29
0 OWFSC WAVEFRONT SENSING & CONTROL GROUP Status on Iterative Transform Phase Retrieval applied to the GBT Data Bruce Dean 1551, David Aronstein / 551, Scott Smith /551, Ron Shiri 1551 Jan M. Hollis / Lyon / 606.3 Richard rests e, Todd Hunter, Frank Ghigo, Bojan N1 i Image-Based Wavefront Sensing and Control of the NRAO Green Bank Radio Telescope NASA PI: Dr. Bruce H. Dean 1551 Email: [email protected] Cob: Dr. Jan M. Hollis 1606.0, Richard Lyon /606.3, Ron Shiri /551, Scott Smith /551, David Aronstein /551 Collaborators: Dr. Richard Prestage I Assistant Director, National Radio Astronomy Observatory (NRAO) Green Bank Operations, Green Bank, WV, Todd Hunter, Frank Ghigo, NRAO Green Bank Operations, Can Bank, WV, Bojan Nikolic, Mullard Radio Astronomy Observatory, Universiy of Cambridge, UK Business Area: Astrophysics, Communications I Navigation Systems, Exploration Systems. https://ntrs.nasa.gov/search.jsp?R=20090033811 2020-04-09T16:17:13+00:00Z

WAVEFRONT SENSING & CONTROL GROUP Status …...OWFSC 0 WAVEFRONT SENSING & CONTROL GROUP Status on Iterative Transform Phase Retrieval applied to the GBT Data Bruce Dean 1551, David

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

0OWFSCWAVEFRONT SENSING & CONTROL GROUP

Status on Iterative Transform Phase Retrievalapplied to the GBT Data

Bruce Dean 1551, David Aronstein / 551, Scott Smith /551, Ron Shiri 1551Jan M. Hollis / Lyon / 606.3

Richard rests e, Todd Hunter, Frank Ghigo, Bojan N1 i

Image-Based Wavefront Sensing and Control of the NRAOGreen Bank Radio Telescope

NASA PI: Dr. Bruce H. Dean 1551Email: [email protected]: Dr. Jan M. Hollis 1606.0, Richard Lyon /606.3,

Ron Shiri /551, Scott Smith /551, David Aronstein /551Collaborators: Dr. Richard Prestage I Assistant Director, National Radio

Astronomy Observatory (NRAO) Green Bank Operations, GreenBank, WV, Todd Hunter, Frank Ghigo, NRAO Green BankOperations, Can Bank, WV, Bojan Nikolic, Mullard RadioAstronomy Observatory, Universiy of Cambridge, UK

Business Area: Astrophysics, Communications I Navigation Systems, ExplorationSystems.

https://ntrs.nasa.gov/search.jsp?R=20090033811 2020-04-09T16:17:13+00:00Z

Overview 0

Introduction- Phase Retrieval /NASA Projects— JWST TRL-6

GBT Data / Notes:— Data Format and Sampling- Ray Trace Model & Wavefront— Symmetry of GBT Data— Pupil and Fourier Model— Pupil Amplitude

PR Simulations— Wavefront derived from GBT Data symmetry— Wavefront Sensing accuracy and Coherent

AssumptionsGBT Results

/ Incoherent

2

Applications and Technology Development

Investments9 NASA Image-Based— Developments through

JWST PrePhase-A anPhase-B.

