42
Johannes P. Seif UNSW, Sydney / SPREE Seminar 01.05.2019 WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS: Properties and Impact on Device Performance

WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Johannes P. Seif

UNSW, Sydney / SPREE Seminar – 01.05.2019

WINDOW LAYERS FOR

SILICON HETEROJUNCTION SOLAR CELLS:Properties and Impact on Device Performance

Page 2: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Plasma Enhanced Chemical Vapor Deposition (PECVD)

Silicon Heterojunction Solar Cells

2

Absorber:

n-type c-Si wafer,

cleaned and textured

PECVD: intrinsic

a-Si:H passivation

layers

PECVD: n-doped

a-Si:H

electron-collecting layer

PECVD: p-doped

a-Si:H

hole-collecting layer

PVD: front and rear

transparent

conductive oxide

(TCO)

PVD: silver (Ag)

rear electrode

Screen-printing:

Ag front electrode

c-Si

D. Adachi et al., APL, 2015, 107, 233506.

K. Yoshikawa, Nature Energy, 2017, 2(5), 17032.

Reported record efficiencies:

Std. SHJ: 25.1% [Adachi]

IBC SHJ: 26.7% [Yoshikawa]

Physical Vapor Deposition / Sputtering (PVD)

Page 3: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Challenges: optical losses

3

Parasitic absorption in the front layers:

generation of charge carriers that

recombine before being collected.

Z. C. Holman et al. IEEE J. PV, 2 (1) pp. 7-15, 2012.

Free-carrier absorption in the highly

doped TCO layer & plasmonic losses in

the metal rear reflector.

c-Si(n) a-Si:H(i)

a-Si:H(p)

a-Si:H(n)

TCO rear

TCO front

Ag rear

Lower current output of the

device, i.e. reduced short-circuit

current density (Jsc)

−2.1 mA/cm2

−0.5 mA/cm2

Ag front

c-Si(n)

Page 4: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Challenges: electrical losses

4

Recombination

- Radiative

- Auger

- Via defect states in the bulk

or at the surface

Lowers the maximal attainable

voltage, i.e. the open-circuit voltage

(Voc) and limits the voltage at the

maximum power point (fill factor, FF)

Ag front

c-Si(n) a-Si:H(i)

a-Si:H(p)

a-Si:H(n)

TCO rear

TCO front

Ag rear

Page 5: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Challenges: electrical losses

5

The Transparent Conductive Oxide (TCO)

can have an influence on the a-Si:H layers

(Schottky barriers) and the a-Si:H/c-Si

interface (increased recombination).

Ag front

S. W. Glunz et al., EU-PVSEC, Milan, Italy, 2007. M. Bivour et al., IEEE J-PV, 4, 2014.

c-Si(n) a-Si:H(i)

a-Si:H(p)

a-Si:H(n)

TCO rear

TCO front

Ag rear

c-Si(n)

Lowers the maximal attainable

voltage, i.e. the open-circuit voltage

(Voc) and limits the voltage at the

maximum power point (fill factor, FF)

Page 6: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Ag front

Motivation

6

a-Si:H(i)

a-Si:H(p)

a-Si:H(n)

TCO rear

TCO front

Ag rear

nc-Si:H(p)

nc-Si:H(n)

ALD ZnO:Al

ALD ZnO:Al

a-SiOx:H(i)c-Si(n)

Using alternative materials to mitigate losses

Goals

• Development of PECVD processes

for a-SiOx:H and nc-Si:H

• Understand their impact (material

properties and processing) on

device performance (Jsc, Voc, FF)

• Reduction of optical and

electrical losses

Atomic Layer Deposition (ALD)

Page 7: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Outline

7

Wide-bandgap materials

a-SiOx:H for passivation

band offsets and transport barriers

Alternative transparent electrodes

atomic-layer-deposited ZnO:Al

as protective layer vs. sputter-damage

Organic overlayers

spin-coated PVK for work function

engineering

Nanocrystalline layers

Deposition strategies &

device performance

Temperature coefficients

Temperature impact

on lifetime and cell performance

Page 8: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Wide-bandgap materials:a-SiOx:H – optical gain versus transport

Page 9: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Motivation

9

a-Si:H+a-SiOx:H(i)

J. P. Seif et al., JAP, 115, 2014

More transparent

front side

Jsc gain

In this section: i-layer

Variation of...

i-layer thickness,

[CO2]/[SiH4] and

device structure.

