wk5bh

Embed Size (px)

Citation preview

  • 7/29/2019 wk5bh

    1/39

    So far

    Geometrical Optics

    Reflection and refraction from planar and spherical interfaces

    Imaging condition in the paraxial approximation Apertures & stops

    Aberrations (violations of the imaging condition due to terms of

    order higher than paraxial or due to dispersion)

    Limits of validity of geometrical optics: features of interest are much

    bigger than the wavelength

    Problem: point objects/images aresmallerthan !!!

    So light focusing at a single point is an artifact of ourapproximations

    To understand light behavior at scales ~ we need to take intoaccount the wave nature of light.

    MIT 2.71/2.710

    10/06/04 wk5-b-1

  • 7/29/2019 wk5bh

    2/39

    Step #1 towards wave optics: electro-dynamics

    Electromagnetic fields (definitions and properties) in vacuo

    Electromagnetic fields in matter

    Maxwells equations Integral form

    Differential form

    Energy flux and the Poynting vector The electromagnetic wave equation

    MIT 2.71/2.710

    10/06/04 wk5-b-2

  • 7/29/2019 wk5bh

    3/39

    Electric and magnetic forces

    MIT 2.71/2.710

    10/06/04 wk5-b-3

    + +

    r

    dl

    Fr

    I

    I

    q q

    F

    free charges

    Magnetic forceCoulomb force

    2

    04

    1

    r

    qq =

    F

    r

    II

    l

    2d

    d0

    =

    F

    (dielectric) permitivityof free space

    (magnetic) permeabilityof free space

  • 7/29/2019 wk5bh

    4/39

    Note the units

    2

    0 Distance

    Charge1

    force

    Electric

    =

    2

    04

    1

    r

    qq =

    F

    r

    II

    l

    2d

    d0

    =

    F2

    0

    Time

    Charge

    force

    Magnetic

    =

    ( ) ( )SpeedTime

    Distance2/1

    00

    MIT 2.71/2.710

    10/06/04 wk5-b-4

  • 7/29/2019 wk5bh

    5/39

    Electric and magnetic fields

    MIT 2.71/2.710

    10/06/04 wk5-b-5

    +

    v

    F

    B

    E

    electric

    charge

    velocity

    Lorentz

    force

    magnetic

    induction

    electric

    field

    ( )BvEF += q

    Observation Generation

    +

    Estatic charge:

    electric field

    q

    v

    ++

    B electric current(moving charges):

    magnetic field

  • 7/29/2019 wk5bh

    6/39

    Gauss Law: electric fields

    E

    ++

    E

    da da

    A

    V

    =A V

    Vd1

    d0

    aEGauss theorem

    0

    = E

    charge density

    MIT 2.71/2.710

    10/06/04 wk5-b-6

  • 7/29/2019 wk5bh

    7/39

    Gauss Law: magnetic fields

    B

    A

    V

    there are nomagnetic

    charges

    da

    =A

    0daB

    magnetic charge density

    0= BGauss theorem

    MIT 2.71/2.710

    10/06/04 wk5-b-7

  • 7/29/2019 wk5bh

    8/39

  • 7/29/2019 wk5bh

    9/39

    Amperes Law: magnetic induction

    dlB

    C

    A

    I

    MIT 2.71/2.710

    10/06/04 wk5-b-9

    +=

    C AAt

    l aE

    aJB ddd 00

    current

    dlB

    capacitor

    Stokes theorem

    += tEJB 00

    Maxwells extension,

    Displacement currentcurrent density

  • 7/29/2019 wk5bh

    10/39

    Maxwells equations

    (in vacuo)

    =A V Vd1

    d0

    aE0= E Gauss/electric

    =A

    0daB 0= B Gauss/magnetic

    t

    =

    BE =

    C At

    l aBE dd

    dd Faraday

    +=

    C At

    l aEJB dd 00

    +=

    tEJB 00

    Ampere-Maxwell

    MIT 2.71/2.710

    10/06/04 wk5-b-10

  • 7/29/2019 wk5bh

    11/39

    Electric fields in dielectric media

    E

    ++++

    ++++

    atom under electric field:

    charge neutrality is preserved

    spatial distribution of charges

    becomes assymetric

    atom in equilibrium

    = pP++ = rrp qq

    PolarizationDipole moment

    Spatially variant polarization

    induces localcharge imbalances(bound charges)

