wk2b

Embed Size (px)

Citation preview

  • 7/29/2019 wk2b

    1/48

    MIT 2.71/2.710

    09/15/04 wk2-b-1

    Lenses and Imaging (Part I)

    Why is imaging necessary: Huygens principle

    Spherical & parallel ray bundles, points at infinity

    Refraction at spherical surfaces (paraxial approximation) Optical power and imaging condition

    Matrix formulation of geometrical optics

    The thin lens

    Surfaces of positive/negative power

    Real and virtual images

  • 7/29/2019 wk2b

    2/48

    MIT 2.71/2.710

    09/15/04 wk2-b-2

    Parabloid mirror: perfect focusing

    s(x) x

    z

    (e.g. satellite dish)

    ( )f

    xxs4

    2=

    f

    f: focal length

  • 7/29/2019 wk2b

    3/48

    MIT 2.71/2.710

    09/15/04 wk2-b-3

    Lens: main instrument for image

    formation

    Point source(object) Pointimage

    The curved surface makes the rays bend proportionally to their distance

    from the optical axis, according to Snells law. Therefore, the divergent

    wavefront becomes convergent at the right-hand (output) side.

    air glass air

    optical

    axis

  • 7/29/2019 wk2b

    4/48

    MIT 2.71/2.710

    09/15/04 wk2-b-4

    Why are focusing instruments

    necessary?

    Ray bundles: spherical waves and plane waves Point sources and point images

    Huygens principle and why we can see around us

    The role of classical imaging systems

  • 7/29/2019 wk2b

    5/48

    MIT 2.71/2.710

    09/15/04 wk2-b-5

    Ray bundles

    point

    source

    spherical

    wave(diverging)

    point

    source

    very-veryfar awayplane

    wave

    wave-front

    rays

    wave-front

    rays

  • 7/29/2019 wk2b

    6/48

    MIT 2.71/2.710

    09/15/04 wk2-b-6

    Huygens principle

    optical

    wavefronts

    Each point on the wavefront

    acts as a secondary light source

    emitting a spherical wave

    The wavefront after a short

    propagation distance is the

    result of superimposing allthese spherical wavelets

  • 7/29/2019 wk2b

    7/48

    MIT 2.71/2.710

    09/15/04 wk2-b-7

    Why are focusing instruments

    necessary?

    objectobject

    ...

    is scattered by

    the object

    incident light

  • 7/29/2019 wk2b

    8/48

    MIT 2.71/2.710

    09/15/04 wk2-b-8

    Why are focusing instruments

    necessary?

    objectobject

    ...

    is scattered by

    the object

    incident light

    imageimage

    need optics to undothe effects of scattering,i.e. focus the light

  • 7/29/2019 wk2b

    9/48

    MIT 2.71/2.710

    09/15/04 wk2-b-9

    Ideal lens

    Point sources(object) Point images

    Each point source from the object planeobject plane focuses onto a point

    image at the image planeimage plane; NOTENOTE the image inversionthe image inversion

    air glass air

    optical

    axis

  • 7/29/2019 wk2b

    10/48

    MIT 2.71/2.710

    09/15/04 wk2-b-10

    Summary:Why are imaging systems needed?

    Each point in an object scatters the incident illumination into a

    spherical wave, according to the Huygens principle. A few microns away from the object surface, the rays emanating from

    all object points become entangled, delocalizing object details.

    To relocalize object details, a method must be found to reassign

    (focus) all the rays that emanated from a single point object intoanother point in space (the image.)

    The latter function is the topic of the discipline of Optical Imaging.

    ?

  • 7/29/2019 wk2b

    11/48

    MIT 2.71/2.710

    09/15/04 wk2-b-11

    The ideal optical imaging system

    opticalelements

    Ideal imaging system:

    each point in the objectobject is mappedonto a single point in the imageimage

    objectobject imageimage

    Real imaging systems introduce blur ...

  • 7/29/2019 wk2b

    12/48

    MIT 2.71/2.710

    09/15/04 wk2-b-12

    Focus, defocus and blur

    Perfect focus Defocus

  • 7/29/2019 wk2b

    13/48

    MIT 2.71/2.710

    09/15/04 wk2-b-13

    Focus, defocus and blur

    Perfect focus Imperfect focus

    sphericalaberration

  • 7/29/2019 wk2b

    14/48

    MIT 2.71/2.710

    09/15/04 wk2-b-14

    Why optical systems dodo notnot focusfocus

    perfectlyperfectly

    DiffractionDiffraction

    AberrationsAberrations

    However, in the paraxial approximation to Geometrical

    Optics that we are about to embark upon, optical systemsdo focus perfectlydo focus perfectly

    To deal with aberrations, we need non-paraxialGeometrical Optics (higher order approximations)

