6
We thank the reviewer for taking the time to review our manuscript and provide constructive comments. In revising our manuscript, we noted that our model simulations had used a fixed pre- industrial nitrogen deposition rate. In our resubmission, we reflected that it would make more sense to show results from LPJ-GUESS with the nitrogen cycle switched off. This was because the principal aim of our paper was to explore the sensitivity of the carbon cycle to ‘expressions’ of El Nino and we might expect that this sensitivity would be greatest using the C-only version of LPJ-GUESS as carbon uptake is not limited by nutrient availability (which may decline with water availability in dry years, when nitrogen immobilisation rates increase). Nevertheless, as one of our main regions of interest was the tropics, we would not expect a strong limitation by nitrogen (Vitousek et al. 1984) and as a result, we do not anticipate a strong sensitivity in our results to our choice of biogeochemical cycle. To assure the Editor/Reviewer of this insensitivity we have shown the results of both cycles (N-cycle on/off) below (Fig 1). We also used this opportunity to update the model comparison against the more recent TRENDY v7 runs. Overall, we found that LPJ-GUESS is close to the TRENDY v7 ensemble mean and simulations are mostly within the model range (i.e. across TRENDY models) when we switch the nitrogen cycle off. The spatial distribution of the summed composite GPP anomalies (see fig. 2) shows that LPJ-GUESS picks up the main anomalies associated with EP El Nino events and remains within the TRENDY models’ range. Finally, LPJ- GUESS has a strong negative bias in Australia. As our results show, Australia does not make a large contribution to long-term changes in any of the carbon fluxes and pools. Fig. 1. Monthly composite anomalies during the El Nino developing (y0) and decaying (y1) year in gross primary production (GPP; green lines) and terrestrial ecosystem

We thank the reviewer for taking the time to review our

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Wethankthereviewerfortakingthetimetoreviewourmanuscriptandprovideconstructivecomments.Inrevisingourmanuscript,wenotedthatourmodelsimulationshadusedafixedpre-industrialnitrogendepositionrate.Inourresubmission,wereflectedthatitwouldmakemoresensetoshowresultsfromLPJ-GUESSwiththenitrogencycleswitchedoff.Thiswasbecausetheprincipalaimofourpaperwastoexplorethesensitivityofthecarboncycleto‘expressions’ofElNinoandwemightexpectthatthissensitivitywouldbegreatestusingtheC-onlyversionofLPJ-GUESSascarbonuptakeisnotlimitedbynutrientavailability(whichmaydeclinewithwateravailabilityindryyears,whennitrogenimmobilisationratesincrease).Nevertheless,asoneofourmainregionsofinterestwasthetropics,wewouldnotexpectastronglimitationbynitrogen(Vitouseketal.1984)andasaresult,wedonotanticipateastrongsensitivityinourresultstoourchoiceofbiogeochemicalcycle.ToassuretheEditor/Reviewerofthisinsensitivitywehaveshowntheresultsofbothcycles(N-cycleon/off)below(Fig1).WealsousedthisopportunitytoupdatethemodelcomparisonagainstthemorerecentTRENDYv7runs.Overall,wefoundthatLPJ-GUESSisclosetotheTRENDYv7ensemblemeanandsimulationsaremostlywithinthemodelrange(i.e.acrossTRENDYmodels)whenweswitchthenitrogencycleoff.ThespatialdistributionofthesummedcompositeGPPanomalies(seefig.2)showsthatLPJ-GUESSpicksupthemainanomaliesassociatedwithEPElNinoeventsandremainswithintheTRENDYmodels’range.Finally,LPJ-GUESShasastrongnegativebiasinAustralia.Asourresultsshow,Australiadoesnotmakealargecontributiontolong-termchangesinanyofthecarbonfluxesandpools.

Fig.1.MonthlycompositeanomaliesduringtheElNinodeveloping(y0)anddecaying(y1)yearingrossprimaryproduction(GPP;greenlines)andterrestrialecosystem

respiration(TER;sumofautotrophicandheterotrophicrespiration;redlines)forallCPandEPElNinoeventslistedinappendixtableA1averagedovertheglobe,thetropics(23°S–23°N)andAustralia.ThedottedlinesshowtheTRENDYv7composite,thesolidlinesaretheindividualLPJ-GUESSrunwhereweswitchofthenitrogencycle,thedashedlinesshowthemodelrunswithdynamicnitrogencycling(compareWangetal.,2018).ρandR2showthecorrelationcoefficientsandR2valuesbetweentheLPJ-GUESSandtheTRENDYensemblemean.TheshadedareashowsthemodelspreadoftheindividualTRENDYmodels.

