wk8a

Embed Size (px)

Citation preview

  • 7/29/2019 wk8a

    1/26

    The spatial frequency domain

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-1

  • 7/29/2019 wk8a

    2/26

    Recall: plane wave propagation

    zz=0

    path delay increases

    linearly withx

    x

    x

    plane of observation

    +

    cos2

    sin2exp0

    z

    i

    xiE

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-2

  • 7/29/2019 wk8a

    3/26

    Spatial frequency angle of propagation?

    zz=0

    plane of observation

    x

    electric field

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-3

  • 7/29/2019 wk8a

    4/26

    Spatial frequency angle of propagation?

    zz=0

    plane of observation

    x

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-4

  • 7/29/2019 wk8a

    5/26

    Spatial frequency angle of propagation?

    The cross-section of the optical field with the optical axis

    is a sinusoid of the form

    + 00

    sin2exp

    xiE

    i.e. it looks like

    ( )

    sin

    where2exp 00 + uxuiE

    is called the spatial frequencyspatial frequency

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-5

  • 7/29/2019 wk8a

    6/26

    2D sinusoids

    ( )[ ]vyuxE +2cos0 ( )[ ]vyuxiE +2exp0corresp. phasor

    y

    x

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-6

  • 7/29/2019 wk8a

    7/26

    2D sinusoids

    ( )[ ]vyuxE +2cos0 ( )[ ]vyuxiE +2exp0corresp. phasor

    x

    y

    min

    max

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-7

  • 7/29/2019 wk8a

    8/26

    2D sinusoids

    ( )[ ]vyuxE +2cos0 ( )[ ]vyuxiE +2exp0corresp. phasor

    x

    y

    1/u1/v

    min

    max

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-8

  • 7/29/2019 wk8a

    9/26

    2D sinusoids

    ( )[ ]vyuxE +2cos0 ( )[ ]vyuxiE +2exp0corresp. phasor

    min

    x

    y

    22

    1

    tan

    vu

    vu

    +=

    =

    max

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-9

  • 7/29/2019 wk8a

    10/26

    Periodic Grating /1: vertical

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-10

    Space

    domain

    Frequency(Fourier)

    domain

    x

    y

    x

    y

    u

    v

    u

    v

  • 7/29/2019 wk8a

    11/26

    Periodic Grating /2: tilted

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-11

    Space

    domain

    Frequency(Fourier)

    domain

    x

    y

    x

    y

    u

    v

    u

    v

  • 7/29/2019 wk8a

    12/26

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-12

    Superposition: multiple gratings

    + +

    Space

    domain

    Frequency(Fourier)

    domain

  • 7/29/2019 wk8a

    13/26

    More superpositions

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-13

    Space

    domain

    Frequency(Fourier)

    domain

  • 7/29/2019 wk8a

    14/26

    Size of object vs frequency content

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-14

    Space

    domain

    Frequency(Fourier)

    domain

  • 7/29/2019 wk8a

    15/26

    Superimposing shifted objects

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-15

    Space

    domain

    Frequency(Fourier)

    domain

  • 7/29/2019 wk8a

    16/26

    Linear shift invariant systems

    in the time domain

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-16

  • 7/29/2019 wk8a

    17/26

    Linear shift invariant systems

    F(t)m

    k b x(t)

    vi(t)

    R

    C vo(t)

    +

    ( )

    ( )

    ( )( )

    km

    b

    m

    k

    mH

    kbimH

    tFkxxbxm

    2

    4

    11

    1

    r

    22

    r

    222

    r

    22

    2

    2

    ==

    +=

    +=

    =++

    ( )

    ( )

    ( )( )

    C

    H

    iH

    tvvvRC

    =

    +=

    +=

    =+

    1

    1

    1

    1

    2

    2

    ioo

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-17

  • 7/29/2019 wk8a

    18/26

    Linear shift invariant systems

    gi(t) go(t)

    LSILSI

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-18

    gi(t)=(tt0) go(t)=h(tt0)

    LSILSI

    t

    gi(t)

    t

    go(t)

    shift invarianceshift invariance

    gi(t)=(t) go(t)=h(t)

    LSILSIt

    gi(t)

    t

    go(t)impulse excitation impulse response

  • 7/29/2019 wk8a

    19/26

    Linear shift invariant systems

    gi(t) go(t)

    LSILSI

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-19

    gi(t)=(t)+(tt0) go(t)=h(t)+h(tt0)

    LSILSI

    t

    gi(t)

    t

    go(t)

    linearitylinearity

    gi(t)=(t) go(t)=h(t)

    LSILSIt

    gi(t)

    t

    go(t)impulse excitation impulse response

  • 7/29/2019 wk8a

    20/26

    Linear shift invariant systems

    gi(t) go(t)

    LSILSI

    gi(t)=arbitrary go(t)= ??

    LSILSIt

    gi(t)

    t

    go(t)

    ( ) ( ) ( ) 000ii dttttgtg = ( ) ( ) ( ) 000io dttthtgtg =

    siftingsifting property of the -function convolution integralconvolution integral

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-20

  • 7/29/2019 wk8a

    21/26

    Linear shift invariant systems

    gi(t) go(t)

    LSILSI

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-21

    gi(t)=sinusoid go(t)=sinusoid

    LSILSIt

    gi(t)

    t

    go(t)

    ( ) ( ) ( ) ( ) ( )( )

    ( ) ( ) ( )[ ]

    iHH

    tHatgtatg

    expwhere

    coscos 0000o00i

    =

    ==

    transfer functiontransfer function

    attenuation

    phase delay

    same frequency

  • 7/29/2019 wk8a

    22/26

    From time to frequency: Fourier analysis

    Can I express an arbitraryg(t)

    as a superposition of sinusoids?

    t

    g(t)

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-22

    t

    t

    t

    t

    ++

    ++++

    t

    t

    ==++++

  • 7/29/2019 wk8a

    23/26

    The Fourier integral

    (aka inverse Fourier transforminverse Fourier transform)

    ( ) ( ) de 2 tiGtg +=

    superposition sinusoids

    complex weight,expresses relative amplitude

    (magnitude & phase)

    of superposed sinusoidsMIT 2.71/2.710 Optics

    10/25/04 wk8-a-23

  • 7/29/2019 wk8a

    24/26

    The Fourier transform

    The complex weight coefficients G(),

    aka Fourier transformFourier transform ofg(t)

    are calculated from the integral

    ( ) ( ) ttgGti

    de

    2

    =

    t

    g(t)

    Re[e-i2t]

    Re[G()]= dt

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-24

  • 7/29/2019 wk8a

    25/26

    Fourier transform pairspairs

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )[ ]

    ( ) ( ) ( ) ( ) ( )[ ]

    ( ) ( ) ( )

    ( ) ( ) ( )222

    2

    000

    000

    00

    2exp2

    exp

    sincrect

    2

    1

    2sin

    2

    12cos

    2exp

    1

    TTGT

    ttg

    TTGT

    ttg

    iGttg

    Gttg

    Gtitg

    Gttg

    =

    =

    =

    =

    ++==

    ++==

    ==

    ==

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-25

    2D2D F i t f ii

  • 7/29/2019 wk8a

    26/26

    2D2D Fourier transform pairspairs

    Image removed due to copyright concerns

    (from Goodman,

    Introduction to

    Fourier Optics,

    page 14)

    MIT 2.71/2.710 Optics

    10/25/04 wk8-a-26