72
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) HEP-GR Colloquium, DAMTP, Cambridge, January 30, 2012 1 WMAP

Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Wilkinson Microwave Anisotropy Probe (WMAP) Observations:

The Final ResultsEiichiro Komatsu (Max-Planck-Institut für Astrophysik)HEP-GR Colloquium, DAMTP, Cambridge, January 30, 2012

1

WMAP

Page 2: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP at Lagrange 2 (L2) PointJune 2001:

WMAP launched!

February 2003:The first-year data release

March 2006:The three-year data release

March 2008:The five-year data release

January 2010:The seven-year data release

2

used to be

September 8, 2010:WMAP left L2

December 21, 2012:The final, nine-year data release

Page 3: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Why am I here?

• Why should HEP/GR people care about temperature and polarization maps of the sky measured in microwave bands?

• Because:

1. They tell us something about inflation in very high energy scale

2. They constrain physics beyond the SM: e.g., the effective number of relativistic degrees of freedom

3

Page 4: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

9-year Science Highlights

1. Single-field slow-roll inflation continues to be supported by the data, with much restricted range of the parameter space

2. The joint constraint on the helium abundance and the number of relativistic species from CMB strongly supports Big Bang nucleosynthesis

4

Page 5: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP9+ACT+SPT

WMAP9+ACT+SPT+BAO+H0

5

Page 6: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Bispectrum Results• fNLlocal = 37±20 (68% CL)

• after subtracting off the low-redshift ISW-lensing bias of ΔfNLlocal=2.6

• fNLequilateral = 51±136 (68% CL)

• fNLorthogonal = –245±100 (68% CL)

• more later! 6

We do not claim detection of any forms of non-Gaussianity

k1

k2

k3

Page 7: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

72Helium Abundance by Mass Fraction

Effe

ctiv

e N

umbe

r of

Rel

ativ

istic

Deg

rees

of

Fre

edom

at

z~10

90 WMAP9+ACT+SPT+BAO+H0

WMAP9+ACT+SPT

BBN prediction

Page 8: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP Science Team

• C.L. Bennett

• G. Hinshaw

• N. Jarosik

• S.S. Meyer

• L. Page

• D.N. Spergel

• E.L. Wright

• M.R. Greason

• M. Halpern

• R.S. Hill

• A. Kogut

• M. Limon

• N. Odegard

• G.S. Tucker

• J. L.Weiland

• E.Wollack

• J. Dunkley

• B. Gold

• E. Komatsu

• D. Larson

• M.R. Nolta

• K.M. Smith

• C. Barnes

• R. Bean

• O. Dore

• H.V. Peiris

• L. Verde

8

Page 9: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP 9-Year Papers

• Bennett et al., “Final Maps and Results,” submitted to ApJS, arXiv:1212.5225

• Hinshaw et al., “Cosmological Parameter Results,” submitted to ApJS, arXiv:1212.5226

9

Page 10: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

From “Cosmic Voyage”

Page 11: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

CMB: The Farthest and Oldest Light That We Can Ever Hope To Observe Directly

•When the Universe was 3000K (~380,000 years after the Big Bang), electrons and protons were combined to form neutral hydrogen. 11

Page 12: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)
Page 13: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Analysis: 2-point Correlation

• C(θ)=(1/4π)∑(2l+1)ClPl(cosθ)• How are temperatures on two

points on the sky, separated by θ, are correlated?

• “Power Spectrum,” Cl

– How much fluctuation power do we have at a given angular scale?

– l~180 degrees / θ

13

θCOBE

WMAP

Page 14: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

COBE/DMR Power SpectrumAngle ~ 180 deg / l

Angular Wavenumber, l14

~9 deg~90 deg(quadrupole)

Page 15: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

COBE To WMAP

• COBE is unable to resolve the structures below ~7 degrees

• WMAP’s resolving power is 35 times better than COBE.

• What did WMAP see?

15

θCOBE

WMAP

θ

Page 16: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP 9-year Power SpectrumA

ngul

ar P

ower

Spe

ctru

m Large Scale Small Scale

about 1 degree

on the skyCOBE

16

Page 17: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

The Cosmic Sound Wave

• “The Universe as a Miso soup”

• Main Ingredients: protons, helium nuclei, electrons, photons

• We measure the composition of the Universe by analyzing the wave form of the cosmic sound waves. 17

Page 18: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

9-year temperature Cl

18

Page 19: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

7-year temperature Cl

19

Page 20: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

What changed?• An improved analysis! The error bar decreased by more

than expected for the number of years (9 vs 7). Why?

• We now use the optimal (minimum variance) estimator of the angular power spectrum.

• Previously, we estimated Cl for low-l (l<600) and high-l (l>600) separately. No weighting for low-l and inverse-noise-weighting for high-l.

• This results in a sub-optimal estimator near l~600.

