12
Stretched ActiveActive Application Centric Infrastructure (ACI) Fabric May 12, 2015 Abstract This white paper illustrates how the Cisco Application Centric Infrastructure (ACI) can be implemented as a single fabric stretched between two data centers, with the ability to optimally route traffic to and out of the data center where the resource is located. In today’s data centers, uptime and availability is paramount. IT organizations and the applications they provide are becoming more vital for the overall business they are serving. Application owners are demanding a service level agreement of ‘five nines’ or better availability. Another key requirement is moving compute workloads between virtualized hosts within and between data centers all while still providing service to customers.

White Paper - Stretched Active-Active ACI Fabric - WWT

Embed Size (px)

Citation preview

Page 1: White Paper - Stretched Active-Active ACI Fabric - WWT

 

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric  

   

 

May  12,  2015                                                    Abstract  This  white  paper  illustrates  how  the  Cisco  Application  Centric  Infrastructure  (ACI)  can  be  implemented  as  a  single  fabric  stretched  between  two  data  centers,  with  the  ability  to  optimally  route  traffic  to  and  out  of  the  data  center  where  the  resource  is  located.   In  today’s  data  centers,  uptime  and  availability  is  paramount.   IT  organizations  and  the  applications  they  provide  are  becoming  more  vital  for  the  overall  business  they  are  serving.   Application  owners  are  demanding  a  service  level  agreement  of  ‘five  nines’  or  better  availability.  Another  key  requirement  is  moving  compute  workloads  between  virtualized  hosts  within  and  between  data  centers  all  while  still  providing  service  to  customers.  

Page 2: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    2  

World  Wide  Technology  Advanced  Technology  Center  WWT  designed,  architected  and  implemented  this  ACI  Active/Active  Stretched  Fabric  use  case  in  its  Advanced  Technology  Center  (ATC).  

The  ATC  represents  a  significant  investment  in  technology  infrastructure  with  hundreds  of  racks  of  networking,  compute  and  storage  products  used  to  demonstrate  and  deploy  integrated  architectural  solutions  for  WWT  customers,  partners  and  employees.  

Powered  by  a  multi-­‐tenant  private  cloud  infrastructure,  the  ATC  is  organized  into  four  groups  of  labs  for  research  and  development,  testing,  training  and  integration.  Each  lab  addresses  different  phases  for  the  introduction,  evolution  and  lifecycle  of  technology  products.  

The  ATC  ecosystem  is  defined  by  the  combined  experience  of  WWT  Consulting  Systems  Engineers,  IT  Operations  and  Professional  Services  Engineers,  along  with  the  knowledge  of  peers  from  manufacturing  partners  and  customers.  This  ecosystem  of  organizations  provides  thought  leadership  from  a  multi-­‐  disciplined  technology  perspective  aligned  by  the  common  goal  of  integrating  the  right  technology  solutions  to  address  and  resolve  real-­‐world  technical  and  business  challenges.  

For  this  use  case,  WWT  architects,  engineers  and  programmers  used  the  Next  Generation  Data  Center  (NGDC)   environment.   The  NGDC  environment  is  a  holistic  approach  to  help  customers  realize  the  reality  of   distributed  data  center,  data  center  automation/orchestration,  and  hybrid  cloud  designs.      

Cisco  Partnership  This  white  paper  is  the  result  of  the  partnership  between  WWT  and  Cisco  Systems  in  developing  solutions  for  the  next  generation  in  data  centers.  The  Cisco  Application  Centric  Infrastructure  (ACI)  is  designed  to  manage  a  system  of  network  switches  and  compute  resources  through  redundant,  Application  Policy  Infrastructure  Controllers  (APICs).  The  network  fabric  is  managed  to  support  specific  application  requirements.  

Page 3: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    3  

Uptime  and  Availability  Challenge  Active/Active  data  centers  are  implemented  in  several  architectures.   The  most  common  design  involves  splitting  or  providing  the  application  or  service  in  two  different  data  centers.  This  approach  uses  a  Global  Site  Load  Balancer  (GSLB)  to  direct  the  client  to  the  correct  data  center  that  contains  the  application  host  based  on  DNS  load  balancing  policy.  

 There  are  few  challenges  with  this  approach:  

 1. The  DNS  time  to  live  (TTL)  value  must  time  out  before  the  user  will  be  re-­‐directed  to  the  new  location  (data  center)  for  the  application.  