Fig.2:Compositeanomaliesingrossprimaryproduction(GPP)summedoverthetheElNinodevelopinganddecayingyearforallCPandEPElNiñoeventslistedintab.B1fortheindividualTRENDYmodels,theTRENDYcompositeandtheindividualLPJ–GUESSrun(compareWangetal.,2018).

Belowweaddressthereviewer’scommentspointbypoint.Weaddourrepliesinitalicsandhighlightsuggestedmodificationsinthemanuscriptinred.

Referee#2Inthismanuscript,Teckentrupetal.usedLPJ-GUESSforcedbymanipulatedclimatedatasetstostudytheinfluencesoftwoexpressionsofElNino(CPandEP)ontheterrestrialcarboncycle.TheauthorssuggestedthattheexpressionsofElNinoonlyinfluenceinterannualvariabilityofNBP(e.g.CPcausedlargerIAVinNBPthanEPattheglobalscale)butnotthelong-termchangeinNBP.TheyconcludedthattherelativefrequencyofCPandEPisnotcriticalinmodelsasCP/EPdidnotyielddetectablechangesinlong-termNBP.Thesciencequestionisinteresting,thestoryiswelltoldandthereisnomajorflawinthemethod.Thatbeingsaid,thereareafewquestionsthatpuzzledmeafterreadingthemanuscript,whichIhopetheauthorscouldclarifyabitbeforeIcouldsupportit.Wethankthereviewerfortheirassessmentandtheacknowledgementofourcontributions.

1. Oneofthenovelpointspresentedisthat“impact(ofCPandEP)onlongertimescalesisnotwellunderstood”.ElNino,eitherCPorEP,isknowntodominatetheinterannualvariabilityofterrestrialcarboncycling.ItisnotclearlystatedintheIntroductionwhywewouldexpectaninfluenceofCP/EPElNinoatlongertimescalesinthefirstplace.Inanotherword,woulditbeasurprisethatCP/EPElNinoexertnochangeonlong-termNBP,aswealreadyknownthatElNinoinfluencesIAVratherthanlong-termvariabilityofthecarboncycle.PerhapstherelativemorefrequentCPoccurrencesinthefuturecouldbeanissuelongtermbutthecurrentmodelsmaynotincludepropermechanisms(i.e.shiftinspeciescomposition,acclimations)toanswerthequestion.WeagreethatElNinostudieshavemostlyfocusedoninterannualtimescales.However,inarecentstudy,Parketal.2020foundthatdecadalvariabilityinENSOinfluencesthelongtermterrestrialglobalcarboncycle.Further,asnotedbythereviewer,ashiftinElNinopatternscouldaltercumulativenetbiomeproduction,whichmayaltercompetitivepatternsofplantspecies,bothofwhichmayinfluencethecarbonstoredinvegetationandsoil.Similarly,interannualvariabilityinprecipitationpatternsinducedbydifferenttypesofElNinomightchangevegetationdynamicsinsemiaridareas/savannaecosystems.Asaresult,wedothinkthefocusofourstudyiswarranted.OurresultsimplythattheexpressionofElNinodidnotleadtoanyofthechangesdescribedinearlierstudies.Weagreewiththereviewerthatitispossiblethatthismayinpartrelatetomissingmechanismsthatwouldcapturespeciescompositionchanges.Yetwethinkthisisunlikelytobetheexplanation,giventhatElNinoeventsareveryshort-livedandspatiallyvariablewhichlikelypreventsadirectshiftinvegetationinmostbiomesduetochangesinmeteorology.Whilstthissummaryofourfindingsagreeswiththereviewer’spointabove,westillhadtodotheexploratoryworktodeterminewhetherthiswasinfacttrue.Wehaveamendedthemotivationtextintheintroductiontomoreclearlycapturetheseissues:

‘AshiftinElNinopatternscouldchangecumulativenetbiomeproduction,whichmayaltercompetitivepatternsofplantspecies,bothofwhichmayinfluencethecarbonstoredinvegetationandsoil.Similarly,interannualvariabilityinprecipitationpatternsinducedbydifferenttypesofElNinomightchangevegetationdynamicsinsemiaridareas/savannaecosystems(cf.ScheiterandHiggins,2009;Whitleyetal.,2017).’