NOTE: Using a-SiOx:H only

sub-optimal passivation

Page 10: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

a-SiOx:H: optical properties

10

Increasing [CO2]/[SiH4] ratio leads to

a decrease of both:

• refractive index n and

• extinction coefficient k

• Bandgap: + 0.1 eV for

[CO2]/[SiH4] = 2.5

Linked to incorporation of

hydrogen and oxygen

T. F. Schulze, L. Korte, F. Ruske, and B. Rech,

Physical Review B 83, 165314 (2011).

ref.

J. P. Seif et al., JAP, 115, 2014

From spectroscopic ellipsometry

*

*

Page 11: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

UHV

a-SiOx:H: structural properties

• Thermal desorption spectroscopy to

analyse the layer structure

11J. P. Seif et al., JAP, 115, 2014

?

What we learn:

• Structure gets increasingly porous

with increasing CO2/SiH4 ratio

• The amount of H2 in the layer

increases with CO2/SiH4

What we observe:

• H2 effusion spectrum varies

high-T peak decreases, low-T peak

increases with CO2/SiH4

• The area under the curves

increases with CO2/SiH4

H2

O2…

H2O

Page 12: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

680

700

720

740

a-Si:H

CO2/SiH

4

0.4

0.8

2.5

imp

lie

d V

oc (

mV

)

36

37

38

J

sc (

mA

/cm

2)

5 10 15 200

20

40

60

80

100

i-layer thickness (nm)

FF

(%

)

5 10 15 200

5

10

15

20(d)(c)

(b)(a)

eff

icie

nc

y (

%)

680

700

720

740

a-Si:H

CO2/SiH

4

0.4

0.8

2.5

imp

lie

d V

oc (

mV

)

36

37

38

J

sc (

mA

/cm

2)

5 10 15 200

20

40

60

80

100

i-layer thickness (nm)

FF

(%

)

5 10 15 200

5

10

15

20(d)(c)

(b)(a)

eff

icie

nc

y (

%)

680

700

720

740

a-Si:H

CO2/SiH

4

0.4

0.8

2.5

imp

lie

d V

oc (

mV

)

36

37

38

J

sc (

mA

/cm

2)

5 10 15 200

20

40

60

80

100

i-layer thickness (nm)

FF

(%

)

5 10 15 200

5

10

15

20(d)(c)

(b)(a)

eff

icie

nc

y (

%)

680

700

720

740

a-Si:H

CO2/SiH

4

0.4

0.8

2.5

imp

lie

d V

oc (

mV

)

36

37

38

J

sc (

mA

/cm

2)

5 10 15 200

20

40

60

80

100

i-layer thickness (nm)

FF

(%

)

5 10 15 200

5

10

15

20(d)(c)

(b)(a)

eff

icie

nc

y (

%)

680

700

720

740

a-Si:H

CO2/SiH

4

0.4

0.8

2.5

imp

lie

d V

oc (

mV

)

36

37

38

J

sc (

mA

/cm

2)

5 10 15 200

20

40

60

80

100

i-layer thickness (nm)

FF

(%

)

5 10 15 200

5

10

15

20(d)(c)

(b)(a)

eff

icie

nc

y (

%)

680

700

720

740

a-Si:H

CO2/SiH

4

0.4

0.8

2.5

imp

lie

d V

oc (

mV

)

36

37

38

J

sc (

mA

/cm

2)

5 10 15 200

20

40

60

80

100

i-layer thickness (nm)

FF

(%

)

5 10 15 200

5

10

15

20(d)(c)

(b)(a)

eff

icie

nc

y (

%)

a-SiOx:H: applied to hole contact

12

Good passivation:

Implied Vocs between

720–730 mV

Variation in a-SiOx:H thickness

with various [CO2]/[SiH4] ratios

Improved current:

by up to 0.4 mA/cm2

(no clear trend with thickness

due to reduced reflection).

BUT drop in fill factor:

For a-SiOx:H cells, strongly

influenced by [CO2]/[SiH4]

ratio and thickness.