C Demonstrated toTRL-6 using the BallAerospace TBT,

— Compact SupercomputingArchitecture utilizing DSPs

3

0 18 Segment PM0 6.5 meter aperture

* Orbit at L2

sfiwce rechnaloff

PX

James Webb Space Telescope (JWST)

• Successor to the Hubble Space Telescope

• Current Launch Dateis 2013

4

S'Testbed Telescope (TBT)Flight traceable, 1/6 scale, 1. 8 segment design

Algorithm Performance requirements dictated by NASA's TRL-6— Testbed provides functionally accurate simulation platform for developing

deliverable WFSC algorithms and software,— Used to perform TRL-6 end to end testing,— a solution is a fine-phasing algorithm that incorporates feedback,— an adaptive diversity function, eliminates Branch Points, and Wrapping

5

0TRL-6 C with Interferometer

Phase Retrieval: 0 y'

0Phase Retrieval Approaches

Two main approaches commonly used:---------------------------------------------------------

VA

"mow

W^ AANIFAm

--------------------------------------------------

— Iterative Transform (IA)

• Gerchberg-Saxton

• Misell-Gerchberg-Saxton

• HDA (extends dynamic range)

— Parametric (non-linear least squares model fitting)

• Solve for aberration coefficients

• Solve for point-point phase in the pupil

r---------------------------------------------------------------------------------------

min [Objective Function]:

For JWST - adopted a0hybrid approach that P S

fft+l')twde^ (_A '^k' F, jD ►V J

incorporates features of

both types of algorithms.t e.g., W. H. Southwell, "Wavefront Analyzer using a Maximum Likelihood Algorithm,"

J, Opt. Soc. Am. A3, 39&399 (1977).------------------------------------------------------------------------------

a

look ==>

• intensity is now a function of the phase:r2 __

r2 (e)

• algorithm: indirectly recover phase from intensity.

V

s

0Earlier Work using ITA with Radio Antennas

1985 D. MORRIS 'Phase retrieval in the radio holography of reflectorantennas and radio telescopes', IEEE Trans., AP-33, pp.749-7551988 5 D. Morris, et al., "Radio holography measurement oft e 30-mmillimeter radio telescope...," Astro strophys., vol. 203, p. 3 99.1.991 5 D. MORRIS, et. al, 'Experimental assessment of phase retrievalholography of a radiotelescope', IEE Proc. H, 1 243-2471994 5 A. Greve, D. Morris, et. al., "Astigmatism in Reflector Antennas:Measurement and Correction," IEEE Trans ANTENNAS & Prop VOL.42 5 NO. 91996 9 D. Morris, Simulated Annealing Applied to the Misell algorithm forphase retrieval, IEE Proc - Microw Antennas Prop, Vol 1 4,August 1996

Notes /Understanding of GBT Data 0

• Consists of two feeds (pixels), two polarizations,

• Separated by 58 arc-seconds,

• Output of receivers is differenced to minimize the effect of sky-brightness variations.

— aberrations due . to of oft feeds being off (and on opposite sides of)the optical axis are negligible?if this is not negligible, then a "single beam convolved by two deltafunctions" assumption may not be valid.

10

i

C

OCU

W

.0 ............ :-,_ .._.-.-rr.--: ..^...__..._,..

.................. . ....... ......... ..,,_._ ._. _. _..

cam_

C

0.15

O.f

^t

°O.PS

-IJ t

-0, 15

azimuth (arc-min)

Raw Data Contributed by the NRAO

0

Data iena e: S1 14-1-db.fits, April 2005Read: dx, dy, fnu, ufnu, ttime ( [5806x1 double] )

Scan Pattern: (plot dx, dy)

Signal vs time (plot fnu, ttime):

11

to 20 10 40 so 60

5

10

3S

Two Options:

down-samplein x:

:171x 68`------ 1

90 x : 35 f------- j

in

up-sample

in y:

NRAO Data.- Non-uniform data samples areinterpolated-.

0 Data values: dx (azm) , dy (elv) are used to form a rectangular coordinatearray.

0 First interpolated to a uniform rectangular grid (azm-elev),

• A rectangular coordinate grid of 17 by 68 is formed and then the 5806 fhudata values are interpolated tothis grid using cubic interpolation.

