3834.

Kadi, J. & Ronald, R. 2014, "Market-based housing reforms and the ‘right to the city’: the variegated experiences of New York, Amsterdam and Tokyo", International Journal of Housing Policy, vol. 14, no. 3, pp. 268-292.

Katich, K.N. 2009, “Urban climate resilience: a global assessment of city adaptation plans”, PhD diss., Massachusetts Institute of Technology.

Kikegawa, Y., Genchi, Y., Kondo, H. & Hanaki, K. 2006, "Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning", Applied Energy, vol. 83, no. 6, pp. 649-668.

Kondo, M., Honda, Y. & Ono, M. 2011, "Growing concern about heatstroke this summer in Japan after Fukushima nuclear disaster", Environmental health and preventive medicine, vol. 16, no. 5, pp. 279-280.

Kovats, R.S. & Hajat, S. 2008, "Heat stress and public health: a critical review", Annu.Rev.Public Health, vol. 29, pp. 41-55.

Kumagai, Y., Gibson, R.B. & Filion, P. 2014, "Evaluating long-term urban resilience through an examination of the history of green spaces in Tokyo", Local Environment, no. ahead-of-print, pp. 1-22.

Martinez, G.S., Imai, C. & Masumo, K. 2011, "Local heat stroke prevention plans in Japan: characteristics and elements for public health adaptation to climate change", International journal of environmental research and public health, vol. 8, no. 12, pp. 4563-4581.

Martinez, G.S., Imai, C. & Masumo, K. 2011, "Local heat stroke prevention plans in Japan: characteristics and elements for public health adaptation to climate change", International journal of environmental research and public health, vol. 8, no. 12, pp. 4563-4581.

51

Page 52: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Mimura, N. 2013, "Sea-level rise caused by climate change and its implications for society", Proceedings of the Japan Academy.Series B, Physical and biological sciences, vol. 89, no. 7, pp. 281-301.

Ministry of Land, Infrastructure, Transport and Tourism. Kanto Regional Development Bureau. [Online] Available at: http://www.ktr.mlit.go.jp/river/nyuusatu/river_nyuusatu00000041.html [Accessed 28 March 2015]

Ministry of Land, Infrastructure, Transport and Tourism. Kanto Regional Development Bureau, 2008. Current State of Water Resources in Japan. [Online] Available at:http://www.mlit.go.jp/tochimizushigen/mizsei/water_resources/contents/current_state2.html

Miniwatts Marketing Group, 2014. Japan Internet usage, broadband and telecommunications reports. [Online] Available at: http://www.internetworldstats.com/asia/jp.htm [Accessed 28 March 2015]

Mizuki, C. 2012, "Flood Risk Communication from the Viewpoint of Disaster Prevention Awareness in an Urban Area of Tokyo, Kita Ward", Journal ref: Journal of Disaster Research, vol. 7, no. 5, pp. 595-603.

Murayama, H., Wakui, T., Arami, R., Sugawara, I. & Yoshie, S. 2012, "Contextual effect of different components of social capital on health in a suburban city of the greater Tokyo area: A multilevel analysis", Social science & medicine, vol. 75, no. 12, pp. 2472-2480.

Nakai, S., Itoh, T. & Morimoto, T. 1999, "Deaths from heat-stroke in Japan: 1968–1994", International journal of biometeorology, vol. 43, no. 3, pp. 124-127.

Ng, C.F.S., Ueda, K., Nitta, H. & Takeuchi, A. 2013, "Seasonal variation in the acute effects of ozone on premature mortality among elderly Japanese", Environmental monitoring and assessment, vol. 185, no. 10, pp. 8767-8776.

Ng, C.F.S., Ueda, K., Ono, M., Nitta, H. & Takami, A. 2014, "Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan", International journal of biometeorology, vol. 58, no. 5, pp. 941-948.

Ng, M.K. 2007, "Sustainable development and governance in East Asian world cities", Journal of Comparative Policy Analysis, vol. 9, no. 4, pp. 321-335.