Z. C. Holman et al., IEEE JPV, 2(1), 2012

*

*

Page 13: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

a-SiOx:H permutations

13

reference a-SiOx:H below p a-SiOx:H below n

Page 14: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

20 40 60 8064

68

72

76

temperature (°C)

FF

(%

)

20 40 60 8064

68

72

76

temperature (°C)

FF

(%

)

20 40 60 8064

68

72

76

FF

(%

)

temperature (°C)

0.00 0.25 0.50 0.75-40

-30

-20

-10

0

V (V)

J (

mA

/cm

2)

0.00 0.25 0.50 0.75-40

-30

-20

-10

0

T (°C)

25 55

35 65

45 85

J (

mA

/cm

2)

V (V)

Wide-bandgap a-SiOx:H: impact on FF

14

a-SiOx:H below p

Due to:

Transport problem

associated with increased

valence band offset

(confirmed by simulation)

M. Liebhaber et al., APL, 106, 2015.J. P. Seif et al., JAP, 120, 2016

reference

Page 15: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

20 40 60 8064

68

72

76

temperature (°C)

FF

(%

)

20 40 60 8064

68

72

76

temperature (°C)

FF

(%

)

20 40 60 8064

68

72

76

FF

(%

)

temperature (°C)

Wide-bandgap a-SiOx:H: impact on FF

15

Potential gain in cells with hole

collection at the rear

reference

a-SiOx:H below p

a-SiOx:H below n

electron

contact

hole

contact

hole

contact

electron

contact

J. P. Seif et al., JAP, 120, 2016

Confirmation that

holes are the carriers

that are affected

most by the

a-SiOx:H(i) layer

Page 16: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Temperature coefficients:Ambient-temperature impact on lifetime & performance

Page 17: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Motivation

17

625

650

675

700

725

Vo

c (

mV

)

(a)

37

38

39(b)

Jsc (

mA

/cm

2)

20 40 60 8075

76

77

78

79(c)

temperature (°C)

FF

(%

)

20 40 60 80

18

20

22(d)

(

%)

1E14 1E15 1E16

2

4

6

8

10

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e(

ms

)

effective minority-carrier

density (cm-3)

Auger

Typical temperature evolution

of the cell parameters (SHJ solar cell)

Temperature coefficients (TCs) important

for operation in the field: cell T up to 90 °C

J. P. Seif, et al, IEEE J.PV., 2015.S. Kurtz, et al. Prog. PV Res. Appl. 2011

Page 18: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

1E14 1E15 1E160

5

10

15

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e (

ms

)

T (°C)

30

60

90

120

150

effective minority-carrier

density (cm-3)

1E14 1E15 1E160

5

10

15

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e (

ms

)

T (°C)

30

60

90

120

150

effective minority-carrier

density (cm-3)

1E14 1E15 1E160

5

10

15

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e (

ms

)

T (°C)

30

60

90

120

150

effective minority-carrier

density (cm-3)

1E14 1E15 1E160

5

10

15

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e (

ms

)

T (°C)

30

60

90

120

150

effective minority-carrier

density (cm-3)

1E14 1E15 1E160

5

10

15

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e (

ms

)

T (°C)

30

60

90

120

150

effective minority-carrier

density (cm-3)

Lifetime(T) measurements: passivated wafers

18

Possibly explained by change in

recombination statistics / capture

cross-sections with temperature

D. M. Goldie, American J. Material Science, 2013

Typical effective lifetime curve:

Evolution with temperature

cell parameters (Jsc, Voc, FF) a-Si:H(ip)

a-Si:H(in)

c-Si(n)

J. P. Seif, et al, IEEE J.PV., 2015.

Page 19: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

1E14 1E15 1E160

5

10

15

eff

ec

tiv

e m

ino

rity

-ca

rrie

r

life

tim

e (

ms

)

T (°C)

30

60

90

120

150

effective minority-carrier

density (cm-3)

Lifetime(T) measurements: passivated wafers

• iVoc

– Lifetime Auger-limited

weak increase of the lifetime with T

BUT shift to higher injection / voltage

• iVmpp

– Lifetime NOT Auger-limited yet

increasing the lifetime with T

AND shift to higher injection / voltage

19

voltage at

maximum power

voltage at

open circuit

Impact on temperature coefficients

of the iVmpp (i.e. iFF) and iVoc.

c-Si(n)

Typical effective lifetime curve:

Evolution with temperature

J. P. Seif, et al, IEEE J.PV., 2015.

Page 20: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Temperature coefficients (TC): impact of Voc

20

625 650 675 700 725 750-0.34

-0.32

-0.30

-0.28

-0.26

-0.24

Voc @ 25 °C (mV)

full BSF

hybrid

advanced n-PERT

n-PERT

PERC

(A) SHJ CSEM

(B) SHJ Seif J-PV15

Linear fit

TC

Vo

c (

%/°

C)

Samples from:

High-quality passivation (high Voc)

crucial for good TCs and FF!

