Wave Datacomm 2

  • Upload
    mint

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • 7/26/2019 Wave Datacomm 2

    1/35

    DATA COMMUNICATIONandCOMPUTER NETWORKS(Part 2)

    Information

    This is a continuation of Data Communication and Computer Networks (Part 1), which should be available

    from the same source. This file is created for 1stSemester, 2011.

    Chapter 8: Switching

    Switching

    Circuit-Switched ( )

    Packet-Switched ()

    o

    Datagram network

    o Virtual-circuit network

    Message-Switched

    Circuit-Switched Networks

    ( matrix switch) ( )

    timing diagram 3 Setup (connect), data transfer Teardown (disconnect)

    Figure 1 Timing diagram of circuit-switching

  • 7/26/2019 Wave Datacomm 2

    2/35

    Data Communication and Computer Networks, part 2 2

    Datagram network

    packet "" router routing table map ( layer 3)router routing (circuit switch)

    datagram network () datagram network ( circuitswitch)

    Figure 3 Timing diagram of datagram network

    Virtual-circuit network

    circuit switching datagram network packet-switched circuit-switched setup time ""

    virtual circuit datagram "virtual-circuit identifier" (VCI) virtual circuit ""

    address link

    tablelookup waiting time

    Figure 2 Routing Table

  • 7/26/2019 Wave Datacomm 2

    3/35

    Data Communication and Computer Networks, part 2 3

    Figure 4 data transmission using virtual-circuit switching

    Figure 5 Timing diagram of virtual-circuit switched network

    Switching Circuit-Switch Datagram Virtual-Circuit

    Delay Time Connect/Disconnect Hop waiting-time Setup/Teardown

    Yes No No

    Yes No YesWaiting Time

    (between hops)

    None High Low

    ( Switching)

    ( VCI)

    Switch crosspoint crosspoint /

  • 7/26/2019 Wave Datacomm 2

    4/35

    Data Communication and Computer Networks, part 2 4

    Figure 6A simple switch

    (crosspoint)

    Number of Crosspoints in a Switch

    N M crosspoint N*N switch switching 3-stage switch

    Figure 7 3-stage switch

    3 stage () 1 N n crossbar N/n crossbar k stage 1 3 stage 3 stage 1

    crosspoint

    Stage 1 N/n n k

    o crosspoint kN

    Stage 2 k N/n N/n

    o crosspoint k (N/n)2

  • 7/26/2019 Wave Datacomm 2

    5/35

    Data Communication and Computer Networks, part 2 5

    Number of Crosspoints for 3-stage switch

    Example: Design a three-stage 200-by-200 switch (N=200) with k=4 and n=20 Crosspoint one-stage

    Crossbar Stage () N/n = 200/20 = 10

    Crossbar Stage k = 4

    1-Stage Crosspoint 3-stage crosspoint 2000/40000 = 5% 1-stage

    Clos Criterion

    non-blocking Clos Criterion

    Clos Criterion

    ( )Example: Clos Criterion

    n = sqrt(200/2) = 10 ( "") k >= 2n-1 = 19 ()

    stage 10 1920 (20*(10*19) points)

    stage 19 10 10 (19*10*10 points)

    stage stage

  • 7/26/2019 Wave Datacomm 2

    6/35

    Data Communication and Computer Networks, part 2 6

    9500 points ( "non-blocking")

    crossbar 3-stage switching

    Time-slot interchange & TST Switch

    switching crossbar time-space-time switch

    Figure 8Time-slot interchange

    Packet Switch

    circuit

    switching fabric lookup table

    Banyan Switch

    binary switch switch

    Chapter 10: Error Detection and Correction

    forward error correction (

    ) retransmission

    Data Corruption

    Common Errors

    Single-bit Error

    00000010 00001010

  • 7/26/2019 Wave Datacomm 2

    7/35

    Data Communication and Computer Networks, part 2 7

    Burst Error

    error 0100010001000011 0101110101100011 error ( error )

    Basics / check digit extra bit

    convolute code

    Block Coding

    2k

    k bit n bit 2n ("" 2k)