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    + P=bound

    MIT 2.71/2.710

    10/06/04 wk5-b-11

  • 7/29/2019 wk5bh

    12/39

    Electric displacement

    ( )boundfree0

    total

    0

    11

    +== EGauss Law:

    ( )P= free0

    1

    ( ) free0 =+ PE

    PED += 0 free= DElectric displacement field:

    EP 0=

    ( ) EED += 10

    Linear, isotropicpolarizability:

    MIT 2.71/2.710

    10/06/04 wk5-b-12

  • 7/29/2019 wk5bh

    13/39

    General cases of polarization

    EP 0=Linear, isotropicpolarizability: E

    P

    Linear, anisotropicpolarizability:

    E

    EP

    =

    333231

    232221

    131211

    0

    P

    ...)2(00 ++= EEEP Nonlinear, isotropicpolarizability:

    etc.

    MIT 2.71/2.710

    10/06/04 wk5-b-13

  • 7/29/2019 wk5bh

    14/39

    Constitutive relationships

    E: electric fieldPED += 0

    D: electric displacementpolarization

    B: magnetic induction

    MB

    H =0H: magnetic field

    magnetization

    MIT 2.71/2.710

    10/06/04 wk5-b-14

  • 7/29/2019 wk5bh

    15/39

    Maxwells equations

    (in matter)

    =A V VddfreeaD Gauss/electricfree= D

    =A

    0daB 0= B Gauss/magnetic

    t

    =

    BE =

    C At

    l aBE dd

    dd Faraday

    +=

    C At

    l aDJH dd free0

    +=

    tDJH free0

    Ampere-Maxwell

    MIT 2.71/2.710

    10/06/04 wk5-b-15

  • 7/29/2019 wk5bh

    16/39

    Maxwells equations wave equation

    (in linear, anisotropic, non-magnetic matter, no free charges/currents)

    ( ) 0= E

    MIT 2.71/2.710

    10/06/04 wk5-b-16

    0= B

    t

    =

    BE

    ( )t

    =

    EB

    0

    0= E

    0= B

    t

    =

    BE

    t

    =

    EB 0

    matter spatially and

    temporally invariant

    ( ) ( ) 22

    0ttt

    =

    =

    = EBEBE

    ( ) ( ) EEE =

    =0

    02

    2

    0

    2 =

    t

    EE

    electromagnetic

    wave equation

  • 7/29/2019 wk5bh

    17/39

    Maxwells equations wave equation

    (in linear, anisotropic, non-magnetic matter, no free charges/currents)

    0= E

    0= B

    t

    =

    BE

    t=E

    B 0

    02

    2

    0

    2 =

    t

    EE

    012

    2

    2

    2 =

    tc

    EE201c

    wave velocity

    MIT 2.71/2.710

    10/06/04 wk5-b-17

  • 7/29/2019 wk5bh

    18/39

    Light velocity and refractive index

    1

    2

    vacuum

    00

    c

    cvacuum: speed of light

    in vacuum

    ( ) 02

    01 n+= n: index of refraction

    22

    vacuum

    2

    01

    cc

    n = ccvacuum/n: speed of lightin medium of refr. index n

    MIT 2.71/2.710

    10/06/04 wk5-b-18

  • 7/29/2019 wk5bh

    19/39

    Simplified (1D, scalar) wave equation

    01

    2

    2

    22

    2

    =

    t

    E

    cz

    E Eis a scalar quantity (e.g. the componentEy of anelectric field E)

    the geometry is symmetric inx,y

    thex,yderivatives are zero

    Solution:

    ++

    = t

    c

    zgt

    c

    zftzE ),(

    tcz =0z

    zz +0

    t

    c

    zf 0 t

    z

    t+t

    z

    MIT 2.71/2.710

    10/06/04 wk5-b-19

  • 7/29/2019 wk5bh

    20/39

    Special case: harmonic solution

    t=0

    z

    MIT 2.71/2.710

    10/06/04 wk5-b-20

    z

    t+t

    ==

    zatzf 2cos)0,(

    ct2=

    ( )

    = t

    c

    za

    ctzatzf

    2cos2cos),( =c

    dispersionrelation

  • 7/29/2019 wk5bh

    21/39

    Complex representation of waves

    ( )

    ( ) ( )

    ( ) ( )( ) ( ) ( )

