50
Yong P. Chen Quantum Matter and Devices Lab Department of Physics and School of Electrical and Computer Engineering and Birck Nanotechnology Center Purdue University <[email protected] > Expanding Atomic Quantum Gases with tunable interaction and disorder ---emulating dynamics and fluctuations in superfluids … and nuclear matter? Brookhaven National Laboratory May 23, 2008 Nuclear Physics & RIKEN Theory Seminar

with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Yong P. ChenQuantum Matter and Devices Lab

Department of Physics andSchool of Electrical and Computer Engineering and

Birck Nanotechnology CenterPurdue University <[email protected]>

Expanding Atomic Quantum Gaseswith tunable interaction and disorder

---emulating dynamics and fluctuations in superfluids … and nuclear matter?

Brookhaven National Laboratory May 23, 2008

Nuclear Physics & RIKEN Theory Seminar

Page 2: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

My question

Promising systems (studied in my lab): • Graphene --- Dirac/chiral fermions: Coulomb collapse, Klein paradox…..

• Ultracold quantum gases (Bose-Einstein condensates; degenerate fermions/BEC-BCS;Bose-fermi mixtures;….)

Advantages: Tunable system parameters (customer-designed Hamiltonians): You can watch the system (probe both density and phase) to evolve!

How can we design condensed matter experiments to emulate nuclear/high energy physics phenomena?(esp. those difficult to test in real NP/HEP experiments, i.e. accelerators)

Emulational physics?

Page 3: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Talk outline

• Brief review of cold atoms & BEC---examples of NP/HEP connection

• Tunable interaction and expanding BEC• Disordered BEC:

superfluid to insulator transitionevolution of quantum and density

fluctuations

Please stop me for questions!

Page 4: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Bose-Einstein Condensate

~1μK 50nK

[7Li]

[6Li][7Li]

Page 5: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Meet Our Atom: Lithium-77Li -- boson(3p+, 4n) + 3e-

6Li -- fermion(3p+, 3n) + 3e-

E

r(continuum)

Bose-EinsteinCondensation

(1)

(mF=2)

(0)(-1)

(-2)

(-1)(0)(1)

F=2

F=1

22S1/2

(Feshbach Resonance)of 7Li in (1,1) state

Tunable Interaction

“mean field” interaction ∝ a0

repulsive

attractive

Page 6: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

rf evaporationN~few 106

T~10 μK

Magnetic trap (2,2) state [a<0]

~700K

Zeeman Slowing --------------> MOT ------>

N~few 1010

T~1mKlaser cooling:

ω(671nm)

υ ωF=-kυ B(1,1)

(2,2)Uoptical pumping --->

Experimental Creation of BEC

<---------------optical evaporation<-----------------

(1, 1) statego to high B

1 μK300 nK

BEC!

80nK N~105-106

z

(1030nm)

optical trap U

Page 7: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential
Page 8: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

• in-situ imaging of cloud-- probe ground state wavefunction

• free expansion: momentum space translates into real space---probe phase coherence/fluctuation

•(“restricted-fly”) evolution dynamics in selective potentials

• excite and collective mode

How to Experimentally Probe an Atomic Gas

“sit”

“fly”

“kick”

Just watch it!

Page 9: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

A golden decade of quantum gases of cold atomic quantum gases --- some highlights• Bose-Einstein Condensate (BEC) [1995] now in most alkali, H, He* and Yb, Cr

(Nobel prize, 2001)

• Fermionic Condensate/BCS-BEC crossover [2004-2005]2-

body

Inte

r.

B

BEC(bosonicmolecules)

BCS(cooperpairs)

kF|a| > 1“Feshbach Resonance”

(from Ketterle’05)

Page 10: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

•atoms in optical lattices (eg., BEC/superfluid-Mott insulator) [2002-]

•atoms in optical disorder potential [2005-]

(Mott insulator)

M. Greiner et al., (2002)

(Anderson insulator)

Page 11: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Tunable System Parameters• interaction (repulsive, attractive, short

range, long range,isotropic/anisotropic)• random and period potentials• dimensionality (1-3D) and spatial

structure• quantum and density fluctuations • time-dependent perturbations……

Emulator for Quantum Systems [Feynman/DARPA]

Page 12: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

NP/HEP Connections?• Expansion of quantum gases and

hydrodynamics [Thomas, Grimm, …] • Instabilities due to interaction ----

condensate collapse: “Bosenova”; dipolar collapse

• Bose-Fermi mixture and supersymmetry, “Goldstino” modes (K.Yang’08); models for string theory (Stoof’05)…