    Hamming Distance

    bit pattern 2 XOR 1

    d(000,011) = 2 000 XOR 011 = 011

    d(10101,11110) = 3 10101 XOR 11110 = 01011

    minimum Hamming distance Hamming distance

    Data Codeword

    00 000

    01 011

    10 101

    11 110

    Figure 9 Data-Codeword table

    x,y (x!=y) d(x,y) = 2 minimum Hamming distance = 2 valid word 2 detect error error 1 ( error size minimum Hamming distance)

    Data Codeword

    00 00000

    01 01011

    10 01101

    11 11110

  • 7/26/2019 Wave Datacomm 2

    8/35

    Data Communication and Computer Networks, part 2 8

    Figure 10 Revised table

    minimum Hamming distance = 3 3 bit ( invalid word )

    Rules of Hamming Distance

    Minimum Hamming Distance Rules

    Detect minimum s -> Distance s+1

    Correct maximum t -> Distance 2t+1

    Example: hamming distance dmin=4 ( -)

    Detect: s+1 = 4 s=3

    Correct: 2t+1 = 4 t=3/2 t=1

    Linear Block Codes

    Parity Checking

    hamming distance = 2 1 "" "" 0 1

    0000 -> 00000

    0001 -> 00011

    ...

    0110 -> 01100

    ( Even Parity 1 Odd Parity 1 ) 1 parity checker parity syndrome bit 0

    dmin= 2 detect1 bit parity check error 11011 ---(3)---> 00111 --> 1 detect1

    2D Parity parity

    1 1 0 0 1 1 1 1

  • 7/26/2019 Wave Datacomm 2

    9/35

    Data Communication and Computer Networks, part 2 9

    3 bit

    Parity 2D parity

    Hamming Code

    redundancy bit

    Table 1 Hamming code bit positions (1-17)

    Bit no. 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

    Bit type d R16 d d d d d d d R8 d d d R4 d R2 R1

    BitCoverage

    R1 X X X X X X X X X

    R2 X X X X X X X X

    R4 X X X X X X X X

    R8 X X X X X X X X

    R16 X X

    Redundancy (R) power-of-2 ( parity

    parity )

    m>=2 redundancy bit m 2m-m-1 data bits* parity parity 1, 2, 4 () 1+2+4=7

    redundant bit ()

    Cyclic Codes

    Cyclic Code Cyclic Code modulo Cyclic Code modulo (0-1 = 1)

    *http://en.wikipedia.org/wiki/Hamming_code

    1 0 1 1 1 0 1 1

    0 1 1 1 0 0 1 0

    0 1 0 1 0 0 1 1

    0 1 0 1 0 1 0 1

    1 1 0 0 1 1 1 1

    1 0 0 1 1 1 1 1

    0 1 1 1 0 0 1 0

    0 1 1 1 0 1 1 1

    0 1 0 1 0 1 0 1

    http://en.wikipedia.org/wiki/Hamming_codehttp://en.wikipedia.org/wiki/Hamming_codehttp://en.wikipedia.org/wiki/Hamming_codehttp://en.wikipedia.org/wiki/Hamming_code
  • 7/26/2019 Wave Datacomm 2

    10/35

    Data Communication and Computer Networks, part 2 10

    0-1=1 cyclic code CRC http://en.wikipedia.org/wiki/Cyclic_redundancy_check

    codeword generator( 0 )

    codeword 1001110 CRC generator = 1011

    Binary as Polynomial

    binary polynomial0b1000011 => x6+x+1 6 remainder 6 bit

    polynomial

    ....

    http://en.wikipedia.org/wiki/Cyclic_redundancy_checkhttp://en.wikipedia.org/wiki/Cyclic_redundancy_checkhttp://en.wikipedia.org/wiki/Cyclic_redundancy_checkhttp://en.wikipedia.org/wiki/Cyclic_redundancy_check
  • 7/26/2019 Wave Datacomm 2