M. A. Green, et al., J. Appl. Phys., vol. 58, 1985.

**

**

*

*

J. Haschke, et al., Energy & Environmental Science, 10, 1196-1206, 2017

Page 21: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Temperature coefficients (TC): Cells vs. Modules

Study of temperature coefficients

(TC) of different state-of-the-art

cells and comparison to modules

• TCVoc and TCJsc are similar BUT

TCVmpp is worse for modules

21J. Haschke, et al., Energy & Environmental Science, 10, 1196-1206, 2017

Additional series resistance induced

by the interconnections between the

cells in a module.

High Voc and low-resistive

interconnections are essential for

hot and sunny climates.

Page 22: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Alternative transparent electrodes:Atomic-layer-deposited ZnO:Al & Organic overlayers

Page 23: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

1E14 1E15 1E160

1

2

3

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ip

a.Ann.

a.ITO

as-depo.

1E14 1E15 1E160

1

2

3

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ipa.ITO

as-depo.

1E14 1E15 1E160

1

2

3

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ip

as-depo.

1E14 1E15 1E160

1

2

3 iV

mpp

iVoc

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ip

a.Ann.

a.ITO

as-depo.

Motivation

23

n-type wafer

with ip/ip

as-depo.:

after PECVD

a.ITO:

after sputtering

a.Ann.:

after annealing

(Permanent) damage associated

with sputtering possible

Degradation at lower injection: non-

optimal TCO work function / field effect

B. Demaurex, et al. APL

101, 171604, 2012.

M. Bivour, et al. Energy Procedia, 2013. // W. Favre, et al. APL, 2013. //

R. Roßler, et al., JAP 2013. // Seif & Demaurex et al. IEEE J-PV, 2015.

Solution: Soft deposition

technique or protective layer

Solution: TCO with an

optimized work function

Thinner a-Si:H layers at the front Higher current output (increased Jsc)

Page 24: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Interface defect density (× 108 cm-2)

1E14 1E15 1E160

1

2

3

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ip

a.Ann.

a.ITO

as-depo.

1E14 1E15 1E160

1

2

3

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ipa.ITO

as-depo.

1E14 1E15 1E160

1

2

3

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ip

as-depo.

1E14 1E15 1E160

1

2

3 iV

mpp

iVoc

minority-carrier density (cm-3)

eff

ec

tiv

e

min

ori

ty-c

arr

ier

life

tim

e (

ms

)

ip

a.Ann.

a.ITO

as-depo.

Motivation

24

(Permanent) damage associated

with sputtering possible

Degradation at lower injection: non-

optimal TCO work function / field effect

B. Demaurex, et al. APL

101, 171604, 2012.

M. Bivour, et al. Energy Procedia, 2013. // W. Favre, et al. APL, 2013. //

R. Roßler, et al., JAP 2013. // Seif & Demaurex et al. IEEE J-PV, 2015.

Solution: Soft deposition

technique or protective layer

Solution: TCO with an

optimized work function

Thinner a-Si:H layers at the front Higher current output (increased Jsc)

D. Adachi et al. APL

107, 233506, 2015.

Page 25: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

ALD ZnO:Al layer vs. sputter-damage

25

10 nm ALD ZnO

Reference (no ALD)

after ITO deposition

5 nm ALD ZnO

20 nm ALD ZnO 40 nm ALD ZnO

Effective protection against sputter

damage for ZnO layers >10 nm

Typical SHJ cell

Sputtered ITO

Higher lifetime

Lower lifetime

Seif & Demaurex et al., IEEE J-PV, 4 (6), 1387-1396, 2014.

Page 26: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Lifetime variation: a workfunction effect

26

1E14 1E15 1E160

4

8

12

16

1E14 1E15 1E160

4

8

12

16eff

ecti

ve

min

ori

ty-c

arr

ier

life

tim

e (

ms)

minority-carrier density (cm-3)

increasing

thickness

effe

ctiv

e

min

ority

-carrie

r lifetim

e (m

s)

5 nm

10 nm

20 nm

40 nm

Negative effect lower iFF Positive effect higher iFF

Work function engineering crucial for high FF values.

