46
Wannier Function Based First Principles Method for Disordered Systems Tom Berlijn , Wei Ku PhD postdoc CMSN network

Wannier Function Based First Principles Method for Disordered Systems Tom Berlijn, Wei Ku PhD postdoc CMSN network

Embed Size (px)

Citation preview

Wannier Function Based First Principles Method for Disordered

SystemsTom Berlijn, Wei Ku

PhDpostdoc

CMSN network

Collaborators

Wei Ku Dmitri

VoljaChi-Cheng

Lee

Chai-Hui

LinWei-Guo

Yin

Limin

Wang

William

Garber

Peter

HirschfeldYan

Wang

Theory

Theory

Andrivo

Rusydi

Tun Seng

Herng

Dong

Chen Qi

Experiment

Ding

Jun

Outline

• Introduction: Super Cell Approximation

• Method : Effective Hamiltonian (Wannier function) [1]

• Application 1: eg’ pockets of NaxCoO2 [1]

• Application 2: oxygen vacancies in Zn1-xCuxO1-y[2]

[1] T. Berlijn, D. Volja, W. Ku, PRL 106 077005 (2011)

[2] T. S. Herng, D.-C. Qi, T. Berlijn, W. Ku, A. Rusydi et al, PRL 105, 207201 (2010)

Introduction:

Super Cell Approximation

What kind of disorder?Not like

But like

substitution interstitial vacancy

Goal: configurationally averaged spectral function of disordered systems from first principles

mean field vs super cell

<A(k,w) > = S A(k,w)iconfig i

Mean Field1

VCA: Virtual Crystal Approximation

CPA: Coherent Potential Approximation

no scattering

non-local physics missing1) A. Gonis, “Green functions for ordered and disordered systems” (1992)

Vvirtual crystal = (1-x) VA + x VB

non-local physics 1: k-dependent self-energy S(w,k)

w

kbut mean-field k-independent S(w)

non-local physics 2 : Large-sized impurity states (Anderson localization)

non-local physics 3 : Short Range Order

Approach: super cell approximation

problem

band folding

computational expense

solution

unfolding[1]

effective Hamiltonian[1] W. Ku , T. Berlijn, and C.-C. Lee, PRL 104 216401 (2010)

<A(k,w) > ≈ 1/N ( A1(k,w) + … + AN(k,w) )

Method:

Effective Hamiltonian

T. Berlijn, D. Volja, W. Ku, PRL 106 077005 (2011)

H = H0 + Si D(i) + Si,j D(i,j) + …

D(i) = H(i) - H0

D(i,j) = H(i,j) - D(i) - D(j) - H0

higher order moments

Concept: Linearityundoped linear 2-bodydisordered

Construction

1. DFT doped & undoped

2. Wannier-transformation

3. Linear superposition

1) Density Functional Theory

undoped

(normal cell)

1 impurity

(per super cell)

two DFT Calculations

Influence impurity

2) Wannier transfomation

DFT 1 impurity

2 Wannier transformations

2 Tight Binding Hamiltonians

undoped 1 impurity

DFT undoped

En

erg

yE

ner

gy

k

K

Hdft0 Hdft

(i)

|rn> = e-ik•r Unj(k) |kj>kj

3) Linear Superposition

Influence 1 impurity:

D(i) = Hdft(i) - Hdft

0

effective Hamiltonian N impurities:

Heff(1,…,N) = Hdft

0 + SiD(i)

Testing DFT v.s. effective Hamiltonian

x=0

x=2/3

x=1/8

Test : NaxCoO2

Effective HamiltonianDFTE

ne

rgy

(e

V)

Test : NaxCoO2

66 Wanier Functions

1 diagonalization

2019 LAPW’s + 164 LO’s

self consistency

Co-eg

Co-ag

Co-eg’

O-p

x=0

x=1

Test Zn1-xCuxO (rock salt)

x=1/4

ZnO CuO

Zn-d

Cu-d O-p hybrid

Cu-d

-8

-4

0

4

8

-8

-4

0

4

8

En

erg

y (

eV

)

Effective HamiltonianDFT

Test : Zn1-xCuxO (rock salt)

spin spin

spin spin

-8

-4

0

4

8

-8

-4

0

4

8

x=0

x=1/8

Test Zn1-xCuxO (rock salt)

x=1/4

-8

-4

0

4

8

-8

-4

0

4

8

-8

-4

0

4

8

-8

-4

0

4

8

En

erg

y (

eV

)

Effective HamiltonianDFT

Test : Zn1-xCuxO (rock salt)

spin spin

spin spin

Application 1:

eg’ pockets of NaxCoO2

T. Berlijn, D. Volja, W. Ku, PRL 106 077005 (2011)

Why NaxCoO2?High Thermoelectric

Power1

Unconventional Super Conductivity2 ?

1) I. Terasaki et al, PRB 56 R12 685 (1997)

2) K. Takada et al, nature 422 53 (2003)

Intercalation: NaxCoO2

Q) Does Na disorder destroy eg’ pockets3 ?