    11/35

    Data Communication and Computer Networks, part 2 11

    Choosing a Generator

    CRC codeword Codeword c(x) =M(x) + R(x) codeword (message + remainder)g(x) Generator

    generator codeword g(x)|c(x)error detect g(x)|(c(x) + e(x)) g(x) | e(x) detect g(x) error g(x) = 1 1|e(x)

    g(x) x0= 1 single-bit error x2+1

    +1 polynomial x3+x2 x2(x+1) x2= 0b100 error 0b1000 0b100|0b1000 error detect

    1 Example: g(x) error

    x+1 ( 1)

    x3( x3)

    1 ( 1 )

    Double Error

    error generator xt+1 ( 0

  • 7/26/2019 Wave Datacomm 2

    12/35

    Data Communication and Computer Networks, part 2 12

    x5+x3+x+1 x+1 x6+x4+x2+x+x5+x3+x+1 (x+x=0 modulo) x+1 x+1|e(x)

    Generator

    Cyclic code Burst error generator detect shift

    generator satisfy g(x)|e(x) burst error generator error 1-(1/2)(r-1) burst error generator error 1-(1/2)r

    Polynomial

    1 ( xn polynomial ) (single-bit error ) xt+1 2

  • 7/26/2019 Wave Datacomm 2

    13/35

    Data Communication and Computer Networks, part 2 13

    checksum 36+9 = 45 wrap 1011012 wrap 1101+10 = 1111 = 15 complement 0

    Chapter 11: Data Link Control

    Error Control (Detection/Correction codes) Data Link Layer Data LinkControl Data Link Error

    Introduction

    Transmission Time () Propagation Delay

    "" Transmission Time Bit Rate Bit Rate * Propagation Delay Bandwidth Delay Product

    file download propagation delay download transmission time

    ...

    error

    processing

    Acknowledgement

    () ...

    o retransmission Automatic Repeat Request (ARQ)

    Importance of Bandwidth Delay Product

    delay ack

    Framing

    Frame Structure

    o Flag

  • 7/26/2019 Wave Datacomm 2

    14/35

    Data Communication and Computer Networks, part 2 14

    o Header

    o Trailer error control

    Escaping

    bit pattern Flag = 00110 00110 (escape sequence "\") stuffing

    unstuffing

    Flag Header Trailer Flag

    ... ... ... ... ...Flag ESC

    ... ... ... ... ...Flag ESCESCESC

    From Network Layer

    Stuff

    Send

    Flag Header Trailer Flag... ... ... ... ...Flag ESCESCESC

    ... ... ... ... ...Flag ESC

    Unstuff

    To Network Layer

    Figure 11 Stuffing and Unstuffing

    Bit-oriented protocol

    Data Link

    Protocols (actually "mechanisms")

    Noiseless

    o Simplest

    o Stop-and-Wait

    Noisy

    o

    Stop-and-Wait ARQ

    o Go-Back-N ARQ

    o Selective Repeat ARQ

  • 7/26/2019 Wave Datacomm 2

    15/35

    Data Communication and Computer Networks, part 2 15

    Noisy ARQ

    Simplest Protocol

    Sender: Wait from Network Layer -> Physical Layer

    Receiver: Wait from Physical Layer -> Network Layer

    Receiver

    error control flow control

    Stop-and-Wait

    ACK

    Figure 13 Stop-and-Wait protocol

    Stop-and-Wait ARQ

    Stop-and-Wait timeout ACK

    ACK 0 1 ACK frame ( Frame 0 ACK 1)

    Figure 12Simplest Protocol

  • 7/26/2019 Wave Datacomm 2

    16/35

    Data Communication and Computer Networks, part 2 16

    Figure 14 Stop-and-Wait ARQ

    Go-Back-N ARQ

    Stop-and-Wait ARQ send/receive window 0/1 Sending Window 2m-1 sequence number m

    Figure 15Go-Back-N ARQ (Left one is good, right one is bad)

  • 7/26/2019 Wave Datacomm 2

    17/35

    Data Communication and Computer Networks, part 2 17

    Selective-Repeat ARQ

    Go-Back-N ARQ ( Go-Back-N ARQ Receiving Window 1)