B. Macco et al., Semiconductor Science and Technology, 29, 2014.

Solutions: optimizing ZnO,

applying different TCO or

organic semiconductors.

Potential application on the

electron-collecting side

of the device

ALD

ZnO:Al

Page 27: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Alternative materials: Organic overlayers

27

Inverse effect on

in/in (NEGATIVE) and

ip/ip (POSITIVE)

passivated samples.

Work function engineering:

Tunable effect with variation

of the PVK doping.

J. P. Seif et al., APL, 110, 151601, 2017

poly N-vinylcarbazole (PVK)

Page 28: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Nanocrystalline layersFor silicon heterojunction solar cells

Page 29: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Motivation

29

Benefits of nanocrystalline materials

• Optically: indirect bandgap of c-Si

– better response at short wavelengths

• Electrically: higher doping efficiency and

improved transport properties

– suppression of Schottky barriers

improved contact resistivity

Vetterl et al., Sol.

En. Mat., 2000

Ghahfarokhi et al., APL, 2014 //

Watahiki et al., APExpr., 2015.

Requirements for PECVD nc-Si layers

1. Fast nucleation (thicknesses ~10–20 nm)

2. Sufficiently high crystallinity

3. ‘Soft’ deposition for pristine passivation

Page 30: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

layer crystallinity/

nucleation speed

application in

devicesmethod

Strategies for nanocrystalline layers

30

CO2 plasma treatments

a-SiOx:H buffer layers

SiF4 nucleation layers

SiH4 Si2H6

H2 D2

Temperature

Higher deposition frequency (VHF)

Low frequency and higher pressure

J. P. Seif et al., IEEE JPV, 6 (5), 1132-1140, 2016

Page 31: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Deposition regime nc-Si:H(X) positionVoc

(mV)

Jsc

(mA/cm2)

FF

(%)

η

(%)

81.36 MHz (2 mbar) p front717

[719]

37.7

[36.8]

72.6

[72.7]

19.6

[19.2]

13.56 MHz (SiF4),

40.68 MHz (> 2 mbar)

iSiF4 (nucl.)

pfront

718

[718]

36.0

[37.1]

78.4

[76.7]

20.3

[20.4]

13.56 MHz (> 2 mbar)p

n

rear 720 36.5 79.2 20.8

front 719 37.0 78.7 20.9

nc-Si:H(n or p): device results

31

nc-Si:H(n) or nc-Si:H(p) layers implemented into SHJ devices

[reference values]

600 900 12000

20

40

60

80

100

600 900 1200

20

40

60

80

100

EQ

E a

nd

10

0-R

(%

)

Wavelength (nm)

IQ

E (

%)

J. P. Seif et al., IEEE JPV, 6 (5), 1132-1140, 2016

All cellsTextured, 1-5 Ωcm, nominal

240 µm, n-type FZ, 2 × 2 cm2,

with screen-printed Ag front

contacts and full Ag contact

at the rear.

Page 32: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

nc-Si:H(n or p): device results

32

Gain in FF

up to 2% (abs.)

Gain in Jsc

up to ~ 1 mA/cm2

Conversion efficiencies

up to 20.9%

Standard

2-side-contacted

SHJ (full area)

Rear-contacted

SHJ (reduced

contacting area)

Achieved with simple,

industry-compatible

process using

standard gases.

Stable Voc values

of ~ 720 mV

Requirements

1. Fast nucleation

2. High crystallinity

3. ‘Soft’ deposition

Readily applicable without

additional costs.

J. P. Seif et al., IEEE JPV, 6 (5), 1132-1140, 2016

Page 33: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Tunnel-IBC

Rear-contacted cells: nc-Si:H(n and p) inside

33A. Tomasi et al., Nature Energy, 2, 17062, 2017

Conventional

IBC-SHJ

Two shadow masks required:

One for n- & one for p-layer.

Page 34: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Rear-contacted cells: nc-Si:H(n and p) inside

34A. Tomasi et al., Nature Energy, 2, 17062, 2017

• Efficient interband-tunneling

contact for electrons.

