58

Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Vyuºití v¥t o existenci a jednozna£nosti °e²ení

difereniciálních rovnic v modelování

Michal Kozák

Department of Mathematics, MAFIA

FNSPE CTU

23rd May 2015

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 1 / 21

Page 2: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Content

1 Motivation2 Review of existence theorems

1 Classical (and modern) existence theorems2 Existence of particular solutions3 Existence of non-trivial solutions

3 Application of Rabinowitz theorem1 Turing Instability in RD systems2 Existence of bifurcation branch3 Non-compactness and a priori estimates4 Summary Theorem5 Generalization

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 2 / 21

Page 3: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 4: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 5: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 6: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 7: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 8: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 9: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation

Mathematical model based on system of dierential equations:

chemical reactions, population models, movement of beams

Plausibility of numerical experiments

Plausibility of model

existence, number of solutions, qualitative properties, stability

y ′ = ky , y(0) = y0

y ′ = 3 3√y2, y(0) = 0

blow-up (a prior estimates)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 3 / 21

Page 10: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence clasical theory

ODE

y ′(t) = f (y , t), y(0) = y0

Peano theorem

f continuous, y ∈ C1Picard theorem

f Lipschitz, y ∈ C1

PDE

F (~x , t, u,D(u), · · · ,Dn(u)) = 0

CauchyKowalevski theorem

f , u real analytical

∂ur∂t

(t, x) =s∑

j=1

d∑i=1

aijr (x , u(t, x))∂uj∂xi

(t, x) + br (x , u(t, x))

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 4 / 21

Page 11: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence clasical theory

ODE

y ′(t) = f (y , t), y(0) = y0

Peano theorem

f continuous, y ∈ C1Picard theorem

f Lipschitz, y ∈ C1

PDE

F (~x , t, u,D(u), · · · ,Dn(u)) = 0

CauchyKowalevski theorem

f , u real analytical

∂ur∂t

(t, x) =s∑

j=1

d∑i=1

aijr (x , u(t, x))∂uj∂xi

(t, x) + br (x , u(t, x))

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 4 / 21

Page 12: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence clasical theory

ODE

y ′(t) = f (y , t), y(0) = y0

Peano theorem

f continuous, y ∈ C1Picard theorem

f Lipschitz, y ∈ C1

PDE

F (~x , t, u,D(u), · · · ,Dn(u)) = 0

CauchyKowalevski theorem

f , u real analytical

∂ur∂t

(t, x) =s∑

j=1

d∑i=1

aijr (x , u(t, x))∂uj∂xi

(t, x) + br (x , u(t, x))

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 4 / 21

Page 13: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence clasical theory

ODE

y ′(t) = f (y , t), y(0) = y0

Peano theorem

f continuous, y ∈ C1Picard theorem

f Lipschitz, y ∈ C1

PDE

F (~x , t, u,D(u), · · · ,Dn(u)) = 0

CauchyKowalevski theorem

f , u real analytical

∂ur∂t

(t, x) =s∑

j=1

d∑i=1

aijr (x , u(t, x))∂uj∂xi

(t, x) + br (x , u(t, x))

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 4 / 21

Page 14: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence clasical theory

ODE

y ′(t) = f (y , t), y(0) = y0

Peano theorem

f continuous, y ∈ C1Picard theorem

f Lipschitz, y ∈ C1

PDE

F (~x , t, u,D(u), · · · ,Dn(u)) = 0

CauchyKowalevski theorem

f , u real analytical

∂ur∂t

(t, x) =s∑

j=1

d∑i=1

aijr (x , u(t, x))∂uj∂xi

(t, x) + br (x , u(t, x))

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 4 / 21

Page 15: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence clasical theory

ODE

y ′(t) = f (y , t), y(0) = y0

Peano theorem

f continuous, y ∈ C1Picard theorem

f Lipschitz, y ∈ C1

PDE

F (~x , t, u,D(u), · · · ,Dn(u)) = 0

CauchyKowalevski theorem

f , u real analytical

∂ur∂t

(t, x) =s∑

j=1

d∑i=1

aijr (x , u(t, x))∂uj∂xi

(t, x) + br (x , u(t, x))

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 4 / 21

Page 16: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence modern theory

ODE

Carathéodory's theorem

f ∈ CAR, u ∈ AC ,|f (x , t)| ≤ h(t), h ∈ L1,

∀ε > 0∃δ > 0 :∑

j(bj − aj) < δ ⇒∑j |f (bj)− f (aj)| < ε.