    Figure 16 Selective-Repeat ARQ, m=2 (left: good, right: bad)

    Sending Window Receiving Window 2m/2

    Figure 17 Another example of Selective-Repeat ARQ (m=3)

    ACK NAK (Negative-Acknowledge) Sender

    Table 2 ARQs' Window Sizes

    Component Stop-and-Wait ARQ Go-Back-N ARQ Selective-Repeat ARQ

    Send Window 1 2m-1 2

    m/2

    Recv Window 1 1 2m

    /2

  • 7/26/2019 Wave Datacomm 2

    18/35

    Data Communication and Computer Networks, part 2 18

    High-level Data Link Control (HDLC)

    (bit-oriented)

    HDLC point-to-point multipoint Normal Response Mode primary/secondary

    Figure 19 HDLC Normal Response Mode

    Asynchronous Balanced Mode

    Figure 20HDLC Asynchronous Balanced Mode

    HDLC Go-Back-N ARQ piggybacking ACK/NAK

    Point-to-Point Protocol (PPP)

    point-to-point (byte-oriented)

    Figure 21 PPP Frame

    Escape Byte 01111101 (Escape Byte Flag \n \t \r )

    Figure 18 HDLC Piggybacking

  • 7/26/2019 Wave Datacomm 2

    19/35

    Data Communication and Computer Networks, part 2 19

    Figure 22 State diagram of PPP

    PPP state state PPP

    PAP

    authenticate ( terminate)

    Figure 23PAP

    PAP user/pass

    Challenge-Handshake Authentication Protocol (CHAP)

    server Challenge user f(challengeValue, password) response server

  • 7/26/2019 Wave Datacomm 2

    20/35

    Data Communication and Computer Networks, part 2 20

    () f(challengeValue,password) password

    Figure 24 CHAP

    Chapter 12: Multiple Access

    Multiple Access

    Random Access

    ALOHA

    2Tframe

    Figure 25Pure ALOHA vulnerable time (If frame A exists, cant send after-B-before-C)

  • 7/26/2019 Wave Datacomm 2

    21/35

    Data Communication and Computer Networks, part 2 21

    Load Factor

    Load Factor 1 Load factor Throughput ALOHA Throughput S = G exp(-2G) Smax= 0.184 G=1/2 (50%)

    G Smaxhttp://www.wolframalpha.com/input/?i=d+%28x+exp%28-2x%29%29+%2Fdx Show Steps

    Algorithm

    Figure 26 Algorithm for Pure ALOHA

    Slotted ALOHA

    ALOHA Vulnerable Time 2TframeTframeS = G exp(-G) Smax= 0.368 G=1

    CSMA

    Carrier-Sense Multiple Access

    CSMA/CD

    ( .) propagation time ( padding )

    http://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdxhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdxhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdxhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdxhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdxhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdxhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fwww.wolframalpha.com%2Finput%2F%3Fi%3Dd%2B%2528x%2Bexp%2528-2x%2529%2529%2B%252Fdx
  • 7/26/2019 Wave Datacomm 2

    22/35

    Data Communication and Computer Networks, part 2 22

    A B C

    Collision NOT detected, but B cannot receive.

    A B C

    Solution

    t1

    t1+Tp

    t1+Tf

    t1+2Tp

    Tframe>=2Tprop

    Otherwise collision will slip and detection will

    fail. See the diagram.

    Figure 27 CSMA/CD Solution

    frame 2Tp Tf>=2Tp

    : CSMA/CD bandwidth 10Mbps propagation time 25.6us

    Tp= 25.6us Tf>= 2TpTf>= 51.2us

    Frame Size = Frame Time (s) * Data Rate (bps) = 51.2us * 10Mbps = 512 bits

    TL Note: ( Unicode )

    Figure 28 Flow diagram of CSMA/CD

    Controlled Access

    3

  • 7/26/2019 Wave Datacomm 2

    23/35

    Data Communication and Computer Networks, part 2 23

    Reservation 1 Select-Poll Slave/Master Master Select Slave

    Poll Slave Token Ring

    Ring Topology (logical order)