2. ThestudyisaimedatstudyingthesensitivityoftheterrestrialcarboncycletoCP/EPElNino.AndtheauthordidsobyreplacingtheclimateanomaliesduringCPtoEPandviceversa.CPisreportedtocauselargerglobalIAVthanEP.Yes–thatiscorrect.Myconcernsis:(usingglobalsimulationasanexample)isthislargersensitivityoftheterrestrialcarboncycletoCPisduetothechangesintheinherentclimatesensitivityofcarbonduringCP/EP,oristhissimplycausedbythegenerallylargerclimateanomaliesduringCP(Fig.B5).Iwouldassumethereasonisthelatter,astheinherentclimatesensitivityofcarboncycleisessentiallypredefinedbythemodel(inthiscaseLPJ-GUESS)structure,sowhatweseehere(IAVofNBPinCP>EP)isperhapsjustbecausetheIAVofclimateinCP>EP.Weagreewiththereviewerthatthemodelsimulationssuggestthattheresultslargelyfollowtheclimateanomalies.EmployingaDGVMprovidestheopportunitytoexplorepossiblelageffects,suchaschangesinfiredynamics,andchangesvegetationcomposition.TheselagprocessesthatmightbecapturedbyaDGVMallowedustoexplorethereviewer’squestionaboutthe‘inherentclimatesensitivityofcarbonduringCP/EP’.Infact,wefoundthattheperturbationsforcedonthevegetationweretoosmalltocausesignificantcarryovereffects,andconcludethereforethatclimateanomalieswerethekeycontrolfortheobservedchanges.Aswiththereviewer’spreviouspointabout‘long-termresponses’,wedonotthinktheanswerisself-evidentandfeltitwasimportanttoexplorethemodelsensitivities.

3. missedchanceonthespatialandphenologyofcarbonfluxes.WhileIhave

doubtsaboutthereporteddifferencebetweenCPandEPatinterannualorlongertimescales,Ifeeltheirdifferenceisperhapsmorepronouncedatseasonalscalesandspatial,whenCPandEPshowapparentcontrastingtemporalpatterns(e.g.Fig1).AswasalsonotedbyChyleketal.2018,thetimedelayofCO2riseafterSSTincreaseisoneofthepronounceddifferences,andthedifferenceisonlyaround3months.Focusingonlongertimescalesmighteasilyjustaveragedouttheseimportantcharacteristics.IthinktheauthorshavedoneanicejobindemonstratingthespatialdifferenceofcarbonsinksunderCP/EP,andtheseresultsperhapsworthmorehighlights.Weagreewiththereviewerthatchangesarelikelymoresignificantatseasonaltimescales.Asthereviewernotes,ourresultsshowthateveniftherearestrongimpactsonshortertimescales,theseeffectsdisappearondecadaltimescaleswhich

isakeyconclusioninourpaper.Wethereforechoosenottofurtherexploreshortertimescalesgiventhisisalreadysomethingthathasbeenreportedintheliterature.

4. Withthat,IwouldalsosayitmaybeastretchtosayCP/EPisnotcriticalinfuturemodels,astheirmajordifferenceislikelytobeclearerseasonallyandspatially(e.g.differentcarbonsinkdistribution,phenologyofcarbonuptake).WeagreewiththereviewerthatthedifferentexpressionsofElNinoaffecttheterrestrialcarboncycleoninterannualtimescalesandthatindividualeventspotentiallyhavelargeimpactonspecificregions.However,ourresultssuggestthattheperturbationslinkedtotheexpressionofElNinomightbetoosmalltotriggerchangesinvegetationdynamicsthatlastlongerthanaseasonorayear.Nevertheless,wehaveadjustedthefuturedirections:‘BasedonthisanalysiswesuggestthatourmodelsensitivitywouldlikelybesimilartothatdisplayedbytheotherTRENDYmodels,althoughwewouldanticipatesubtleregionaldifferences,particularinthetropicsifanalternativeDGVMhadbeenused’andtheconclusions:‘OurresultsthereforesuggestthattheimpactofdifferentexpressionsofElNinoonthecarboncycleonlongtimescalesislikelytobesmall.’

