15
2012-12-03 1 3DS.COM/SIMULIA© Dassault Systèmes | Confidential Information | 12/3/2012 | ref.: 3DS_Document_2012 1 3DS.COM© Dassault Systèmes | Confidential Information | 12/3/2012 | ref.: 3DS_Document_2012 Failure Prediction without Prescribing Crack Paths by using XFEM in Abaqus Jun Park, Ph. D. [email protected] Nov. 23 rd , 2012 3DS.COM/SIMULIA© Dassault Systèmes | Confidential Information | 12/3/2012 | ref.: 3DS_Document_2012 2 Where do cracks initiate? What is the direction of propagation?

Where do cracks initiate? What is the direction of ... · PDF filePressure-overclosure relationship governs the behavior when the crack ... in Abaqus/CAE . 2012-12-03 8 A es | 2 12

  • Upload
    phamdan

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

2012-12-03

1

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

1

3DS

.CO

M ©

Das

saul

t Sys

tèm

es |

Con

fiden

tial I

nfor

mat

ion

| 12/

3/20

12 |

ref.

: 3D

S_D

ocum

ent_

2012

Failure Prediction

without Prescribing Crack Paths

by using XFEM in Abaqus

Jun Park, Ph. D.

[email protected]

Nov. 23rd, 2012

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

2

Where do cracks initiate?

What is the direction of propagation?

2012-12-03

2

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

3

Test

Simulation

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

4

Outline of the Presentation

Motivations for using XFEM

Introduction to XFEM

Multi-year developments

Examples of applying XFEM

Summary

2012-12-03

3

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

5

Motivations for Using XFEM Strong technology exists in Abaqus:

Interfacial cracks with VCCT and cohesive element techniques

Smeared crack approach to continuum damage initiation and evolution in the bulk materials

Main challenges of the existing technology:

Modeling and analysis of stationary 3-D curved surface cracks

Progressive crack growth simulations for arbitrary 3-D cracks

eXtended Finite Element Method (XFEM) has become relatively mature to be commercialized since it was first introduced by Belyschko and Black in 1999.

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

6

Motivation for Using XFEM

Makes modeling of cracks easier and more accurate:

Exhibits almost no mesh dependence if the mesh is sufficiently refined

Allows the simulation of initiation and propagation of a discrete crack along an

arbitrary, solution-dependent path without the requirement of remeshing

Supports contour integral evaluation for a stationary crack

2012-12-03

4

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

7

Introduction to XFEM

XFEM is an extension of the conventional finite element method based on the

concept of partition of unity.

It allows the presence of discontinuities in an element by enriching degrees of

freedom with special displacement functions.

4

1 1

( ) ( ) ( )N

I I I I

I

N H F

u x u x a x b

To capture the displacement jump

across the crack faces To capture the crack-tip

behavior

*1 0,( )

1

ifH

otherwise

x x nx

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

8

Introduction to XFEM

Applies to nodes whose

shape function support is

cut by the crack interior

Applies to nodes whose

shape function support is

cut by the crack tip

Applies to all nodes in

the model

4

1 1

( ) ( ) ( )N

I I I I

I

N H F

u x u x a x b

Depend on:

•The crack location

•The material

2012-12-03

5

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

9

Introduction to XFEM

Level set method

Is a numerical technique for describing a crack and tracking the motion of the crack

Couples naturally with XFEM and makes possible the modeling of 3D arbitrary crack growth without remeshing

Requires two level sets for a crack:

The first describes the crack surface

The second is constructed so that its intersection with the first gives the crack front

Uses signed distance functions to describe the crack geometry

Does not require explicit representation of the crack: the crack is entirely described by nodal data

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

10

XFEM Features Introduced in 6.9 (XFEM I)

XFEM was first introduced for

The static procedure

First-order solid continuum stress/displacement elements:

Stationary cracks without support for the contour integral output

Propagating cracks with cohesive segments

2012-12-03

6

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

11

6.9: Stationary Cracks

Full enrichment is used

Different forms of asymptotic crack-tip functions are required depending on crack

location and the extent of the inelastic material deformation

Currently only asymptotic crack-tip fields corresponding to an isotropic elastic material are

considered:

[ ( ), 1-4]

[ r sin , r cos , r sin sin , r sin cos ]2 2 2 2

F x

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

12

6.9: Stationary Cracks

Validation Semi-elliptical crack in a plate

2012-12-03

7

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

13

6.9: Propagating Cracks

“Phantom nodes” and cohesive segments

Can be used for brittle or ductile fracture

Pressure-overclosure relationship governs the behavior when the crack

is “closed”

Cohesive behavior contributes to the contact normal stress when the crack is “open”