    Channelization

    TDMA & FDMA

    Time multiplexing Frequency multiplexing multiple access

    Time

    Frequency

    A B C D

    Ch

    Ch

    Ch

    Ch

    Time

    Frequency

    A

    B

    C

    DCh

    Ch

    Ch

    Ch

    Figure 29TDMA and FDMA

    CDMA

    [+1 +1] [+1 -1]

    0 -1 1 +1 0

    A [+1 +1] 1 ( 1) [+1 +1]B [+1 -1] 0 ( -1) [-1 +1]

    [0 +2]

    [0 +2]A [+1 +1] [0 +2] 2/2 = 1

    B [+1 -1] [0 +2] -2/2 = -1

  • 7/26/2019 Wave Datacomm 2

    24/35

    Data Communication and Computer Networks, part 2 24

    Walsh Table

    [ ]

    [ ] [ ] * + [

    ] * + * +

    * + * +

    Channel (sum)

    A:0

    B:0

    C:-

    D:1

    Code Result

    (Nothing)

    Figure 30 Mixing together (4 CDMA)

    CDMA

    Chapter 13: Ethernet

    IEEE 802

    IEEE

  • 7/26/2019 Wave Datacomm 2

    25/35

    Data Communication and Computer Networks, part 2 25

    Figure 31 OSI IEEE

    IEEE 802.3: MAC Protocol

    Preamble SFD Dest. Addr Source AddrLength/

    TypeData & Padding CRC

    Preamble = 56bytes 10101010

    SFD = 10101011

    7 Bytes 1B 6 Bytes 6 Bytes

    Ethernet: Type

    IEEE: Length

    2 Bytes 4 Bytes

    Payload Length: 46~1500B

    Physical Layer Frame Length: 64~1518 Bytes

    Figure 32 MAC Frame

    Address MAC MAC Address

    Ethernet (MAC) Address

    6 bytes 06:01:02:01:2C:4B

    OUI (Organizationally-Unique Identifier) ID NIC VendorOUI

    OUI http://standards.ieee.org/develop/regauth/oui/public.html

    OUI

    Unicast and Multicast

    OUI Unicast (0) Multicast (1) OUIYX:YY:YYX

    Least Significant Bit ABCDEFG HIJKLMN GFEDCBA NMLKJIH Bit G Unicast/Multicast Bit

    FF:FF:FF:FF:FF:FF broadcast

    Wireshark ARP Request Broadcast

    http://www.google.com/url?sa=D&q=http%3A%2F%2Fstandards.ieee.org%2Fdevelop%2Fregauth%2Foui%2Fpublic.htmlhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fstandards.ieee.org%2Fdevelop%2Fregauth%2Foui%2Fpublic.htmlhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fstandards.ieee.org%2Fdevelop%2Fregauth%2Foui%2Fpublic.htmlhttp://www.google.com/url?sa=D&q=http%3A%2F%2Fstandards.ieee.org%2Fdevelop%2Fregauth%2Foui%2Fpublic.html
  • 7/26/2019 Wave Datacomm 2

    26/35

    Data Communication and Computer Networks, part 2 26

    Standard Ethernet

    Types

    10Base5 coax 500m 10Base2 185m ( 2) 10Base-T TTwisted Pair UTP + Hub 10Base-F F Fiber

    Standard Ethernet Manchester Encoding

    Bridges & Switches

    Hub Star bus bus

    bandwidth

    bridge

    Bridge

    collision domain

    Bridge

    Figure 33 Blue = Collision Domain

    Fast Ethernet

    Topology

    point-to-point

    Implementations

    100Base-TX copper ( ) Cat5 UTP

    100Base-FX fiber

    100Base-T4 Cat3 hack Cat5

    Encoding

    Manchester baud/bit = 2 MLT-3 4B/5B

    Gigabit Ethernet

    Ethernet encoding block line encoding

  • 7/26/2019 Wave Datacomm 2

    27/35

    Data Communication and Computer Networks, part 2 27

    Chapter 14: 802.11: Wireless LANs

    BSS and ESS

    BSS (Basic Service Set) AP ad-hoc AP infrastructure network BSS 1 AP 1 AP ( KUWIN) BSS ESS(Extended Service Set) LAN Gateway

    Figure 34 BSS and ESS

    Access

    Access

    Controlled Access (Point coordination function)

    Random Access (Distributed coordination function)

    PCF DCF

    Wi-Fi?