Nicholls, R., Hanson, S., Herweijer, C., Patmore, N., Hallegatte, S., Corfee-Morlot, J., Chateau, J. & Muir-Wood, R. 2007, " Screening Study: Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes”. OECD Working Paper, available on http://www.oecd.org/document/56/0,3343,en_2649_201185_39718712_1_1_1_1,00.html.

Nicholls, R.J. & Mimura, N. 1998, "Regional issues raised by sea-level rise and their policy implications", Climate research, vol. 11, no. 1, pp. 5-18.

Ohashi, Y., Kikegawa, Y., Ihara, T. & Sugiyama, N. 2014, "Numerical Simulations of Outdoor Heat Stress Index and Heat Disorder Risk in the 23 Wards of Tokyo", Journal of Applied Meteorology and Climatology, vol. 53, no. 3, pp. 583-597.

Ohshige, K., Hori, Y., Tochikubo, O. & Sugiyama, M. 2006, "Influence of weather on emergency transport events coded as stroke: population-based study in Japan", International journal of biometeorology, vol. 50, no. 5, pp. 305-311.

Otaki, Y., Sakura, O. & Otaki, M. 2007, "Water systems and urban sanitation: A historical comparison of Tokyo and Singapore", Journal of water and health, vol. 5, no. 2, pp. 259-265.

Perrette, M., Landerer, F., Riva, R., Frieler, K. & Meinshausen, M. 2013, "A scaling approach to project regional sea level rise and its uncertainties", Earth System Dynamics, vol. 4, no. 1, pp. 11-29.

52

Page 53: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Ruiz Fuentes, M. 2014, Storm surge barrier Tokyo Bay: Analysis on a system level and conceptual design, Diss. TU Delft, Delft University of Technology.

Sato, C., Haga, M., & Nishino J. 2006, "Land Subsidence and Groundwater Management in Tokyo", International Review for Environmental Strategies, vol. 6, no. 2.

Schreurs, M.A. 2012, "Breaking the impasse in the international climate negotiations: The potential of green technologies", Energy Policy, vol. 48, pp. 5-12.

Seya, H., Yamagata, Y. & Nakamichi, K. 2014, "Spatially explicit land use and energy scenario of tokyo using household level microdata", Green Energy for Sustainable Development (ICUE), 2014 International Conference and Utility Exhibition onIEEE, , pp. 1.

Sorensen, A. 2005, "Building world city Tokyo: Globalization and conflict over urban space" in Globalization and Urban Development Springer, , pp. 225-237.

Stalenberg, B. & Vrijling, H. 2009, "The battle of Tokyo and Dhaka against floods", Built Environment, vol. 35, no. 4, pp. 471-491.

Statistics Bureau, Ministry of Internal Affairs and Communications, 2004. National Survey of Family Income and Expenditure. Available from: http://www.stat.go.jp/data/zensho/2004/index.htm (in Japanese). Accessed on

Statistics Bureau, Ministry of Internal Affairs and Communications, 2005. National Census. Available from: http://www.stat.go.jp/data/kokusei/2005/index.htm (in Japanese). Accessed on

Statistics Bureau, Ministry of Internal Affairs and Communications, 2003. Housing and Land Survey. Available from: http://www.stat.go.jp/data/jyutaku/2003/index.htm (in Japanese). Accessed on

Statistics Bureau, Ministry of Internal Affairs and Communications, 2005. Statistics of the Municipalities of Japan. Available from: http://www.stat.go.jp/data/ssds/index.htm (in Japanese). Accessed on

Statistics Bureau, Ministry of Internal Affairs and Communications, 2014. Statistical Handbook of Japan. [Online] Available at: http://www.stat.go.jp/english/data/handbook/c0117.htm [Accessed 28 March 2015]

Tanaka, T. "Groundwater Resources, Development and Management in the Kanto Plain”, Japan.

Tkach-Kawasaki, L.M. 2003, "Politics@ Japan Party Competition on the Internet in Japan", Party Politics, vol. 9, no. 1, pp. 105-123.