1) D.J. Singh, PRB 20, 13397 (2000)

2) D. Qian et al, PRL 97 186405 (2006)

3) David J. Singh et al, PRL 97, 016404-1 (2006)

LDA1 ARPES2

eg’

ag

configuration 1 configuration 50

+ . . . +

NaxCO2 : x0.30

50 configurations of ~200 atoms

En

erg

y (

eV

)

Co-ag

-0.20.00.2

-0.20.00.2

-4.2-4.0-3.8

0.20.1

Co-eg’

O-p

A) Na disorder does not destroy eg’ 1

En

erg

y (

eV

)non-local physics :

k-dependent broadening

0.2

0.1

0.0

-0.1H A G K

Co-ag

Co-eg’

k-dependent self energy S(k,w)?

non-local physics : short range order

Na(1) above Co

Na(2) above Co-hole

Simple rule: Na(1) can

not sit next to Na(2):

non-local physics : short range order

0.2

0.1

0.0

-0.1H A G K 0.0 0.2 0.4 0.6

A(k,w) A(k0,w) @ k0=G

Ene

rgy

(eV

)

X=0.30

0.2

0.1

0.0

-0.1H A G K 0.0 0.2 0.4 0.6

A(k,w) A(k0,w) @ k0=GE

nerg

y (e

V)

X=0.70

0.3 0.2 0.1 0.0-0.1-0.2

0.3 0.2 0.1 0.0-0.1-0.2

SRO suppresses ag broadening?

Na(1) islandNa(2) island

Application 2:

oxygen vacancies in Zn1-xCuxO1-y

T. S. Herng, D.-C. Qi, T. Berlijn, W. Ku, A. Rusydi et al, PRL 105, 207201 (2010)

Experiment

First principles simulation

Microscopic picture

• Film growth & charactarizationDr. T. S. Herng (NUS)Prof. Ding Jun (NUS)

• Beamline scientistsDr. Gao Xingyu (NUS)Dr. Yu Xiaojiang (SSLS)Cecilia Sanchez-Hanke

(NSLS)

• XAS & XMCDDr. Qi Dongchen (NUS)Prof. A. Rusydi (NUS)

Tom BerlijnWei Ku

three representative films

1. ZnO

2. Cu:ZnO O-rich (2% Cu)

3. Cu:ZnO O-poor (2% Cu & ~1% oxygen vacancies VO)

SQUID

ZnO @ 300K

ZnO:Cu @ 300K (O-rich)

ZnO:Cu @ 5K (O-poor)

ZnO:Cu @ 300K (O-poor)

Observation: oxygen vacancy induce FM @ 300K in Cu:ZnO

NB: 2 Cu-d9 + Vo = 2 Cu-d10

Q: what is the role of oxygen vacancies?

Q What is the influence of the oxygen vacancies?

oxygen vacancy = attractive potential + 2 electrons

Q ) Where do the electrons go? A) one-particle spectral function <A(k,w)>

of Zn1-xCuxO1-y with attractive potential VO but without its donated electrons

Zn Cu↓ Cu↑ O VO

configurationally averaged spectral function

<A(k,w) > ≈ 1/10 ( A1(k,w) + … + A10(k,w) )

configuration 1 configuration 10

≈1/10 +….+

spectral function <A(k,w)>

conduction bandZn-4s

Cu-3d↑

valence band O-2p Cu-3d↓

VO

Cu-3d x 40

<A↑(k,w)> <DOS↑(w)> <DOS↓(w)> <A↓(k,w)>

Ene

rgy

(eV

)

Q) Where do the electrons go?

A) Cu upper Hubbard level(leaving VO empty)

Ene

rgy

(eV

)

<A↑(k,w)> <DOS↑(w)>

Cu-3d↑

VO

Zn-4s

O-2p

e- Cu-3d x 40

Ene

rgy

(eV

)

Cu-3d x 40

<A↑(k,w>

Cu-3d↑VO

Zn-4s

O-2p

Oxygen vacancy states |VO> are big

k-space real-space

FWHM ≈GM/5 oxygen vacancy

wavefunction <x|Vo>

radius ≈ 2.5 a

Ene

rgy

(eV

)

Cu-3d x 40

<A↑(k,w>

Cu-3d↑VO

Zn-4s

O-2p

But why are oxygen vacancy states |VO> so big?

k-space real-space

Attractive potential

|Vo> ≈ ½ (|Zn1-s> +|Zn2-s> +|Zn3-s> +|Zn4-s>)

Oxygen vacancy = attractive potential + 2 electrons

Attractive potential in the 4 neighboring Zn

Zn

O

1. Electrons go into |Cu-d↑>2. Oxygen vacancy states |VO> are big

First principles results

Microscopic picture

no vacancies with vacancies

Conclusion: oxygen vacancies mediate the Cu moments

VOCu d 9 Cu d 10

Outline

• Introduction: Super Cell Approximation

• Method : Effective Hamiltonian (Wannier function) [1]

• Application 1: eg’ pockets of NaxCoO2 [1]

• Application 2: oxygen vacancies in Zn1-xCuxO1-y[2]

[1] T. Berlijn, D. Volja, W. Ku, PRL 106 077005 (2011)

[2] T. S. Herng, D.-C. Qi, T. Berlijn, W. Ku, A. Rusydi et al, PRL 105, 207201 (2010)