12

NRAO Data & Sampling . 0'M

20 40 60 ao 20 40 so SO 40 60 80

I Ft10 410 31) 40 so 60 71) ?1 10 20 4 17 4 0 so 60 7A du to 20 30 40 so so 70 80

...... 0. 2tt

..... ..-0 2 -------------

0 217 40 80 60 100 L .... .... .....in 20 10 40 50 to 71) 0 40 42

1 1 1

0 2 4 ri 6 0 8 0 100

V =: 43.1 GHz; k = 6.96 mm

Azimuth direction (x), approximately 350 samples/per scan line.

Sampling in Azimuth == 3600*( 1 80/pl)*(dx(25 I)-dx(250)) = 2® Arcsec / pixel = px = 1. 1732e-05 radians

Qx =: k /(D*px) = 6.96e-3 / (100* 1. 1732e-05) = 5.9325

Elevation direction (y), 17 scan lines

Sampling in Elevation = 3600*( 180/pi)*(dy(5600)-dy(250)) /17 = 7®5 Aresee / pixel = py = 3.636le-05 radians

Qy = ^ /(I3 * x) = 6.96e-3 / (100 * 3.63 6 1 e-05) = 1.9141

Nyquist sampling is 7.2 arcsec / sample, Q =: 2; Under-sampled by 0.96 in Elevation, over-sampled by 2.97 in

Azimuth

13

NRAO GBT Aperture 0

ringsPanels are arranged in such a way that

14

S5 o

100

ISO

20

250

o

100

150

00

250

GBT Fourier Model 0

Note that Translation Shift of Fourier Transform produces a phase factor:

'3[g(x - x0 )] - G((t))e—i27r(0xo

15

0

Using the formula for edge taper in dB:

O^

^ a.a

CLQ^

cuW>0A

L0,3

0.2

t

............,r

P' SY

4

---------- Al

amplitude variation:

AA dB = 101og[(A 1 / A 2 )2 ] = 201og(1 /0.18)15 dB

A2"50,

i1i -3p ^20 .11 f+ i6 20 30 4CO Sit

meters16

Pupil Illumination - II a'

A(r) =1, (uniform)

-- exp[- r2 /2U2 ], (tapered Gaussian)

with 6 — 0.3 9 from PTCSPN47.pdf

... the aperture plane amplitude distribution, that is, the illumination of the primary surface. This wasapproximated as a well-centered and circular Gaussian with a width (in radius-normalized units) definedby a = 0.3, which corresponds to 14.5 dB of illumination taper at the edge of the dish ...

0

Ccc

0-

r

Y

°^tl

r ` q

f3 Ah _f = it -i 63 h 9i1 M ?A 4n 51

meters

6 = 0.55

amplitude variation:

AAdB =10log[(A 1 / A 2 )2 ] = 20log(1 / 0.18)

15 dB

17

0Challenge for ITA Phase Retrieval

• Two incoherently subtracted irradiance val s appear in e GBT data.

• Data collection process, I — Il —12

• For the ITA approach o work, these irradiance v es should be theresult of one FFT.So make the approximation tat:

Coherent Approximation for Incoherent Data:

1-3fAL(-e,) +AR(+et )} 1 2 - 1scALc-e,>}1z +1sfAR(+e,) }Iz

or simply I-IL+LR

18

Coherent Approximation for Incoherent Data

3{AL(-B, )+AH(+B,)}Z = 3{A,(-B,)}1Z +13f AR( }B^ ))Z

---------------------------

-------------------------

beam t il t:

19

0

r1l2

I s

1%

Co Co

..........In

In

.... ........ ........ ... .............. . .......... .... .