5. L11.Pleasespecifywhatkindoflongertimescaleeffect(i.e.decadalmean,decadalvariationortrend?)Weused‘longertimescaleeffect’todescribetheeffectaclimatewithonlyCPElNinooronlyEPElNinoeventsmighthaveonterrestrialvegetationafter45years.Wedonotanalysedecadalmean,variationortrendbutratherassesstheeffectbycomparingthefinalyearofthetwodifferentscenariostothatofthecontrolrun(wherebothexpressionsofElNinooccur).

6. L84andL104.IfCRU-NCEPv7covers1901-2016,whynotconsiderthe2015/2016ElNinointheanalysis.Wechosetheyear2013asthelastyearofourexperimentrunbecauseitisENSO-neutral.

7. L84.BysayingCRU,didyoumeanCRUNCEP.Thankyou,yesandwechangedthetextaccordingly.

8. L119-120.IamnotsureIunderstandhowtochoosethereplacementsforCPandEPcorrectly.WhythereisaneedtoresampleclimateanomaliesusingONIandhowdowelocatetheCPthatisusedtoreplaceaEP(inthesame10-yearwindowshowninFig1?).

WeusetheapproachaccordingtoYuandKim,2009.TheyusetheONIindextoidentifyElNinoeventswhichcomprisebothCPandEPElNinoevents.Basedonfourdifferentindices,theythenfurtherdifferentiatebetweenCPandEPElNinoevents.Wechangedthedescriptioninthe‘IdentificationofElNinoevents’sectionto:‘TheyfirstclassifiedElNinoeventsbasedontheOceanicNinoIndex(ONI)whichcomprisebothCPandEPElNinoevents.Basedonfourindices,theythenfurtherdifferentiatebetweenCPandEPElNinoevents.’WealsousetheONIindexasaguidanceforthereplacementoftheindividualElNinoevents.WereplacedanEPElNinoeventwithaCPtype(andviceversa),whenbotheventsstart,endandpeakatthesimilartimesintheyearaccordingtotheONIindexandhavesimilarmagnitudesintheONIindex(seemethods).Weupdatedthemethodssection:‘WeusedtheONIindextodefinethestart,endandstrengthoftheindividualElNinoeventsandresampledtheclimateanomaliesbasedontheONI.WereplacedanomaliesintheclimateforcingassociatedwithElNinoeventsaccordingtothebestfitindurationandamplitudeinONI,i.e.eventsthatstartandendatasimilartimeintheyearandhaveasimilartimingandmagnitudeofthepeakinONI.’

9. L210.DoesLPJ-GUESShaveacomponenttosimulatespeciescomposition?Thanksforpointingoutthispotentialconfusion.LPJ-GUESSrepresentsvegetationinformofplantfunctionaltypes,notindividualspecies.Wereplaced‘speciescomposition’with‘vegetationcomposition’.

10. B1-B4:Unitofcarbonfluxesinsupplementaryfigures.Perm2?Thankyouforpointingthisout,wechangeditaccordinglyandupdatedthefigures.

Scheiter,S.andHiggins,S.I.(2009),ImpactsofclimatechangeonthevegetationofAfrica:anadaptivedynamicvegetationmodellingapproach.GlobalChangeBiology,15:2224-2246.doi:10.1111/j.1365-2486.2008.01838.xYu,J.-Y.andKim,S.T.:IdentifyingthetypesofmajorElNiñoeventssince1870,InternationalJournalofClimatology,33,21052112,465https://doi.org/10.1002/joc.3575,https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3575,2013.Vitousek,P.M.Litterfall,nutrientcycling,andnutrientlimitationintropicalforests.Ecology65,285–298(1984).Whitley,R.,Beringer,J.,Hutley,L.B.,Abramowitz,G.,DeKauwe,M.G.,Evans,B.,Haverd,V.,Li,L.,Moore,C.,Ryu,Y.,Scheiter,S.,Schymanski,S.J.,Smith,B.,Wang,Y.-P.,Williams,M.,andYu,Q.:Challengesandopportunitiesinlandsurfacemodellingofsavannaecosystems,Biogeosciences,14,4711–4732,https://doi.org/10.5194/bg-14-4711-2017,2017.