• Sound wave propagation: models for cosmology

Page 13: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Interaction and Expansion of BEC

Page 14: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential
Page 15: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

200

150

100

50

0

-50

-100

Scat

terin

g Le

ngth

(a B)

1000800600400

Magnetic Field (G)

Li-7 in (1,1) state

(b) B=717G

(c) B=551G

(d) B=544G

(a)

Page 16: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

0.005ms

0.3ms

1ms

3ms

6ms

9ms

11ms

544G: a<0 TOF images

0.5ms

1ms

3ms

6ms

9ms

11ms

551G: a<~1aB

TOF images

Page 17: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Dipolar Interaction and Dipolar Collapse at a>0

• Cr-52 BEC: a dipolar BEC (Pfau’05)

Page 18: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential
Page 19: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential
Page 20: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Disordered BEC, fluctuations

Collaborators: James Hitchcock, Dan Dries, Mark Junker, Chris Welford and Randy Hulet (Rice Univ.)

Yong P. Chen et al., PRA 77, 233632 (2008)

Page 21: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

From Superfluids and Superconductors to Insulators..

Insulators:•technologically important

•intellectually important to understand conductors and superconductors/superfluids

What is the essence of superfluidity and superconductivity?

understanding by (temporarily) “escaping”...

band insulator (no carriers)

Way#1: no carriers

conductor (metal)

BUT...

How to get an insulator?

Page 22: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Interaction and DisorderFestkorperphysik ist

Schmutzphysik!(“Solid State Physics

is Dirty Physics”)

fundamental themes incondensed matter physics

disorder+interaction?

...

(di s

o rde

r) Anderson insulator

[superfluid/superconductor]metal (interaction)

Mott insulator

Page 23: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Disordered Superconductor

A. Goldman and N. Markovic, Physics Today 1998

Insulator

superconductor

increasingdisorder

Example: Thin film superconductors (eg., Bi)

• “granular superconductor”:local superconductorglobal insulator

(Ec>EJ)

• “homogeneous”:any local superconductivity?

SS

S S

SS

S

•How does disorder destroys superconducting order parameter |Ψ|eiθ

• superfluidity and phase coherence • “Bose glass”?• Dissipation mechanism? intermediate

metallic phase? (“Bose metal”)•Is (dirty) boson-picture sufficient (SC)?

Superfluid/Superconductor to Insulator Transition (SIT)See also: “dirty” superfluid, random J-junction arrays etc. – “dirty bosons”

(disorder induced)

Simulate bydisordered quantum gas(both bosons & fermions)

Page 24: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

BEC: Coherent and Superfluid(d

iso r

d er) Anderson

insulator

Coherence =Superfluidity ?

Bose glass ?..

(from W. Ketterle website)

BEC: coherent matter wave:===> atom laser

Disordered BEC:87Rb: Ingusci (Florence,2005-2006),

Aspect (Paris,2005-2006), Ertmer (Hannover, 2005)7Li: us (Rice, 2006-)

(interaction)

Mott insulator

[superfluid/BEC]M. Greiner et al., Nature (2002)

transition to insulator~loss of coherence

a nanoscience“simulator”

Page 25: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

.

diffusive plate(rough glass,CNT film etc)

IR (1030nm)

CCD

can image both disorder potential and atoms!

How to Generate Optical Disorder: Laser Speckle

Pot

entia

l Ene

rgy

distance372 75 248 5 124 25 0 124 25 248 5 372 75

Δz

2VD

<V(r)V(r’)>:• Disorder Strength

VD tunable from0 to few kHz

• Disorder correlation length(speckle size) Δz down to~ 15 μm (limited by diff.

plate/geometry)

laser speckle is a coherent phenomenon

(incoherent lightswon’t give speckle)

•BEC radial size <~ Δz==> effective 1D disorder!

2500

2000

1500

1000

500

0

(µm

)

25002000150010005000(µm)

Page 26: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

372 75 248 5 124 25 0 124 25 248 5 372 75

BEC

trap+disorder

How to Probe it?“sit”• in-situ imaging of cloud

-- probe ground state wavefunction

“push”• excite and collective mode ---(damping) • slow push (transport)

“fly”• free expansion (after experiencing disorder)

---probe phase coherence/fluctuation•(“restricted-fly”) evolution dynamics in disorder

--- rate of expansion /transport

µ

Typical(Interacting) BEC:[Part 1 of Talk (SIT)]

N~105-106 atomsaxial size(z)~1mmradial size ~10 µmInteracting a~200aBchemical µ~kHzT<100nK

ondisorder:off

onoptical trap:

<~1s

experimental sequence:

Page 27: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

372 75 248 5 124 25 0 124 25 248 5 372 75

BEC

disorder

trap

Transport Experiment

trap?

initial (VD= 0)

VD~0.3µVD~ µ

dafter offset:

VD= 0d=1.4mmτoffset~1s

Transport Experiment 1: Trap offset slowly --- “Dragging BEC through disorder”

Page 28: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

200

400

600

800

1000

1200

1400

d 1400 μm 900 μm 500 μm 300 μm

Clo

ud C

ente

r (μm

)

VD / μ

d

372 75 248 5 124 25 0 124 25 248 5 372 75

d

Strong disorder pins BEC

Pinning of BEC by disorder

Page 29: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

VD = 60Hz VD = 300HzVD = 0Hz

τevolve=75ms

200ms

300ms

500ms

600ms

800ms

950ms

Evolution of cloud following abruptly “shaking” trap (in ~5msec)

Transport Experiment 2: Trap offset abruptly --- dipole excitation

Page 30: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

0 300 600 9000

200

400

600

-400

0

400

VD / μ

0.37 0.58 1.03

Evolution Time (ms)

(b)

VD / μ 0 0.08 0.16 0.24

Clo

ud C

ente

r (μm

)

(a)

Damping of Dipole Excitations

overdamped for VD >~0.3µ(fully pinned for VD >~µ)

dissipation/dampingsets in at very small VD

cloud moving speed~ BEC sound speed

(center)!exciting phase slips (vortices),phonons etc

372 75 248 5 124 25 0 124 25 248 5 372 75

Page 31: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Summary of transport properties

• We measure global transport <different from local-insulator probe such as Greiner>

Apparently 3 different regimes of transport:• High VD : inhibition of transport (global insulator)

“pinning point” (0.7-1µ) not universal value (dep on disorder realizationand measurement type) --- probably sensitive to high peaks in disorder?

• Small VD damps dipole excitation dissipation or dephasing? “metallic” regime? (cf: on lattice, DeMarco’07)dissipation mechanism --- “phase slips”, vortices ...??where does the energy go?

• Medium VD : overdamped transport what’s the transport mechanism? tunneling assisted?fate of this regime at T=0? --- “semiconductor” regime?

Page 32: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Time of Flight (TOF) Free Expansion

372 75 248 5 124 25 0 124 25 248 5 372 75

disorder

trap

BEC

TOF free expansion time (τ) [few ms]

Time of Flight probes phase coherence

Page 33: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Time of Flight (TOF) Free Expansion

disorder:

off

on

off

on

optical trap:

off

TOF free expansion time (τ) [few ms]

imaging cloud

<~1s

Page 34: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

τTOF

0ms

1ms

2ms

3ms

6ms

8ms

0 Hz

note: color scale all relative!

VD

Page 35: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

VD ~0.3µ

Page 36: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

VD ~µ

0ms

1ms

2ms

3ms

6ms

8ms

Page 37: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

increasing disorder...700 Hz

chemical potential µ~1 kHzτTOF

0ms

1ms

2ms

3ms

6ms

8ms

0 Hz

note: color scale all relative!

VD 200 Hz

(Random) interference “stripes”Yong P. Chen et al., PRA(2008)

Page 38: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

-500 0 500

tTOF = 8 mstTOF = 0 ms (in-situ)

z (μm) z (μm)-500 0 500

VD/μ~0.3

VD/μ~0.5

VD/μ~1.0

VD/μ=0

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

1.2

8 ms TOFIn-situ

VD / μ

Con

trast

Density Fluctuations: In-situ vs TOF

Column density(phase-contrast imaging)

Random butreproducible interference fringes

Phase coherence

Page 39: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

1400

1200

1000

800

600

400

200

0

arb

unit

5004003002001000

pixel

TOF: 4.5 ms 6 ms 9 ms 0 ms

Vd=500Hz

•not correspond to insitu disorder(though does vary with disorder realization)

•can be reproduced from shot-shot!•not sensitive to “hold time”--unlikely from random quantumfluctuation (in phase)

Features of the interference pattern

BEC phase fluctuation at t=0 ----> density fluctuation (t=τ)

n (r ) = Ψ (r ) 2 :

φ :

t=0

∂∂x

eikx( )= ikeikx

(phase ~ velocity) n (a

rb. u

nit)

25002000150010005000x (µm)

Numerics (GPE) show can be derivedand evolved from initial density fluctuation & phase coherent ground state(Clement &Sanchez-Palencia’07)

Page 40: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Disorder-inducedPhase fluctuation in BEC?

n(r) = Ψ(r) 2 :

φ :

t=0 t=τ

free expansion

∂∂x

eikx( )= ikeikx

(phase ~ velocity)

phase fluctuations also observed in elongated interacting BEC at finite TS.Dettmer et al., (W.Ertmer, Hanover), PRL2001

in our case: (quantum)phase fluctuation due to disorder instead of heating!