.... .. ...... ......... .. .......... .......0.5

20

A50 100 150 200

0.2

Proof of Concept: PR SimulationInput Wavefront:

DemylpoRionGAS

OA

11.05

0

•05

41 2 3 4 5 6 7 8 9 10 11 12 13 14Two

# d-QW azhnuth tern alieiTation1 0 0 1 piston2 1 0 rsina Y-tilt,3 1 1 r Cosa X -tilt4 2 0 r An 2a 45" astigg (1 91 order)5 2 1 2 r 2 —1 defocus6 2 2 1' 2 sin 2a 01, astig (lot ogler)7 3 0 r 3 sin 3a 3011 trefoil

8 3 1 43r 2) sin a y-coma

9 3 2 ?-(3r2 —2)cosa x-coma

10 F--i 3 r21cos3a 00 trefoil11 1 3 3 r 4 sin4a 22.50 tetrafoil12 3 3 (4r.4 —3r 2)sin2a 450 astig, (210 order)

13 3 3 6r 4 —2r 2 -1 spherical14 3 3 (4r 4 — 3r 2) cos,2a 00 antig (2nd order)

15 3 31 r4 cos4a 00 tetrafbil

Malacara Basis Set:

21

RMS = 557 g; X/13; PV = 0.4561 X

ISO 200 2 5 0 301) 350

Resu lts:jj.15

13.1

.^5

405

Pup il lit

SQ

E(iQ

t5R

!0

€5Q

Recovered:

^Q

ESQ,:

_QQ

?Sq

SO 400 150 200 250

PR SimulationDual aperture model:

b 4 0

so

100

150

200

250

_n 11 2 3 4 5 6 7 8 9 10 11 12 13 14

T erm 22

80 100 120 140 1£r0 160

T

80

100

920

140

160

180

120

140

160

180

80

100

120

140

160

160

comment on GBT Beale Symmetry 3 ^ l

Model Data Incoherent Model

with the data:

23

Incoherent Data: abso duaI wavefront:

50 50

00. ..

.

.... ...,so 150

250 25050 100 150 200 250

50

200

50 100 150 200 250

Sty 100 M 20A 2,150

Recovered:

ISO

200

250

ISO 200 250 300 X50

ISO

no

250

300

310

Results:

(1,15

0.1

Decoaipo,*ion 50

wo

M

200

250

Incoherent PR Results (simulation) 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14T emi

24

Recovered.Pup il litResu lts:NCwPOAM

inpcat

Left, 6 ams ...plgltt seam

[d, 1

0.1

-1.1.QS

4 1

-0,1 c

-0

20 40 60 RO 100 20 40 60 80 10 0

40

60

80

100

3-SO

'100

2$0

3013

3613

20 40 60 00 100

50

100

150

200

20

Fo

40

60

80

100

Incoherent PR Results - worst case-- S _ ,^ 2 waves beaiii til t

Incoherent Model: dual r :

s

Tea

25

1 Ott 60 80 100 120 440 160 180 200 22

a

Can also tune parameters bymatching the FIFT of the data450 200 250 300 350

301)

26

020

40

60

80

100

20

40

60

80

100

so100

150

200

250

300

350

400

450

100 20 40 60 80 100

Recovered:20 40 60 80 100

Pupil Amplitude:

so

too

150

200

2"

20

40

60

80

100

110 1-1 TO

U

0 15

U.1

41.

, ....

V*

D ec, om p offi on

Lett Ap ertureRight Aperture

............

. . . . . . . . . . 7 . . . . . . . . . . . . . . . .

20 40 60 80 100

1 2 »- 4 5 6 7 8 9 10 11 12 13 14 17 em)

27

so

100

150

200

250

300

3S3

400

450

500

^{ C0^i 0

0

100

4

60

100

20 40 60 80 100

20

40

60

80

too

50

100

154

200

250

imLm

Wavefront Sensing Results applied to a w a

GBT Data - 2Data:GBT

Model: wavefront:50

104

750

200

250

300

3111

400

450

500

Resu lts:

0.06

OM

8,02

V

—0,02

-0,84

-0,06

°0x38

-0A

rib 12

40 60 80 100

Pup il lit0 40 60 80 100

Hecovere :1apobon

1 2 8 4 5 6 7 8 9 10 11 12 13 14 1^

T28

Summary 0

29