    Wi-Fi Wireless Fidelity 802.11 Wi-Fi Certified ()

    CSMA/CA with RTS/CTS

    CSMA/CA () AP

    RTS (Request to Send) AP

    AP CTS (Clear to Send)

  • 7/26/2019 Wave Datacomm 2

    28/35

    Data Communication and Computer Networks, part 2 28

    o o

    Data AP ACK

    RTS

    IFS

    IFS Collision Avoidance priority

    DIFS (Distributed IFS) SIFS (Short IFS)

    DIFS > SIFS

    Addressing

    Addressing 4

    To DS From DS Addr 1 Addr 2 Addr 3 Addr 4

    0 0 Destination Source BSSID 0 1 Destination Sending AP Source AP

    1 0 Receiving AP Source Destination AP1 1 Receiving AP Sending AP Destination Source AP AP

    A AP1 AP2Data1

    Data1

    ToDS,FromDS=(1,0)

    Address1= AP1

    Address2= A

    Address3= B

    Address4= None

    B

    ToDS,FromDS=(1,1)

    Address1= AP2

    Address2= AP1

    Address3= B

    Address4= A

    ToDS,FromDS=(0,1)

    Address1= B

    Address2= AP2

    Address3= A

    Address4= None

    Data1

    802.11 Addressing Mechanism

    X

    ToDS,FromDS=(0,0)

    Address1= Y

    Address2= X

    Address3= BSSID

    Address4= None

    YData2

    BSSID

    Figure 36How to choose addressing

    address MAC Address

    Figure 35CSMA/CA with RTS/CTS

  • 7/26/2019 Wave Datacomm 2

    29/35

    Data Communication and Computer Networks, part 2 29

    RTS and CTS

    Figure 37 RTS and CTS Frames

    Hidden and Exposed Node

    B A C

    Hidden Node:

    B and C cannot see each other

    Figure 38 Hidden Node Problem

    B C B C A A CSMA/CD CA

    !

    RTS/CTS (Request/Clear to Send) CTS (Timeout RTS) RTS/CTS ()

    B A C D

    Exposed Node:

    C overhearsA-to-B Transmission

    Figure 40Exposed Node

    Exposed Station node A B C C D C A

    MACA ( CSMA/CA Packet Radio) KA9Qhttp://www.ece.rice.edu/~camp/MAC/maca.pdf

    Figure 39RTS and CTS

    http://www.ece.rice.edu/~camp/MAC/maca.pdfhttp://www.ece.rice.edu/~camp/MAC/maca.pdfhttp://www.ece.rice.edu/~camp/MAC/maca.pdfhttp://www.ece.rice.edu/~camp/MAC/maca.pdfhttp://www.ece.rice.edu/~camp/MAC/maca.pdfhttp://www.ece.rice.edu/~camp/MAC/maca.pdf
  • 7/26/2019 Wave Datacomm 2

    30/35

    Data Communication and Computer Networks, part 2 30

    C ( ) Exposed Node

    ISM Band

    ISM (Industrial, Scientific and Medical) band ( .) 915MHz, 2.450GHz 5.800GHz ( ITU-R)

    902-928 MHz 2.400-2.500 GHz 5.725-5.875 GHz

    Source: http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013

    915MHz 2.450GHz 5.800GHz

    Figure 41ISM Band

    Bluetooth

    Personal Area Network (PAN) Bluetooth Piconet Master 1 Slave 7( 7active7)

    Slave Master Scatternet

    Figure 42 Piconet and Scatternet

    Bluetooth Frequency Hopping Spread Spectrum (FHSS)