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

14

XFEM Features Introduced in 6.9-EF (XFEM II)

Support for:

Contour integral evaluation in a fracture analysis that uses XFEM

(*CONTOUR INTEGRAL, XFEM)

User-specified value of the enrichment radius for stationary crack singularity calculations

(*ENRICHMENT, ENRICHMENT RADIUS)

Better convergence due to the introduction of the viscous regularization

of the constitutive equations defining cohesive behavior in an enriched element (*DAMAGE

STABILIZATION)

Study of stationary cracks (in addition to study of arbitrarily growing cracks) in Abaqus/CAE

2012-12-03

8

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

15

Key XFEM Enhancements in 6.10 (XFEM III)

Support for:

Implicit dynamics applications

New damage initiation criteria

XFEM-based Linear Elastic Fracture Mechanics (LEFM) approach for crack propagation

Element loop parallelization

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

16

6.10: Implicit Dynamics with XFEM

Dynamic impact followed by static analysis

Crack initiation and propagation due to dynamic loading

Sports injury

2012-12-03

9

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

18

Key XFEM Enhancements in 6.10-EF (XFEM IV)

Support for:

User defined damage initiation criteria with XFEM

Top priority from FCRT

XFEM-based low cycle fatigue capability using direct cyclic approach

Another high priority request from FCRT

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

19

Key XFEM Enhancements in 6.11 (XFEM V)

Support for:

Second-order enriched tetrahedron

Top priority from FCRT

Evaluation of the contour integral in the presence of a residual stress field

Another top priority from FCRT

Output of the strain energy release rate for the XFEM-based LEFM approach

VCCT-related enhancements

2012-12-03

10

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

20

Example: Enriched quadratic tets

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

21

Example: (45,-45,90,0) laminate with a hole

Intralaminar cracking is modeled with XFEM

Delamination is modeled using surface-based cohesive approach

User defined damage initiation subrotine is used.

2012-12-03

11

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

22

Example: XFEM-based Low Cycle Fatigue

Based on linear elastic fracture mechanics approach

Governed by Paris law

Works within the framework of direct cyclic procedure

Assumes a pre-existing crack according to the accepted aero-industry practice The crack can then grow along an arbitrary path under cyclic fatigue loading

Can follow a static procedure where over-loading causes a crack nucleation

4

3

cGc

dN

da

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

23

Example: Isotropic plate with a hole

A static loading is applied to cause a crack nucleation

Next, a periodic low cycle fatigue loading is applied

2012-12-03

12

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

29

Example: Three point bending of AFS

Aluminum Foam Sandwich

Type Length Width Skin

Thickness Core Thickness Die Span

Core

Material

Skin

Material

A 300 30 0.5 10 250 Al Foam AL 3003

B 300 30 3 30 250 Al Foam AL 3003

C 300 30 6 10 250 Al Foam AL 3003

skin

core

length

width

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

30

Example: Three point bending of AFS

FE Model (QTR Model)

Type Length Width Skim

Thickness Core Thickness Die Span

Core

Material

Skin

Material

A 300 30 0.5 10 250 Al Foam AL 3003

B 300 30 3 30 250 Al Foam AL 3003

C 300 30 6 10 250 Al Foam AL 3003

A B C

2012-12-03

13

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

31

Example: Three point bending of AFS

•AL Skin •AL Foam

*strain : 0.5 -> 0.05

*Elastic

*Plastic

*Crushable Foam

*Crushable Foam Hardening

Material

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

32

Example: Three point bending of AFS (Results A)

*J. Yu, E. Wang, J. Li, Z. Zheng, “Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in

three-point bending” International Journal of Impact Engineering, 35, 2008, pp 885-894

*

Abaqus

2012-12-03

14

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

33

Example: Three point bending of AFS (Results B)

Abaqus

*J. Yu, E. Wang, J. Li, Z. Zheng, “Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in

three-point bending” International Journal of Impact Engineering, 35, 2008, pp 885-894

*

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

34

Example: Three point bending of AFS (Results C)

Abaqus

*J. Yu, E. Wang, J. Li, Z. Zheng, “Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in

three-point bending” International Journal of Impact Engineering, 35, 2008, pp 885-894

*

2012-12-03

15

3DS

.CO

M/S

IMU

LIA

© D

assa

ult S

ystè

mes

| C

onfid

entia

l Inf

orm

atio

n | 1

2/3/

2012

| re

f.: 3

DS

_Doc

umen

t_20

12

35

Key features Allows moving and stationary cracks

Works with VCCT and cohesive elements

Supports low-cycle fatigue

Comprehensive modeling and visualization

Benefit Mesh-independent crack modeling

Summary

35