PDE

weak formulation∫Ω∂tu(x , t)ϕ(x)−

∫Ω∂xu(x , t)∂xϕ(x) =

∫Ωf (x , t)ϕ(x), ϕ ∈ D(Ω)

u ∈ L2; Sobolev spaces, Lorentz spaces.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 5 / 21

Page 17: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence modern theory

ODE

Carathéodory's theorem

f ∈ CAR, u ∈ AC ,|f (x , t)| ≤ h(t), h ∈ L1,

∀ε > 0∃δ > 0 :∑

j(bj − aj) < δ ⇒∑j |f (bj)− f (aj)| < ε.

PDE

weak formulation∫Ω∂tu(x , t)ϕ(x)−

∫Ω∂xu(x , t)∂xϕ(x) =

∫Ωf (x , t)ϕ(x), ϕ ∈ D(Ω)

u ∈ L2; Sobolev spaces, Lorentz spaces.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 5 / 21

Page 18: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence modern theory

ODE

Carathéodory's theorem

f ∈ CAR, u ∈ AC ,|f (x , t)| ≤ h(t), h ∈ L1,

∀ε > 0∃δ > 0 :∑

j(bj − aj) < δ ⇒∑j |f (bj)− f (aj)| < ε.

PDE

weak formulation∫Ω∂tu(x , t)ϕ(x)−

∫Ω∂xu(x , t)∂xϕ(x) =

∫Ωf (x , t)ϕ(x), ϕ ∈ D(Ω)

u ∈ L2; Sobolev spaces, Lorentz spaces.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 5 / 21

Page 19: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence modern theory

ODE

Carathéodory's theorem

f ∈ CAR, u ∈ AC ,|f (x , t)| ≤ h(t), h ∈ L1,

∀ε > 0∃δ > 0 :∑

j(bj − aj) < δ ⇒∑j |f (bj)− f (aj)| < ε.

PDE

weak formulation∫Ω∂tu(x , t)ϕ(x)−

∫Ω∂xu(x , t)∂xϕ(x) =

∫Ωf (x , t)ϕ(x), ϕ ∈ D(Ω)

u ∈ L2; Sobolev spaces, Lorentz spaces.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 5 / 21

Page 20: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence modern theory

ODE

Carathéodory's theorem

f ∈ CAR, u ∈ AC ,|f (x , t)| ≤ h(t), h ∈ L1,

∀ε > 0∃δ > 0 :∑

j(bj − aj) < δ ⇒∑j |f (bj)− f (aj)| < ε.

PDE

weak formulation∫Ω∂tu(x , t)ϕ(x)−

∫Ω∂xu(x , t)∂xϕ(x) =

∫Ωf (x , t)ϕ(x), ϕ ∈ D(Ω)

u ∈ L2; Sobolev spaces, Lorentz spaces.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 5 / 21

Page 21: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence particular solutions

ODE

Floquet theory

y ′ = A(t)t + b(t)T -periodic solutions

PoincaréBendixson

existence of orbit in R2 for dynamical systems,

16th Hilbert problem for Rn.

PDE

choice of boundary conditions

choice of appropriate space

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 6 / 21

Page 22: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence particular solutions

ODE

Floquet theory

y ′ = A(t)t + b(t)T -periodic solutions

PoincaréBendixson

existence of orbit in R2 for dynamical systems,

16th Hilbert problem for Rn.