2. Layer  2  extension  is  required  between  the  data  centers  and  a  solution  for  Source  Network  Address  Translation  (SNAT).  

3. Layer  2  extension  has  its  own  challenges  including  traffic  hair-­‐pinning  and  asymmetrical  traffic  patterns.  

Further  detail  about  these  challenges  is  covered  in  the  appendix  on  using  GLSB  for  data  center  traffic  re-­‐  direction.  

The  Active  /  Active  ACI  Stretched  fabric  architecture  addresses  these  challenges  by  using  policy  that  spans  between  the  data  centers.      

Networking  Overlays  In  the  last  five  years,  there  have  been  a  number  of  overlay  protocols  implemented  to  address  the  sub-­‐  optimal  traffic  routing  in  an  active/active  data  center  environment.  A  network  overlay  typically  provides  either  a  Layer  2  or  Layer  3  service.  Some  of  the  common  data  center  Layer  2  network  overlays  are  FabricPath  (TRILL),  OTV,  and  VXLAN.   Layer  3  overlays  consist  of  GRE,  BGP  MPLS  VPNs,  and  LISP.   The  overlay  provides  a  basic  service  of  encapsulating  a  frame  or  packet  and  transmitting  over  the  underlay  network  to  the  remote  overlay  tunnel  endpoint.   When  it  reaches  the  remote  overlay  tunnel  endpoint,  it  is  un-­‐encapsulated  and  forwarded.   The  overall  goal  is  to  provide  a  service  (layer  2/3)  that  would  not  be  native  to  the  Ethernet/IP  underlying  network  all  while  hiding  the  underlay  to  the  two  endpoints  communicating  over  the  overlay  network.  OTV  is  a  commonly  deployed  overlay  to  connect  two  data  centers  at  layer  2  which  allows  for  in  service  workload  mobility.   LISP  is  a  layer  3  overlay  that  fixes  some  of  the  challenges  of  inbound  routing  correction  described  previously.  

Page 4: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    4  

Cisco  Application  Centric  Infrastructure  Overview  The  Cisco  Application  Centric  Infrastructure  (ACI)  fabric  consists  of  three  components:  a  controller,  policy  and  network  infrastructure.  The  central  controller  -­‐  the  Application  Policy  Infrastructure  Controller  (APIC),  implements  network  policy  for  forwarding  packets  on  switches  in  a  spine  and  leaf  architecture.   The  APIC  abstracts  the  network  infrastructure  and  provides  a  central  policy  engine.  Configuration  of  the  fabric  and  implementation  of  policy  is  through  the  northbound  REST  API  interface  of  the  APIC.   Multiple  controllers  are  attached  to  separate  leaf  switches  for  availability.  Configuration  changes  made  on  one  controller  are  communicated  and  stored  across  all  controllers  in  the  fabric.  

Switches  serve  either  a  spine  or  leaf  role.   Leaf  switches  can  also  have  additional  sub-­‐roles  within  the  ACI  fabric;  border  or  transit  leaf.   A  border  leaf  switch  has  a  Layer  3  connection  to  external  networks.  Recent  releases  of  ACI  software  support  disjointed  leaf  switches,  leaf  switches  that  do  not  have  connections  to  every  spine  within  the  fabric.  A  disjointed  leaf  can  be  a  transit  leaf,  connecting  two  spines  located  in  different  physical  locations.  By  connecting  the  two  spines  together  with  the  transit  leafs,  the  two  locations  are  controlled  with  a  single  policy  by  a  cluster  of  APICs  distributed  across  both  locations.   In  addition  to  supporting  transit  leaf  switches,  the  40  Gigabit  Long-­‐range  QSFP  optics  provide  connectivity  of  up  to  30  kilometers.  

 This  topology  is  illustrated  in  the  following  figure.  

 Figure  4  -­‐  Transit  Leaf  Topology  

 

 

Page 5: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    5  

   

Design  Overview  This  design  demonstrates  how  a  single  ACI  fabric  can  be  implemented  in  separate  data  center  environments  with  a  single  administrative  network  policy  domain.   Bare-­‐metal  hosts  and  hosts  running  hypervisors  for  virtualization  (Microsoft  Hyper-­‐V  and  VMWare  ESXi)  are  defined  and  managed  by  the  APICs  regardless  of  their  physical  connectivity.  

The  IP  address  ranges  for  the  Bridge  Domains  and  EPGs  are  also  available  anywhere  within  the  fabric.  Normal  ACI  forwarding  policy  can  be  applied  along  with  a  single  point  of  management  for  both  physical  sites  from  the  cluster  of  APICs.  