    To deal with diffraction, we need Wave Optics

  • 7/29/2019 wk2b

    15/48

    MIT 2.71/2.710

    09/15/04 wk2-b-15

    Ideal lens

    Point sources(object) Point images

    Each point source from the object planeobject plane focuses onto a point

    image at the image planeimage plane

    air glass air

    optical

    axis

  • 7/29/2019 wk2b

    16/48

    MIT 2.71/2.710

    09/15/04 wk2-b-16

    Refraction at single spherical surface

    medium 1

    index n,

    e.g. airn=1

    01D 12D

    medium 2

    index n,

    e.g. glass n=1.5

    R

    center of

    spherical

    surface

    R: radius of

    spherical

    surface

    for each ray, must calculate

    point of intersection with sphere

    angle between ray and normal to

    surface

    apply Snells law to find direction of

    propagation of refracted ray

  • 7/29/2019 wk2b

    17/48

    MIT 2.71/2.710

    09/15/04 wk2-b-17

    Paraxial approximation /1 In paraxial optics, we make heavy use of the following approximate

    (1st order Taylor) expressions:

    where is the angle between a ray and the optical axis, and is a small

    number ( 1 rad). The range of validity of this approximationtypically extends up to ~10-30 degrees, depending on the desireddegree of accuracy. This regime is also known as Gaussian optics or

    paraxial optics.

    Note the assumption of existence of an optical axis (i.e., perfectalignment!)

    tansin

    2

    111 ++

    1cos

  • 7/29/2019 wk2b

    18/48

    MIT 2.71/2.710

    09/15/04 wk2-b-18

    Paraxial approximation /2

    Apply Snells law as if

    ray bending occurred at

    the intersection of the

    axial ray with the lens

    Ignore the distance

    between the location

    of the axial ray

    intersection and theactual off-axis ray

    intersection

    axial ray

    off-axi

    sray

    Valid for small curvatures

    & thin optical elements

  • 7/29/2019 wk2b

    19/48

    MIT 2.71/2.710

    09/15/04 wk2-b-19

    Refraction at spherical surface

    optical axis

    off-ax

    isray

    Refraction at positive spherical surface: ( )111

    11

    xRn

    nn

    n

    n

    xx

    =

    =

    1

    1

    1

    x1

    x

    x: ray height

    : ray direction

    n n

    R: radius

    of curvaturePowerPower

  • 7/29/2019 wk2b

    20/48

    MIT 2.71/2.71009/15/04 wk2-b-20

    Propagation in uniform space

    off-axisr

    ay

    Propagation through distance D:

    1

    1

    1x

    1xn

    optical axis

    11

    111

    =

    += Dxx

    D

    x: ray height

    : ray direction

  • 7/29/2019 wk2b

    21/48

    MIT 2.71/2.71009/15/04 wk2-b-21

    Paraxial ray-tracing

    air glass air

    Free-space

    propagation

    Free-space

    propagation

    Refraction at

    air-glass

    interface

    Refraction at

    glass-air

    interface

    Free-space

    propagation

  • 7/29/2019 wk2b

    22/48

    MIT 2.71/2.71009/15/04 wk2-b-22

    Example: one spherical surface,translation+refraction+translation

    medium 1

    index n,

    e.g. airn=1

    Paraxial rays

    (approximation

    valid)

    Non-paraxial ray

    (approximation

    gives large error)

    01D 12D

    medium 2

    index n,

    e.g. glass n=1.5

    R

    center of

    spherical

    surface

    R: radius of

    spherical

    surface

  • 7/29/2019 wk2b

    23/48

    MIT 2.71/2.71009/15/04 wk2-b-23

    Translation+refraction+translation /1

    01D 12D

    0x1x 2x

    10 =21 =

    Starting ray: location direction0x 0

    Translation through distance (+ direction):01D01

    00101

    =

    += Dxx

    Refraction at positive spherical surface: ( )111

    11

    x

    Rn

    nn

    n

    n

    xx

    =

    =

    1x

    n n

  • 7/29/2019 wk2b

    24/48

    MIT 2.71/2.71009/15/04 wk2-b-24

    Translation+refraction+translation /2

    01D 12D

    0x1x 2x

    10 =

    Translation through distance (+ direction):12D

    12

    11212

    =

    += Dxx

    Put together:

    1x

    21 =n n

  • 7/29/2019 wk2b

    25/48

    MIT 2.71/2.71009/15/04 wk2-b-25

    Translation+refraction+translation /3

    ( ) ( )0

    120112010

    122 1

    +

    ++

    +

    =

    Rn

    DDnn

    n

    nDDx

    Rn

    Dnnx

    ( )0

    0102

    ++

    = Rn

    Dnn

    n

    nxRn

    nn

    01D 12D

    0x1x 2x

    10 =

    1x

    21 =n n

  • 7/29/2019 wk2b

    26/48

    MIT 2.71/2.71009/15/04 wk2-b-26

    Sign conventions for refraction Light travels from left to right

    A radius of curvature is positive if the surface is convex towards the

    left Longitudinal distances are positive if pointing to the right

    Lateral distances are positive if pointing up

    Ray angles are positive if the ray direction is obtained by rotating the

    +z axis counterclockwise through an acute angle

    optical axis +z

  • 7/29/2019 wk2b

    27/48

    MIT 2.71/2.71009/15/04 wk2-b-27

    On-axis image formation

    Point

    objectobject

    Point

    imageimage

  • 7/29/2019 wk2b

    28/48

    MIT 2.71/2.71009/15/04 wk2-b-28

    On-axis image formation

    All rays emanating at arrive at

    irrespective of departure angle0x 2x

    00

    0

    2 =

    x

    01D 12D

    00 =x 2x0

    2n n

    [ ]( )

    0120112

    0102

    ++=

    Rn

    DDnn

    n

    nDDxx "

  • 7/29/2019 wk2b

    29/48

    MIT 2.71/2.71009/15/04 wk2-b-29

    On-axis image formation

    All rays emanating at arrive at

    irrespective of departure angle0x 2x

    00

    0

    2 =

    x

    Rnn

    Dn

    Dn =+

    0112Power of the spherical

    surface [units: dioptersdiopters, 1D=1 ]-1m

    01D 12D

    00 =x 2x0

    2n n

  • 7/29/2019 wk2b

    30/48

    MIT 2.71/2.71009/15/04 wk2-b-30

    Off-axis image formation

    Point

    objectobject(off-axis)