    ( ) ( ){ }( ) ( ) ( )phasor""oramplitudecomplexe

    tionrepresentacomplexe,aka,,

    Re,i.e.

    sincos,cos,

    2,2cos,

    22

    cos,

    i

    tkzi

    A

    Atzftzftzftzf

    tkziAtkzAtzf

    tkzAtzf

    ktkzAtzf

    tzAtzf

    =

    =

    +==

    ===

    =

    wave-number

    angular frequency

    MIT 2.71/2.710

    10/06/04 wk5-b-21

  • 7/29/2019 wk5bh

    22/39

    Time reversal

    ( )uf

    z

    ( )tkzf

    ( )uf

    z

    ( )tkzf +

    MIT 2.71/2.710

    10/06/04 wk5-b-22

  • 7/29/2019 wk5bh

    23/39

    Superposition

    ( )uf ( )uf

    z

    ( )tkzf ( )tkzf +

    ( ) ( )tkzftkzf ++More generally,

    is also a solution

    ( ) ( )tkzgtkzf ++ is a solution

    Even more generally, LINEARITY

    SUPERPOSITION

    ( ) ( )

    ( ) ( )

    +++++

    ++

    tkzgtkzg

    tkzftkzf

    21

    21is a solution

    MIT 2.71/2.710

    10/06/04 wk5-b-23

  • 7/29/2019 wk5bh

    24/39

    What is the solution to the wave

    equation? In general: the solution is an (arbitrary) superposition of propagating

    waves

    Usually, we have to impose

    initial conditions (as in any differential equation)

    boundary condition (as in most partial differential equations)

    Example: initial value problem

    ( ) ( )0,wave0 zfuf =

    z

    z=0

    z

    z=0 z=t/k

    ( )tzf ,wave

    ( ) ( ) ( ) ( )tkzftzfufzf = 0wave0wave ,0,

    MIT 2.71/2.710

    10/06/04 wk5-b-24

  • 7/29/2019 wk5bh

    25/39

    What is the solution to the wave

    equation? In general: the solution is an (arbitrary) superposition of propagating

    waves

    Usually, we have to impose

    initial conditions (as in any differential equation)

    boundary condition (as in most partial differential equations)

    Boundary conditions: we will not deal much with them in this class,

    but it is worth noting that physically they explain interesting

    phenomena such as waveguiding from the wave point of view (we sawalready one explanation as TIR).

    MIT 2.71/2.710

    10/06/04 wk5-b-25

  • 7/29/2019 wk5bh

    26/39

    Elementary waves:

    plane, spherical

    MIT 2.71/2.710

    10/06/04 wk5-b-26

  • 7/29/2019 wk5bh

    27/39

    The EM vector wave equation

    2

    2

    2

    2

    2

    22

    zyx

    +

    +

    = zyxE zyx EEE ++=

    01

    01

    01

    2

    z

    2

    22

    z

    2

    2

    z

    2

    2

    z

    2

    2

    y2

    22

    y2

    2

    y2

    2

    y2

    2

    x

    2

    22

    x

    2

    2

    x

    2

    2

    x

    2

    =

    +

    +

    =

    +

    +

    =

    +

    +

    t

    E

    cz

    E

    y

    E

    x

    E

    t

    E

    cz

    E

    y

    E

    x

    E

    t

    E

    cz

    E

    y

    E

    x

    E

    01

    2

    2

    2

    2 =

    tc

    EE

    xE

    zE

    yE

    E

    MIT 2.71/2.710

    10/06/04 wk5-b-27

  • 7/29/2019 wk5bh

    28/39

    Harmonic solution in 3D: plane wave

    zy

    x

    E(z=0,t=0)

    E(z=/2,t=0)

    E(z=,t=0)

    E(z=3/2,t=0)E(z=5/2,t=0)

    E(z=2,t=0)

    E(z=3,t=0)

    phase

    =con

    stant

    onthe

    plan

    e

    t=0

    =0=2

    =4

    =6MIT 2.71/2.710

    10/06/04 wk5-b-28

  • 7/29/2019 wk5bh

    29/39

    Plane wave propagating

    MIT 2.71/2.710

    10/06/04 wk5-b-29

    zy

    x

    =0

    E(z=0,t=t)

    E(z=/2,t=t)

    E(z=,t=t)