 Figure  5  –  ACI  Logical  View  

 

 

Page 6: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    6  

   

Network  Architecture  The  network  architecture  is  comprised  of  two  data  center  fabrics  connected  via  Transit  Leaf  switches.  The  ACI  Fabric  is  providing  Access  and  Aggregation  LAN  segments  of  the  data  center  while  the  Border  Leafs  connect  to  the  Core/Edge  of  the  data  center.    Figure  6  –  ACI  Topology  View  

 

   

External  Connectivity  External  fabric  connectivity  for  each  physical  data  center  is  provided  through  the  common  tenant  in  the  ACI  fabric.   Using  the  common  tenant  is  not  a  requirement,  rather  a  preferred  configuration.  

Each  application  tenant  will  access  the  WAN  through  the  common  tenant  by  creating  an  Endpoint  Group  (EPG)  for  connectivity  purposes,  (e.g.,  Web).  This  EPG  references  a  bridge  domain  (e.g.,  Production  BD)  in  the  common  tenant  which  has  external  connectivity.  A  contract  will  permit  traffic  to  flow  from  the  common  tenant  to  the  application  tenant.  Reference  Figure  5  –  ACI  Logical  View.  

By  using  the  common  tenant  for  external  connectivity,  the  network  and  security  administrator  can  assign  the  appropriate  network  configuration  policy,  security  contracts  and  policy,  as  well  as  firewall  and  load  balancing  services  for  the  fabrics  in  each  data  center.  The  network  policy  is  similar  for  each  data  center,  but  the  IP  addressing,  and  Bridge  Domain  and  External  Routed  Network  are  specific  to  each  site.  

The  application  (DevOps)  teams  will  reference  the  common  tenant  configuration  and  configure  application  connectivity  for  intra-­‐  and  inter-­‐tenant  communication  through  the  Application  Network  Profile  (ANP).  

The  border  leaf  switches  connect  to  a  Nexus  7000  switch  for  external  Layer  3  connectivity.   The  Nexus  7000  serves  two  purposes.   It  provides  connectivity  between  the  ACI  fabric/endpoints  and  external  devices/endpoints.  It  also  provides  inbound  routing  correction  for  the  ACI  endpoints  via  the  Locator/ID  Separation  Protocol  Multi-­‐Hop  Across  Subnet  Mode  (LISP  MH  ASM)  along  with  Intelligent  Traffic  Director  (ITD).  Outbound  routing  correction  is  handled  by  the  ACI  fabric  using  ACI  standard  forwarding  policy.   The  traffic  will  be  sent  to  the  closest  border  leaf  using  the  MP-­‐BGP  metric  to  find  that  closest  

Page 7: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    7  

border  leaf(s).  ITD  allows  the  Nexus  7000  to  load  balance  the  inbound  traffic  to  the  Border  Leafs  along  with  SLA  probing  the  Border  Leafs  for  reachability  and  availability.      

Solution  Components  The  design  incorporates  components  typically  found  in  data  center  environments.  The  role  of  the  component  and  the  specific  product  are  shown  in  the  following  table.  

 

Role   Product  Network  Infrastructure  Fabric   Cisco  ACI  -­‐  Nexus  [6]  9396,  [2]  9336  version  11.0(3f)  

[2]  APIC  version  1.0(3f)  Data  Center  Core/Edge  Switches   Nexus  7010  switches  (LISP  MH  ASM,  ITD)  version  6.2(10)  Compute   Cisco  UCS  -­‐  C22  M3  Rack  Servers  Synchronized  Storage  Solution   NetApp  Metro-­‐Cluster  /  EMC  VPLEX  Virtualization  Hypervisor   VMWare  ESXi  and  vCenter  5.5  DNS  and  GSLB   F5  Global  Traffic  Manager  (GTM)  version  11.2  Demonstrated  Applications   VDI  (VMWare  View)  and  2-­‐tier  Web  Service  (Microsoft  

SharePoint)    

F5  F5  Global  Traffic  Manager  (GTM)  allows  holistic  management  of  multi-­‐data  center  application  delivery  via  intelligent  DNS.  GTM  actively  monitors  application  health  at  each  data  center  and  responds  to  DNS  requests  based  on  availability,  performance  and  custom  traffic  engineering.  