    Point

    imageimage

    opticalaxis

  • 7/29/2019 wk2b

    31/48

    MIT 2.71/2.71009/15/04 wk2-b-31

    Magnification: lateral (off-axis), angle

    01D 12D

    00 =x

    2x

    02

    n n

    01

    1212

    0

    2 .....1' D

    D

    n

    n

    n

    D

    R

    nn

    x

    xmx

    ==+

    ==

    0

    2

    12

    01

    0

    2

    D

    Dm =

    =

    LateralLateral

    AngleAngle

  • 7/29/2019 wk2b

    32/48

    MIT 2.71/2.71009/15/04 wk2-b-32

    Object-image transformation

    01D 12D

    00 =x

    2x

    02

    n n0

    2

    02 xmx x=

    002 1 mxf

    +=

    Ray-tracing transformation

    (paraxial) between

    object and image points

  • 7/29/2019 wk2b

    33/48

    MIT 2.71/2.71009/15/04 wk2-b-33

    Image of point object at infinity

    Point

    imageimage

  • 7/29/2019 wk2b

    34/48

    MIT 2.71/2.71009/15/04 wk2-b-34

    Image of point object at infinity

    =01D 12D

    0x02 =x

    00 =

    0x

    2n n

    lengthfocalimage:1212

    fnn

    RnD

    R

    nn

    D

    n

    =

    =

    object

    at

    image

    Note:nn

    Rnnn

    Rnf=

    ambient refractive index

    at space of point image1/Power

  • 7/29/2019 wk2b

    35/48

    MIT 2.71/2.71009/15/04 wk2-b-35

    Point object imaged at infinity

    Point

    objectobject

  • 7/29/2019 wk2b

    36/48

    MIT 2.71/2.71009/15/04 wk2-b-36

    Point object imaged at infinity

    =12D01D

    00 =x2x

    02 =0n n

    lengthfocalobject:0101

    fnn

    RnD

    R

    nn

    D

    n

    =

    =

    object

    image

    at

    Note:nn

    Rnnn

    Rnf=

    ambient refractive index

    at space of point object1/Power

  • 7/29/2019 wk2b

    37/48

    MIT 2.71/2.71009/15/04 wk2-b-37

    Image / object focal lengths

    Point

    objectobject

    Point

    imageimage

    Object

    at Image

    at

    Power

    1 =

    =

    n

    nn

    Rnf

    Power

    1 =

    =

    n

    nn

    Rnf

  • 7/29/2019 wk2b

    38/48

    MIT 2.71/2.71009/15/04 wk2-b-38

    Matrix formulation /1

    01

    00101

    =

    += Dxx

    ( ) 111

    11

    xRn

    nnnn

    xx

    +=

    =

    02 xmx x=

    002

    1

    mx

    f+

    =

    refraction by

    surface with radius

    of curvature R

    ray-tracing

    object-image

    transformation

    translation by

    distance01D

    form common to all

    in22in21out

    in12in11out

    xMMx

    xMM

    +=

    +=

  • 7/29/2019 wk2b

    39/48

    MIT 2.71/2.71009/15/04 wk2-b-39

    Matrix formulation /2

    in22in21out

    in12in11out

    xMMx

    xMM

    +=

    +=

    =

    in

    in

    2221

    1211

    out

    outout

    x

    n

    MM

    MM

    x

    n

    =

    1

    1

    1

    1

    10

    1x

    nR

    nnx

    n ( )111

    11

    xRn

    nn

    n

    n

    xx

    +

    =

    =

    01

    00101

    =

    += Dxx

    =

    0

    001

    1

    1

    1

    01

    x

    n

    n

    Dx

    n

    Refraction by spherical surface

    Translation through uniform medium

    Power

  • 7/29/2019 wk2b

    40/48

    MIT 2.71/2.71009/15/04 wk2-b-40

    Translation+refraction+translation

    ( ) ( )0

    120112010

    122 1

    +

    ++

    +

    =

    Rn

    DDnn

    n

    nDDx

    Rn

    Dnnx

    ( )0

    0102

    ++

    =

    R

    Dnnnx

    R

    nnn

    01D 12D

    0x1x 2x

    10 =

    1x

    21 =n n

    =

    0

    0

    01122

    2

    by

    ntranslatio

    r.curv.by

    refraction

    by

    ntranslatio

    x

    n

    DRDx

    n

    result

  • 7/29/2019 wk2b

    41/48

    MIT 2.71/2.71009/15/04 wk2-b-41

    Thin lens in air

    R

    R)(

    n=1 n=1

    in

    in

    x

    out

    out

    x

    =

    in

    in

    out

    out

    ??

    ??

    xx

    ObjectiveObjective: specify input-output relationship

    n

  • 7/29/2019 wk2b

    42/48

    MIT 2.71/2.71009/15/04 wk2-b-42

    Thin lens in air

    R

    R)(

    ++

    Model: refraction from firstfirst (positive) surface

    + refraction from secondsecond (negative) surface

    IgnoreIgnore space in-between (thin lens approx.)

    n=1 n=1

    n n

  • 7/29/2019 wk2b

    43/48

    MIT 2.71/2.71009/15/04 wk2-b-43

    Thin lens in air

    R

    R)(

    ++

    in

    in

    x

    1

    1

    x

    n

    1

    1

    x

    n

    out

    out

    x

    =

    in

    in

    1

    1

    10

    11

    xR

    n

    x

    n

    =

    1

    1

    out

    out

    10

    11

    x

    nR

    n

    x

    n n

    n=1 n=1

  • 7/29/2019 wk2b

    44/48

    MIT 2.71/2.71009/15/04 wk2-b-44

    Thin lens in air

    R

    R)(

    n=1 n=1

    in

    in

    x

    out

    out

    x

    ( )

    =

    =

    in

    in

    out

    out

    in

    in

    out

    out

    10

    11

    11

    10

    1

    1

    10

    1

    1

    x

    RRn

    x

    xR

    n

    R

    n

    x

    n

  • 7/29/2019 wk2b

    45/48

    MIT 2.71/2.71009/15/04 wk2-b-45

    Thin lens in air

    R

    R)(

    n=1 n=1

    in

    in

    x

    out

    out

    x

    ( )

    =

    in

    in

    out

    out

    10

    11

    11

    xRR

    n

    x

    n

    R

    nP

    1=

    R

    nP

    =1PowerPower of the

    first surface

    PowerPower of the

    second surface

  • 7/29/2019 wk2b

    46/48

    MIT 2.71/2.71009/15/04 wk2-b-46

    Thin lens in air

    n=1 n=1

    in

    in

    x

    out

    out

    x

    =

    in

    inlensthin

    out

    out

    10

    1

    x

    P

    x

    ( )

    =

    +

    =+=

    RRn

    R

    n

    R

    nPPP

    111

    11lensthin

    Lens-makers

    formula

    n

  • 7/29/2019 wk2b

    47/48

    MIT 2.71/2.71009/15/04 wk2-b-47

    Thin lens in air

    n=1 n=1

    in

    in

    x

    out

    out

    x

    =

    in

    inlensthin

    out

    out

    10

    1

    x

    P

    x

    n

    inout

    inlensthininout

    xx

    xP

    =

    = Ray bending isproportionalproportionalto the distanceto the distance from the axis

  • 7/29/2019 wk2b

    48/48

    MIT 2.71/2.71009/15/04 wk2-b-48

    The power of surfaces Positive power bends rays inwards

    Negative power bends rays outwards

    + ++ N

    Plano-convex

    lens

    Bi-convex

    lens

    Plano-concave

    lens

    Bi-concave

    lens

    N

    +

    Simple spherical

    refractor (positive)

    1 n

    R>0R>0

    R