• We now use the optimal (S+N)–1 weighting.20

Page 21: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Vari

ance

(su

b-op

timal

) / V

aria

nce

(opt

imal

)

21

Page 22: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

9-year (sub-optimal) vs 9-year (optimal)

22

Page 23: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

23

Page 24: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Adding the small-scale CMB data

• Atacama Cosmology Telescope (ACT)

• a 6-m telescope in Chile, led by Lyman Page (Princeton)

• Cl from Das et al. (2011)

• South Pole Telescope (SPT)

• a 10-m telescope in South Pole, led by John Carlstrom (Chicago)

• Cl from Keisler et al. (2011); Reichardt et al. (2012)These data are not the latest [Story et al. (2012) for SPT; Das et al. (2013) for ACT]

24

Page 25: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

South Pole Telescope (SPT)

Atacama Cosmology Telescope(ACT)

25

1000

100

Page 26: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Adding the small-scale CMB tends to prefer a lower power at high

multipoles than predicted by the WMAP-only fit (~1σ lower)

26

Page 27: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

The number of “neutrino” speciestotal radiation density:

photon density:

neutrino density:

neutrino+extra species:

where

27

Page 28: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

What the extra radiation species does

• Extra energy density increases the expansion rate at the decoupling epoch.

• Smaller sound horizon: peak shifts to the high l

• Large damping-scale-to-sound-horizon ratio, causing more Silk damping at high l

• Massless free-streaming particles have anisotropic stress, affecting modes which entered the horizon during radiation era.

28

Page 29: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

“Neutrinos” have anisotropic stress

• This changes metric perturbations as

0-0tr(i-j)

• This changes the early Integrated-Sachs-Wolfe effect (ISW)29

Page 30: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

30

Page 31: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

31

Page 32: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

32

Page 33: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

33

Page 34: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

34

Page 35: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Effect of helium on ClTT

• We measure the baryon number density, nb, from the 1st-to-2nd peak ratio.

• For a given nb, we can calculate the number density of electrons: ne=(1–Yp/2)nb.

• As helium recombined at z~1800, there were even fewer electrons at the decoupling epoch (z=1090): ne=(1–Yp)nb.

• More helium = Fewer electrons = Longer photon mean free path 1/(σTne) = Enhanced Silk damping

35

Page 36: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

36

Page 37: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

37

Page 38: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

38Helium Abundance by Mass Fraction

Effe

ctiv

e N

umbe

r of

Rel

ativ

istic

Deg

rees

of

Fre

edom

at

z~10

90 WMAP9+ACT+SPT+BAO+H0

WMAP9+ACT+SPT

Simultaneous Fit to

Helium and Neff

Results consistent with the BBN prediction

BBN prediction

Page 39: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Implications for Inflation

• Two-point function analysis: the tensor-to-scalar ratio, r, and the primordial spectral tilt, ns

• Three-point function analysis: are fluctuations consistent with Gaussian?

39

Page 40: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP 9-year Power SpectrumA

ngul

ar P

ower

Spe

ctru

m Large Scale Small Scale

about 1 degree

on the skyCOBE

40

Page 41: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Getting rid of the Sound WavesA

ngul

ar P

ower

Spe

ctru

m

41

Primordial Ripples

Large Scale Small Scale

Page 42: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

The Early Universe Could Have Done This InsteadA

ngul

ar P

ower

Spe

ctru

m

42

More Power on Large Scales

Small ScaleLarge Scale

Page 43: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

...or, This.A

ngul

ar P

ower

Spe

ctru

m

43

More Power on Small Scales

Small ScaleLarge Scale

Page 44: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

...or, This.A

ngul

ar P

ower

Spe

ctru

m

44

Small ScaleLarge Scale

Parametrization: l(l+1)Cl ~ lns–1

And, inflation predicts ns~1

Page 45: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Gravitational waves are coming toward you... What do you do?

•Gravitational waves stretch space, causing particles to move.

45

Page 46: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Two Polarization States of GW

• This is great - this will automatically generate quadrupolar anisotropy!

46

Page 47: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

From GW to CMB Anisotropy

47

Page 48: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

From GW to CMB Anisotropy

48

Redshift

Redshift

Blue

shift

Blue

shift

Redshift

RedshiftBlu

eshif

tBlues

hift

Page 49: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

“Tensor-to-scalar Ratio,” r

r = [Power in Gravitational Waves]

/ [Power in Gravitational Potential]

Theory of “Cosmic Inflation” predicts r <~ 1– I will come back to this in a moment

49

Page 50: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

WMAP9+ACT+SPT

WMAP9+ACT+SPT+BAO+H0

50

Page 51: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

What do “BAO” and “H0” do?

• BAO and H0 both measure distances in a low-z universe. This helps determine the matter density independent of ns. (In the temperature power spectrum, there is a mild correlation between them.) 51

Page 52: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

R2 Inflation [Starobinsky 1980]

• This theory is conformally equivalent to a theory with a canonically normalized scalar field with a potential given by

where

52

[very flat potential for large Ψ –> smaller r]

Page 53: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Bispectrum

• Three-point function!