    E(z=3/2,t=t) E(z=5/2,t=t)

    E(z=2,t=t)E(z=3,t=t)

    phase

    =con

    stant

    ontheplan

    ect

    propagation

    direction t=t

    =2

    =4

    =6

  • 7/29/2019 wk5bh

    30/39

    Complex representation of 3D waves

    ( ) ( )

    ( ) ( )

    ( ) ( )( )

    ( )

    ( ) const.,,surface:Wavefront""

    ,,where

    phasor""oramplitudecomplexe

    tionrepresentacomplexe,,,

    etc.,cos2

    cos,,,

    coscoscos2

    cos,,,

    0

    ,,

    0

    0

    0

    =

    ++

    =

    =++=

    ++=

    ++

    zyx

    zkykxkzyx

    A

    Atzyxf

    ktzkykxkAtzyxf

    tzyxAtzyxf

    zyx

    zyxi

    tzkykxki

    xzyx

    zyx

    MIT 2.71/2.710

    10/06/04 wk5-b-30

  • 7/29/2019 wk5bh

    31/39

    Plane wave

    x

    wave-vector

    kx k

    kz

    z

    ky

    y

    MIT 2.71/2.710

    10/06/04 wk5-b-31

  • 7/29/2019 wk5bh

    32/39

    Plane wave

    ky

    y

    ( ) ( )

    relation)n(dispersio

    iffequationwavesolves

    vector)coordinate(Cartesian

    e 0

    c

    kkk

    zyx

    Aa

    zyx

    ti

    =

    ++=

    ++=

    =

    k

    zyxk

    zyxr

    rrk

    x

    wave-vector

    kx k

    kz

    z

    MIT 2.71/2.710

    10/06/04 wk5-b-32

  • 7/29/2019 wk5bh

    33/39

  • 7/29/2019 wk5bh

    34/39

    Plane wave propagating

    E(=0,t=0)

    E(=/2,t=0)

    E(=,t=0)

    E(=3/2,t=0)E(=5/2,t=0)

    E(=2,t=0)

    E(=3,t=0)

    phase

    =con

    stant

    onthep

    lane

    t=0const.plane =rk

    wave-vector

    direction

    =0=2

    =4

    =6MIT 2.71/2.710

    10/06/04 wk5-b-34

  • 7/29/2019 wk5bh

    35/39

    Plane wave propagating

    MIT 2.71/2.710

    10/06/04 wk5-b-35

    y

    x

    =0

    E(=0,t=t)

    E(=/2,t=t)

    E(=,t=t)

    E(

    =3/2,t=t) E(=5/2,t=t)

    E(=2,t=t)

    E(=3,t=t)

    t=t

    ctpropagation

    direction

    phase

    =con

    stant

    onthep

    lane

    const.plane =rk

    wave-vector

    direction

    =2=4

    =6

  • 7/29/2019 wk5bh

    36/39

    Spherical waveequation of wavefront

    Outgoing

    rays

    Outgoing

    wavefronts

    constant= tkR

    R

    ( )R

    tkRAtzyxa

    2/cos),,,(

    +=

    ( ){ }iR

    tkRiAtzyxa

    exp),,,(

    =

    +

    +=

    z

    yxi

    zi

    iR

    Azyxa

    22

    2exp),,(

    exponential

    notationpointsource

    paraxial

    approximation

    MIT 2.71/2.710

    10/06/04 wk5-b-36

  • 7/29/2019 wk5bh

    37/39

    Spherical wave

    MIT 2.71/2.710

    10/06/04 wk5-b-37

    point

    source

    =2

    =4

    =6

    spherical wavefronts

    pointsource

    =2

    =4

    =6

    parabolic wavefronts

    paraxial approximation/paraxial approximation/

    /Gaussian beams

    exactexact

    /Gaussian beams

  • 7/29/2019 wk5bh

    38/39

    The role of lenses

    plane wave

    point

    source

    spherical wave

    (divergent)

    plane wave

    MIT 2.71/2.710

    10/06/04 wk5-b-38

    point

    image

    spherical wave

    (convergent)

  • 7/29/2019 wk5bh

    39/39

    The role of lenses

    plane wave

    MIT 2.71/2.710

    10/06/04 wk5-b-39

    point

    image

    spherical wave

    (divergent)

    point

    source

    plane wave spherical wave

    (convergent)