• Minimized resistive losses (nc-Si)

and optimal carrier selectivity (e-)

• Low lateral conductance to

prevent shunts, thanks to grain

boundaries and incubation layer

e- h+

Page 35: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Rear-contacted cells: nc-Si:H(n and p) inside

35A. Tomasi et al., Nature Energy, 2, 17062, 2017

e- h+

Certified efficiency

Area = 9.00 cm2 (da)

Jsc = 40.65 mA.cm−2

Voc = 728.49 mV

FF = 76.36%

η = 22.61%

Page 36: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Conclusions

Wide-bandgap oxides

Electrons may, but

holes should not be collected

through the window-layer

rear hole collection

gain in Jsc w/o losses in FF

+ 0.4 mA/cm2 shown

Alternative transparent electrodes

Atomic-layer-deposited ZnO:Al

- for effective sputter-damage

protection and promising

electron-collecting layer

potential gain in Jsc and FF

Nanocrystalline layers can help improve

both optical and electrical device performance

gain in Jsc and FF

+1 mA/cm2 and +2% shown

Ambient-temperature impact

• increasing lifetime with temperature

• TCVoc depends on Voc, device

structure and materials

• Modules need high Vocs and

low-resistive cell interconnections

Alternative transparent

electrodes

Organic overlayers

- work function engineering for

improved contacts

potential gain in FF

Page 37: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Faculty of Engineering

School of Photovoltaic and Renewable Energy Engineering

Page 38: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Why PECVD?

• Common in industry

• High throughput

• Wider parameter space (temperature,

pressure, gas ratios,...)

• Possibility to use other precursor gases

(vary growth mode and material properties)

38

Passivating contacts

with Transition Metal Oxides

(TMO) deposited by PECVD

State-of-the-art deposition for TMOs

• Atomic Layer Deposition

• Sputtering

Why TMOs?

• Relatively wide band gaps, yet small

conduction and valence band offsets

• Promising materials for electron-

(e.g. TiOx) and hole-collection (e.g. WOx)

• Fixed charges for passivation

Our approach

PECVD

Johannes P. Seif, Anh Le, and Ziv Hameiri

Challenges?

• Uniformity of thin layers

• Thermal stability

• Additional passivation layer needed?

SUNRISE GLOBAL SOLAR ENERGYPartners:

Page 39: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

39

Modifications of the AK-800

Delivery of new precursors

and first TiOx depositions

Johannes P. Seif, Anh Le, and Ziv Hameiri

Page 40: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Fourier-Transform Infrared

Spectroscopy (FTIR)

632 nm

~ 2.4

Thickness: 7.2 nm

Refractive index: 2.4 @ 632 nm

40

TMO depositions: First results

Spectroscopic Ellipsometry

Johannes P. Seif, Anh Le, and Ziv Hameiri

Page 41: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

41

Other ongoing projects:

With national (incl. UNSW) and

international partners

• Metal work function impact on recombination

(ANU and KAUST)

• Temperature dependence on cell performance

(KAUST)

• Hydrogen migration in c-Si wafers

(UNSW, Phill Hamer)

• Defect parameters of passivated interfaces

(UNSW, Michelle Vaqueiro Contreras)

• Cell perimeter recombination

(UNSW)

Page 42: WINDOW LAYERS FOR SILICON HETEROJUNCTION SOLAR CELLS ...€¦ · Challenges: optical losses 3 Parasitic absorption in the front layers: generation of charge carriers that recombine

Thanks to…

Christophe Ballif & Stefaan De Wolf

PVLAB and CSEM (SHJ groups) and external colleagues:

Nicolas Badel, Loris Barraud, Bénédicte Demaurex, Antoine Descoeudres,

Luc Fesquet, Miha Filipič, Jonas Geissbühler, Niels Holm, Silvia Martin de Nicolas,

Deneb Menda, Gizem Nogay, Bertrand Paviet-Salomon,

Yannick Riesen, Andrea Tomasi

Meyer Burger Research

The funding partners:

European Comission (FP7 projects: 20 plμs, HERCULES, and CHEETAH),

EuroTech Universities Alliance, Swiss Commission for Technology and Innovation (CTI),

Axpo Naturstrom Fonds, Office Fédéral de l’Energie (OFEN),

Fonds National Suisse (FNS), DOE project FPace II

Thank you for your attention!