Lφ = Lφ (T ,<Vd >, B[a])

Page 41: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

(Reproducible) Random Interference : Matterwave Speckle

llaser(coherentlightwave)

rough surface laser speckle

tBEC(coherentmatterwave)

laser speckle

atom-laser speckle

(for electrons, speckle==> universal conductance fluctuation)

Coherence

Note: in periodic potential (lattice), interference pattern (one-shot) occurs even w/o coherence

Random potential+reproducible “fluctuation” pattern=>coherence--mesoscopic physics

“interference” stripes <---coherence• reproducible• only BEC (not seen with thermal gas)• 1D modulation<--1D disorder

Reproducible TOF fringes in disordered 87Rb BEC: eg, D. Clement et al., arXiv. 0710.1984 (2007)

n (a

rb. u

nit)

25002000150010005000x (µm)

Page 42: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Digression: Speckle and Mescoscopic Physicsconductance through small conductors (wires, rings etc.):==>Universal Conductance Fluctuation (UCF)--- phase coherence transport

and analog of speckle for electron wavefunction

•mesoscopic: phase coherence L~ sample size•cold atoms/BEC excellent lab to study mesoscopic effects!

R.Webb’84

Page 43: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Strong Disorder:

VD(all 6ms TOF)

0Hz

B~720G (interacting)

8ms TOFVD/μ1

0.6

0.3

0.1

0.03

0

0ms (in-situ)

“tight binding”limit(random Josephson)[also in Rb exp]

insulator without phase coherence

[BEC/superfluid (coherent)]

disorder

lattice(Mott)

M. Greiner et al., (2002)

loss of phasecoherence

“granular” condensate/superfluid(global insulator)

each (superfluid) “grain”: number certain; (relative) phase random==> no macroscopic phase coherence

Page 44: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Medium Disorder: SIT and Phase Coherence

B~720G (interacting)

8ms TOFVD/μ1

0.6

0.3

0.1

0.03

0

[BEC/superfluid (coherent)]

disorder

0 ms (in-situ)

(cloud still connected)

Medium disorder:• during superfluid-insulator transition• system not yet “granular”• (global) superfluidity compromised

[losing phase rigidity]

• still has phase coherence

(not granular)

how is (global) superfluid order parameter suppressed?[mean field th broken down?/role of quantum fluctuations]

Page 45: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

• Turn off the optical trap• Allow the condensate to evolve inside the

disorder• Turn off the disordered potential• (immediately) Image the cloud

Experimental Procedure

optical trap BEC

Exp#4: Fall/Flow in Disorder

Page 46: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Results• We Qualitatively compare the disordered

TOF images to a free expanding BEC

5 ms 10 ms

(no disorder)

(with disorder)[at this disorder strength strong stripes were observedin the free TOF experiment]

Page 47: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

Localized confinement (trapping)?

• we see localized confinement few areas of the BEC

• Parts are confined for very long times (~20ms)

• Majority of the cloud “flows” away

10ms evolution in disorder

17ms evolution in disorder

Page 48: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

[superfluid/superconductor]

disorder+interaction?

...

pinned solid(d

isor

der)

metal (interaction)

Bose glass

Quantum Coherence may be important even in insulators--- especially if you get them from a superfluid/superconductor

• “Bosonization” (eg. pair)

• Phase Coherence

• Phase Rigidity

3 steps:

And what about superfluidity &superconductivity?

φ φ φ φ φ

Page 49: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

interaction

disorder

what’s the global phase diagramfor a disordered & interacting Bose (or Fermi) gas?(free space or trapped)

Page 50: with tunable interaction and disorder ---emulating … › quantum › files › bnl2008.pdfdiffusive plate (rough glass, CNT film etc) IR (1030nm) CCD can image both disorder potential

• drive quantum phase transition (cf. Q.Si and D.Natelson, NPA radio show)relevant for High Tc, heavy fermions materials, superfluid-insulator

transition, nuclear matter.....

Quantum/Phase fluctuations are interesting in Physics...

• even our fate ... :

(from http://map.gsfc.nasa.gov/)

atoms

Quantum Emulator?