GTM  uses  a  Wide-­‐IP  that  maps  a  DNS  entry  to  a  pool  of  application  instances  spread  across  multiple  data  centers.  In  the  event  of  a  failure  of  a  data  center,  the  application  instance  in  that  data  center  will  be  unavailable  and  no  longer  be  provided  to  DNS  queries.  Custom  traffic  engineering  can  be  implemented  to  direct  traffic  based  on  variables  such  as  application  performance  metrics,  geo-­‐location,  round  robin,  etc.  

The  Active-­‐Active  ACI  design  utilizes  GTM  as  the  DNS  server  but  could  potentially  be  used  as  the  GSLB  solution  if  a  disaster  recovery  (DR)  data  center  is  available.  For  more  information  on  implementing  ACI  in  a  disaster  recovery  configuration,  refer  to  the  WWT  white  paper  -­‐  Federated  Application  Centric  Infrastructure  (ACI)  Fabrics  for  Dual  Data  Center  Deployments:  https://goo.gl/GQAvTR  

 

Locator/ID  Separation  Protocol  (LISP)  LISP  (RFC  6830)  is  an  overlay  protocol  that  encapsulates  an  IP  packet  which  uses  a  mapping  database  in  order  to  deliver  the  encapsulated  packets  from  Ingress  Tunnel  Router  (ITR)  to  the  Egress  Tunnel  Router  (ETR).   A  detailed  explanation  of  all  of  the  components  that  make  up  LISP  is  outside  of  the  scope  of  this  whitepaper.   LISP  Multi-­‐Hop   allows   the   Endpoint   ID   (EID)   to   be   discovered   at   a   router   but   the   LISP  encapsulation  is  accomplished  at  a  different  router  one  or  more  Layer  3  hops  from  the  LISP  discovery  router.  

Page 8: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    8  

Within  the  ACI  Fabric  design,  LISP  discovery  happens  using  the  data-­‐plane  discovery  mechanism.   When  the  LISP  First  Hop  Router  (FHR  –  discovery  router)  receives  a  frame/packet  from  an  EID,  it  adds  the  EID  to  the  LISP  dynamic  EID  local  table  and  notifies  the  LISP  Site  Gateway  (encapsulation  router).  

 Figure  7  –  LISP  integration  View  

 

   Intelligent  Traffic  Director  (ITD)  ITD  provides  scalable  load  distribution  of  traffic  to  a  group  of  servers  and/or  appliances.  It  includes  the  following  main  features  related  to  the  Active/Active  ACI  design:  

 

• Redirection  and  load  balancing  of  line-­‐rate  traffic  to  ACI  border  leafs;  up  to  256  in  a  group,    

• IP  stickiness  with  weighted  load  balancing,    

• Health  monitoring  of  border  leafs  using  IP  Service  Level  Agreement  (SLA)  probes  (ICMP)    

• Automatic  failure  detection  and  traffic  redistribution  in  the  event  of  a  border  leaf  failure,  with  no  manual  intervention  required,  node  level  standby  support  

• ITD  statistics  collection  with  traffic  distribution  details    

• VRF  support  for  ITD  Service  and  Probes    Within  the  Active-­‐Active  ACI  Fabric,  ITD  is  running  on  the  Nexus  7000  that  is  directly  connected  to  the  ACI  Border  Leafs.  The  purpose  of  ITD  within  this  architecture  is  load  balance  ingress  traffic  amongst  the  Border  Leafs.   ITD  also  uses  IP  SLA  probes  in  order  to  verify  that  Border  Leaf  are  reachable.  

Page 9: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    9  

Storage  Synchronization  Solution  In  order  to  provide  the  capability  for  virtualized  workload  mobility,  a  single  storage  device  must  be  available  in  both  data  centers.  This  can  be  accomplished  by  connecting  the  SAN  in  each  data  center  over  dark  fiber  or  Fibre  Channel  over  IP  (FCoIP)  but  a  more  effective  solution  would  be  to  have  the  data  residing  in  both  data  centers  synchronously.  There  are  several  technologies  that  can  achieve  this  level  of  storage  synchronization.  EMC  VPLEX  is  a  reliable  simple  architecture  that  supports  many  different  storage  vendors  with  an  option  to  synchronize  the  storage  utilizing  the  IP  network  for  transport.  Another  leading  solution  is  NetApp  MetroCluster.  Both  VPLEX  and  MetroCluster  have  been  validated  in  this  design.  