    Timeslot frequency hopping Poll-Select Slave timeslot

    http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013

    http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013
  • 7/26/2019 Wave Datacomm 2

    31/35

    Data Communication and Computer Networks, part 2 31

    timeslot frame 3 5 timeslot () max data capacity

    Chapter 15: Connecting LANs

    Physical Layer

    Hub () Repeater Repeater Hub

    Hub Repeater Collision Domain ()

    A B Repeater C D

    Collision Domain

    Broadcast Domain

    Figure 43 Repeater/Hub, Broadcast and Collision Domains

    Repeater (noise )

    Data Link Layer

    Data Link Layer Bridge Switch Collision Domain

    Bridge Switch MAC Address

    (, )

    node ( ) Bridge update

    Bridge (Collision Domain ) Broadcast Broadcast Domain

  • 7/26/2019 Wave Datacomm 2

    32/35

    Data Communication and Computer Networks, part 2 32

    A B Bridge C D1 2Collision Domain Collision Domain

    Broadcast Domain

    Addr | Port

    A | 1 B | 1

    C | 2

    D | 2

    Spanning Tree Protocol

    () Bridge Spanning Tree Protocol (STP)

    Bridge Shortest Path Tree

    Path Cost Bridge LAN Cost= 1 LAN Bridge Cost = 0

    What about Switch?

    Switch cut-through

    Network Layer

    Network Layer Router Bridge IP Address Broadcast Broadcast Domain

    A B

    Bridge

    C D

    Broadcast Domain

    Router

    E F

    Bridge

    G H

    Broadcast Domain

    Collision Domain Collision Domain

    Collision Domain Collision Domain

    Figure 45Bridge and Router

    Figure 44STP

  • 7/26/2019 Wave Datacomm 2

    33/35

    Data Communication and Computer Networks, part 2 33

    Backbone Network

    ( ) LAN Star Networkhigh-speed switch LAN WAN Link LAN WAN RouterBackbone Network

    VLAN

    VLAN Bridge VLAN VLAN Switch

    Switch A

    A1

    A2 A3

    A4

    A5 A6

    Switch B

    B1

    B2

    B3 B4

    B5 B6

    VLAN 1

    VLAN 2

    VLAN 3

    Backbone

    Figure 46 VLAN

    VLAN IEEE 802.11q

  • 7/26/2019 Wave Datacomm 2

    34/35

    Data Communication and Computer Networks, part 2 A

    Appendix

    Line Coding Example

    Check problem statement for level definitions, etc. before using this chart.

    Data 01 1 1 0 0 1 1

    Unipolar

    NRZ

    NRZ-I

    RZ

    Data 01 1 1 0 0 1 1

    Manchester

    Diff.

    Manchester

    Bipolar AMI

    List of Standards (that we should know)

    Name Description Common subset Related Names

    IEEE 802.3 Ethernet LAN

    IEEE 802.11 WLAN Wi-Fi Wi-Fi Alliance

    IEEE 802.15 WPAN Bluetooth Bluetooth SIG

    IEEE 802.16 Broadband Wireless Access WiMAX

    List of Equations

    Decibels:

    o o o

    Capacities & Bit Rate

    o Nyquist: o Shannon:

  • 7/26/2019 Wave Datacomm 2

    35/35

    Data Communication and Computer Networks, part 2 B

    Pulse Rate Quantization Noise Baud Bandwidth & Signal Rate

    Multiplexing:

    o Multiplexed Frame Rate = Channel Bit Rate

    o Multiplexed Bit Rate = (Number of Channels) * (Bit Rate of Each Channel)

    Switching:

    o Crosspoints: o 3-Stage Crosspoints: o Clos Criteria:

    (Worth reading: Page5)

    Error Correction

    o Detect minimum s -> Distance s+1

    o Correct maximum t -> Distance 2t+1

    ARQ Window Sizes: See Page17

    Choose a CDMA Key: See Page24

    WLAN Addressing: See Page28

    See you in Network!

    ()

    LunaticNeko4CPE23

    Draft 4

    2011-10-05 22:38:02