Tokuda, Y., Abe, T., Ishimatsu, S. & Hinohara, S. 2010, "Ambulance transport of the oldest old in Tokyo: a population-based study", Journal of epidemiology / Japan Epidemiological Association, vol. 20, no. 6, pp. 468-472.

Ueda, K., Nitta, H., Ono, M. & Takeuchi, A. 2009, "Estimating mortality effects of fine particulate matter in Japan: a comparison of time-series and case-crossover analyses", Journal of the Air & Waste Management Association, vol. 59, no. 10, pp. 1212-1218.

Ueda, S. & Benouahi, M. 2009, "Accountable water and sanitation governance: Japan’s experience", Water in the Arab World, pp. 131.

United Nations Educational, Scientific and Cultural Organization (UNESCO), 2003. The 1st UN world water development report: Water for People, Water for Life. [Online] Available at: http://webworld.unesco.org/water/wwap/case_studies/tokyo/tokyo_basin.pdf, [Accessed 28 March 2015]

Waley, P. 2013, "Pencilling Tokyo into the map of neoliberal urbanism", Cities, vol. 32, pp. 43-50.

53

Page 54: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Yamagata, Y. & Seya, H. 2013, "Simulating a future smart city: An integrated land use-energy model", Applied Energy, vol. 112, pp. 1466-1474.

Yamagata, Y. & Seya, H. 2013, "Spatial electricity sharing system for making city more resilient against X-Events", Innovation and Supply Chain Management, vol. 7, no. 3, pp. 75-82.

Yamamoto, S. 1984, "case history no. 9.4. Tokyo, japan", Guidebook to Studies of Land Subsidence due to Groundwater Withdrawal.United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, , pp. 175-184.

Yasuhara, K., Komine, H., Murakami, S., Chen, G., Mitani, Y. & Duc, D. 2012, "Effects of climate change on geo-disasters in coastal zones and their adaptation", Geotextiles and Geomembranes, vol. 30, pp. 24-34.

Yoshioka, T., Furukawa, M., Yoshizaki, K., Matsuhashi, R. & Yoshida, Y. 2011, "Financial risk management for energy service project under the Tokyo emission trading system", Stochastic Environmental Research and Risk Assessment, vol. 25, no. 5, pp. 677-683.

Yukawa, K. 2003, "A Cluster of Internet Companies in Tokyo—Review of Bit Valley—", Journal of Korean Regional Science, vol. 18, no. 3, pp. 111-126.

Zhai, G. & Suzuki, T. 2008, "Effects of risk representation and scope on willingness to pay for reduced risks: evidence from Tokyo Bay, Japan", Risk analysis, vol. 28, no. 2, pp. 513-522.

Wonkblog, 2013. Why Tokyo has more to fear from sea-level rise than Vancouver. [Online] Available at: http://www.washingtonpost.com/blogs/wonkblog/wp/2013/02/12/why-tokyo-has-more-to-fear-from-sea-level-rise-than-vancouver [Accessed 28 March 2015]

The Japan Times, 2013. Japan’s coast menaced by storm surges. [Online] Available at: http://www.japantimes.co.jp/news/2013/11/23/national/japans-coast-menaced-by-storm-surges/#.VRqQI_mUcpV [Accessed 28 March 2015]

Kishimoto, K. JMA’s Five-day Tropical Cyclone Track Forecast. Japan Meteorological Agency. [Online] Available at: http://www.jma.go.jp/ [Accessed 28 March 2015]

Zolbert A, 2012. How giant tunnels protect Tokyo from flood threat. [Online] Available at: http://edition.cnn.com/2012/10/31/world/asia/japan-flood-tunnel/ [Accessed 28 March 2015]

------------------

54

Page 55: Web viewIn about 40 years, ... To change the wetland to into the Edo capital area, ... H. 2009, "The battle of Tokyo and Dhaka against floods",

Appendix: Section 5, Critical infrastrcure CRRT narrative descriptions

Actorviewpoint

Object of interest

Collapse Resistant Resilient Transformative Narrative Summary

Water and Waste WaterEnergyPublic HealthSocial Care and ServicesGreen/Blue space (ecosystem services)HousingTransportCommunicationsDRMCCA

55