VPLEX  is  able  to  provide  distributed  storage  volumes  using  cache  coherence  and  simultaneous  access  to  storage  devices  through  the  creation  VPLEX  clusters  (one  in  each  data  center).  VPLEX  distributed  devices  are  available  from  either  VPLEX  cluster  and  have  the  same  Logical  Unit  Number  (LUN)  and  storage  identifier  when  presented  to  the  host,  enabling  true  concurrent  read/write  across  data  centers.  VPLEX  Clusters  use  synchronous  replication  to  keep  data  in  sync  on  both  sides  of  the  cluster.  

 NetApp  MetroCluster  also  addresses  the  challenge  to  provide  continual  data  availability  across  two  data  centers  and  does  it  while  retaining  the  build  in  storage  efficiency  of  the  Data  ONTAP  operating  system.  MetroCluster  consists  of  two  Data  ONTAP  clusters  that  synchronously  replicate  to  each  other.   Each  cluster  is  an  active-­‐active  HA  pair,  so  all  nodes  serve  clients  at  all  times.  Data  is  written  to  the  primary  copy  and  synchronously  replicated  to  the  secondary  copy  in  the  remote  site.  Cluster  peering  interconnect  mirrors  cluster  configurations  to  provide  a  single  point  of  policy.      

Video  Demonstration  For  a  video  demonstration  of  the  concepts  presented  in  this  whitepaper,  visit  https://goo.gl/5IKSoS  

Conclusion  The  Cisco  Application  Centric  Infrastructure  (ACI)  is  an  innovative  architecture  where  applications  use  the  data  center  as  a  dynamic,  shared  resource  pool.  This  pool  of  resources  is  managed  through  a  central  controller  exposing  all  configuration  and  management  components  through  a  northbound  REST  API.  

WWT  is  providing  value  by  helping  customers  design  Active-­‐Active  data  centers  to  meet  their  reliability/resiliency  requirements  and  provide  quality  business  outcomes.  

Page 10: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    10  

Appendix    Traditional  Distributed  Data  Center  Traffic  Patterns      Figure  1  -­‐  Traditional  Highly  Available  Data  Center  

 

   In  Figure  1,  the  DNS  entry  resolves  to  the  Application  Delivery  Controller  1  (ADC1)  in  the  west  data  center.  Traffic   is  sent  to  the  Virtual  IP  (VIP)  of  ADC1  via  normal  routing.  ADC1  uses  network  address  translation  (NAT)  to  redirect  the  user  traffic  to  the  appropriate  Web  Server  in  this  example.   The  ADC1  also  translates  the  source  IP  address  using  what  is  referred  to  as  Source-­‐NAT  (S-­‐NAT).   S-­‐NAT  ensures  the  return  traffic  from  the  Web  Server  will  always  return  to  the  correct  ADC  for  translation  back  to  the  IP  addresses  for  the  user   session.   The   data   center   interconnect   (DCI)   cloud   in   Figure   1   represents   a   layer   2   extension  technology.   See  section  “Network  Overlays”  for  information  on  the  different  types  of  layer  2  overlays.  

Page 11: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    11  

Figure  2  -­‐  Hair-­‐pinning  Traffic  with  SNAT  (after  workload  migration)    

   Figure  2  depicts  the  hair-­‐pinning  effect  on  the  traffic  pattern  when  the  workload  has  migrated  to  the  east  data  center.    Since  both  data  centers  are  up  and  operational,  the  GSLB  view  is  that  the  primary  VIP-­‐  1  is  still  online  and  therefore  retains  west  data  center  as  the  destination  for  the  service.    The  ADC1  devices  also  has  no  knowledge  of  where  physically  the  Web  Server  is  located  because  of  the  layer  2  network  extension.  

Page 12: White Paper - Stretched Active-Active ACI Fabric - WWT

Stretched  Active-­‐Active  Application  Centric  Infrastructure  (ACI)  Fabric   World  Wide  Technology    12  

Figure  3  -­‐  Asymmetric  Traffic  without  SNAT  (after  workload  migration)    

   Figure  3  shows  what  will  happen  if  you  removed  the  S-­‐NAT  function  from  the  environment  and  the  workload  is  moved  from  one  active  data  center  to  another.   The  traffic  will  inbound  in  the  west  data  center  and  using  default  routing  possibly  exit  the  east  data  center  causing  an  asymmetrical  traffic  pattern.   Most  stateful  devices,  such  as  firewalls,  will  deny  the  traffic  thus  bringing  the  service  offline.  Even  if  stateful  devices  are  not  present  in  the  traffic  pattern,  troubleshooting  becomes  more  difficult.