Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

Embed Size (px)

Citation preview

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    1/25

    WIND ENGINEERING BLUFF BODY

    AERODYNAMICSLecture 1

    MEC 4459

    Department of Mechanical and Aerospace Engineering

    Wind environment and engineering

    Mr David Burton

    Tel: +61 3 990 55865

    [email protected]

    mailto:[email protected]:[email protected]
  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    2/25

    `

    The following lectures have been updated

    (please download again!);

    Lecture 2: Slide 8

    Lecture 3: Slide 20-21, 27, 33

    Lecture 5: Slide 5

    Update

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    3/25

    `

    Bernoullis equation

    Bluff bodies

    Pressure coefficients Forces and moments

    Drag coefficients

    2 dimensional objects

    Reynolds Number Effects

    Lecture Overview

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    4/25

    `

    What is a bluff body? Blunt / bluff geometry

    Separated flow

    Drag forces dominated by pressure drag

    Large wake

    Contrast to airfoil /streamlined body

    What are the relevant parameters? Body forces (force coefficientspeak and average)

    Local pressures (surface pressures, distribution, peak andaverage)

    Flow regime (spatial variation velocity, turbulence)

    What affects these parameters (non-exhaustive)? Body geometry (including location of measurement point)

    Wind direction

    Reynolds Number

    Jensen Number (boundary layer profile)

    Turbulence Intensity (u, v and w)

    Turbulence Length Scale (referenced to the body geometry)

    Bluff Bodies

    Top: http://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htm

    Bottom: http://www.dept.aoe.vt.edu/~devenpor/aoe3054/manual/expt1/fig7.jpg

    http://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htmhttp://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htmhttp://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htmhttp://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htmhttp://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htmhttp://www.cg.tuwien.ac.at/courses/Visualisierung/2007-2008/Beispiel2/banova_alsallakh/index.htm
  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    5/25

    `

    Bluff Bodies (examples)

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    6/25

    `

    Bluff Bodies (examples)

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    7/25

    `

    Bernoullis Equation (steady, irrotational, inviscid

    and incompressible)

    Bernoullis equation

    Static pressure

    Dynamic pressure

    Hydrostatic

    pressure

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    8/25

    `

    Pressure Coefficient:

    , = ,

    ,

    :pressure (at point 1)

    ,: reference static pressure

    ,=

    : density of fluid (air ~ 1.2kg/m^3 in Melbourne)

    Pressure coefficient is a way of expressing the pressure at a point(usually at a surface) independently of the flow properties

    Pressure Coefficients

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    9/25

    `

    Ignoring gravity effects then

    for irrotationalflow:

    +1

    2 = +

    1

    2

    , =

    ,

    , = 1

    Bernoullis equation

    tagnation point

    = 0 , = 1

    = , = 0

    > , < 0

    Only holds for

    irrotational /inviscidflows

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    10/25

    `Stagnation pressure

    FLOW AROUND A THREE-DIMENSIONAL BLUFF BODY S. Krajnovic and L. Davidson, 9TH INTERNATIONAL SYMPOSIUM ON FLOW

    VISUALISATION, 2000

    Wind Direction

    Wind Direction

    Pressure Iso-surfaces Surface Pressure Coefficients

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    11/25

    `

    Force Coefficients:

    , =

    ,

    In wind engineering drag forces areconventionally resolved indirection parallel (drag force),perpendicular (side and lift force)to the direction of the wind.

    However, note it is often moreconvenient to reference the forcecoefficients to the body axis of themodel (or structure)

    Force Coefficients

    D

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    12/25

    `Force Coefficients

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    13/25

    `Moment Coefficients

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    14/25

    `

    Irrotational flow:

    Cylinder Flow

    Batchelor, G. K. (1970). An Introduction to Fluid Mechanics, Cambridge University Press

    = 1

    , = 1 4()

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    15/25

    `Cylinder Flow

    Batchelor, G. K. (1970). An Introduction to Fluid Mechanics, Cambridge University PressHeat Transfer by A. Mills

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    16/25

    `Cylinder / Sphere Drag Coefficient

    http://www.intechopen.com/source/html/16897/media/image

    2.jpeg-W. H. Bell, 1983 turbulence vs drag-some future

    consideration, Ocean Engng, 10 1 4763 .

    http://www.intechopen.com/source/html/16897/media/image2.jpeghttp://www.intechopen.com/source/html/16897/media/image2.jpeghttp://www.intechopen.com/source/html/16897/media/image2.jpeghttp://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/books/wind-tunnels-and-experimental-fluid-dynamics-research/the-importance-of-turbulence-reduction-in-assessment-of-wind-tunnel-flow-quality#B6http://www.intechopen.com/source/html/16897/media/image2.jpeghttp://www.intechopen.com/source/html/16897/media/image2.jpeghttp://www.intechopen.com/source/html/16897/media/image2.jpeg
  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    17/25

    `

    Curved surfaces

    Coanda effect

    Adverse pressuregradient (positive

    pressure gradient

    in flow direction)

    Flow Separation

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    18/25

    `

    Where there is a significant

    gradient of velocity this

    layer is termed a shear

    layer A boundary layer is an

    attached shear layer

    Can also have a free shear

    layer

    Shear Layers

    Boundary-Layer Theory, Herrmann Schlichting, K. Gersten, Klaus Gersten, p663

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    19/25

    `Sharp edged body

    Melbourne, B. Lecture Notes, W Eng

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    20/25

    `Rectangular bodies (2D)

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    21/25

    `Force Coefficients and Reynolds

    Number

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    22/25

    `Force Coefficients and Reynolds

    Number

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    23/25

    `Force Coefficients and Reynolds

    Number

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    24/25

    `Drag Coefficients 2d

    Scruton, Introduction to wind effects on structures

  • 8/11/2019 Wind Engineering - Lecture 1 - Bluff Body Aerodynamics1

    25/25

    `Drag Coefficients 2d

    Scruton, Introduction to wind effects on structures