• Bζ(k1,k2,k3) = <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)F(k1,k2,k3)

53

model-dependent function

k1

k2

k3

Primordial fluctuation ”fNL”

Page 54: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

MOST IMPORTANT

Page 55: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Probing Inflation (3-point Function)• Inflation models predict that primordial fluctuations are very

close to Gaussian.

• In fact, ALL SINGLE-FIELD models predict a particular form of 3-point function to have the amplitude of fNL=0.02.

• Detection of fNL>1 would rule out ALL single-field models!

• No detection of 3-point functions of primordial curvature perturbations. The 68% CL limit is:

• fNL = 37 ± 20 (1σ)

• The WMAP data are consistent with the prediction of simple single-field inflation models: 1–ns≈r≈fNL 55

Page 56: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Komatsu&Spergel (2001)

56

Page 57: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

57

Page 58: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

FIELD INTERACTION

• fNLequilateral = 51±136 (68% CL)

• no evidence whatsoever

58

Page 59: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

“Orthogonal” Shape

• It’s a tricky shape: negative in the folded limit; positive in the equilateral limit

59

Page 60: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

“Orthogonal” Shape

• It’s a tricky shape: negative in the folded limit; positive in the equilateral limit

60

• fNLorthogonal = –245±100 (68% CL)

• Statistically, it is a 2.45σ result.

Don’t jump: we do not claim that this is a detection,

while this is an intriguing result. Now, look at the null tests.

Page 61: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

A long story short:

• A channel-to-channel consistency test is a little bit worrying, but we did not find an obvious systematics which can make this signal go away. Wait for Planck!

61

Page 62: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Statistical Anisotropy• Is the power spectrum anisotropic?

• P(k) = P(|k|)[1+g*(cosθ)2]

• This makes shapes of temperature spots anisotropic on the sky.

• Statistically significant detection of g*

• Is this cosmological?

• The answer is no: the same (identical!) effect can be caused by ellipticity of beams

62

Page 63: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

63

Page 64: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

This is coupled with the scan pattern

• WMAP scans the ecliptic poles many more times and from different orientations.

• Thus, the averaged beam is nearly circular in the poles.

• The ecliptic plane is scanned less frequently and from limited orientations.

• Thus, the averaged beam is more elliptical in the plane.

• This is exactly what the anisotropic power spectrum gives.

64

Page 65: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Creating a map with a circular beam

• We create a map in which the elliptical beam shape is deconvolved. The resulting map has an effective circular beam.

• This map is not used for cosmology, but used for the analysis of foregrounds and statistical anisotropy.

65

Page 66: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

• A deconvolved image of a supernova remnant “Tau A” at 23 GHz

• Deconvolved image is more circular, as expected

• Deconvolved map does not show the anisotropic power spectrum anymore!

-5 5

Beam Sym. Map Residuals

-5 5

Normal Map Residuals

0 100

Beam Sym. Map

0 100

mK

mK

mK

mK

Normal Map

66

Page 67: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

a”

Summary• The minimal, 6-parameter ΛCDM model continues to

describe all the data we have

• No significant deviation from the minimal model

• Rather stringent constraints on inflation models

• Strong support for Big Bang nucleosynthesis with the standard effective number of neutrino species

• Anisotropic power spectrum is due to elliptical beams

...“(Hinshaw et al. 2012)

67

Page 68: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] +τNL[Pζ(k1)Pζ(k2)(Pζ(|k1+k3|)+Pζ(|k1+k4|))+cyc.]}

The consistency relation, τNL≥(6/5)(fNL)2, may not be respected – additional test of

multi-field inflation!

k3

k4

k2

k1

gNL

k2

k1

k3

k4

τNL 68

Page 69: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

The 4-point vs 3-point diagram

• The current limits from WMAP 9-year are consistent with single-field or multi-field models.

• So, let’s play around with the future.

69ln(fNL)

ln(τNL)

77

3.3x104

(Smidt et al. 2010)

Page 70: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Case A: Single-field Happiness

• No detection of anything after Planck. Single-field survived the test (for the moment: the future galaxy surveys can improve the limits by a factor of ten).

ln(fNL)

ln(τNL)

10

600

70

Page 71: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Case B: Multi-field Happiness• fNL is detected. Single-

field is dead.

• But, τNL is also detected, in accordance with the Suyama-Yamaguchi inequality, as expected from most (if not all - left unproven) of multi-field models.

ln(fNL)

ln(τNL)

600

7130

Page 72: Wilkinson Microwave Anisotropy Probe (WMAP) Observationskomatsu/presentation/wmap9... · 2013. 1. 30. · The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik)

Case C: Madness• fNL is detected. Single-

field is dead.

• But, τNL is not detected, inconsistent with the Suyama-Yamaguchi inequality.

• (With the caveat that this may not be completely general) BOTH the single-field and multi-field are gone.ln(fNL)

ln(τNL)

30

600

72