PDE

choice of boundary conditions

choice of appropriate space

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 6 / 21

Page 23: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence particular solutions

ODE

Floquet theory

y ′ = A(t)t + b(t)T -periodic solutions

PoincaréBendixson

existence of orbit in R2 for dynamical systems,

16th Hilbert problem for Rn.

PDE

choice of boundary conditions

choice of appropriate space

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 6 / 21

Page 24: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence particular solutions

ODE

Floquet theory

y ′ = A(t)t + b(t)T -periodic solutions

PoincaréBendixson

existence of orbit in R2 for dynamical systems,

16th Hilbert problem for Rn.

PDE

choice of boundary conditions

choice of appropriate space

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 6 / 21

Page 25: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence non-trivial solutions

ODE

bifurcation (saddle-node, transcritical, pitchfork)

y ′(t) = µy − y3

Hopf bifurcation

existence of non-trivial periodic solution for

∂t(u, v) = f (u, v , µ).

PDE

Rabinowitz theorem

global bifurcation theorem,

M. Väth generalization

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 7 / 21

Page 26: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence non-trivial solutions

ODE

bifurcation (saddle-node, transcritical, pitchfork)

y ′(t) = µy − y3

Hopf bifurcation

existence of non-trivial periodic solution for

∂t(u, v) = f (u, v , µ).

PDE

Rabinowitz theorem

global bifurcation theorem,

M. Väth generalization

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 7 / 21

Page 27: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence non-trivial solutions

ODE

bifurcation (saddle-node, transcritical, pitchfork)

y ′(t) = µy − y3

Hopf bifurcation

existence of non-trivial periodic solution for

∂t(u, v) = f (u, v , µ).

PDE

Rabinowitz theorem

global bifurcation theorem,

M. Väth generalization

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 7 / 21

Page 28: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence global bifurcation theorem I

Let H be real Hilbert space and O ⊂ R× H an open set. Let T ,

N : O → H be continuous compact operators, s.t. Tµ := T (µ, ·) is linear

for every xed µ and N(µ,U) is non-linear perturbation. Consider µ0 s.t.

[µ0, 0] ∈ O and for µ from the neighbourhood of µ0 there exists an odd

eigenvalue λµ of the problem

U − TµU = λµU

continuously dependent on µ and s.t.

signλµ0+ε = − signλµ0−ε for every small enough ε.

Then µ0 is a bifurcation point of the equation

U − Tµ(U)− N(µ,U) = 0.

Moreover, this bifurcation is global in some sense.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 8 / 21

Page 29: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence global bifurcation theorem II

Global sense of Rabinowitz theorem:

If we designate

S = [µ,U] ∈ O,U non-zero solution‖·‖O

and S0 the component of S containing [µ0, 0], then S0 satises at least

one of the following condition:

(S1) ∃µ 6= µ0 : [µ, 0] ∈ S0

(S2) ∃[µn,Un]n∈N ⊂ S0 : µn + ‖Un‖ → ∞(S3) ∃[µn,Un]n∈N ⊂ S0 : [µn,Un]→ ∂O.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 9 / 21

Page 30: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence global bifurcation theorem II

Global sense of Rabinowitz theorem:

If we designate

S = [µ,U] ∈ O,U non-zero solution‖·‖O

and S0 the component of S containing [µ0, 0], then S0 satises at least

one of the following condition:

(S1) ∃µ 6= µ0 : [µ, 0] ∈ S0

(S2) ∃[µn,Un]n∈N ⊂ S0 : µn + ‖Un‖ → ∞(S3) ∃[µn,Un]n∈N ⊂ S0 : [µn,Un]→ ∂O.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 9 / 21

Page 31: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence global bifurcation theorem II

Global sense of Rabinowitz theorem:

If we designate

S = [µ,U] ∈ O,U non-zero solution‖·‖O

and S0 the component of S containing [µ0, 0], then S0 satises at least

one of the following condition:

(S1) ∃µ 6= µ0 : [µ, 0] ∈ S0

(S2) ∃[µn,Un]n∈N ⊂ S0 : µn + ‖Un‖ → ∞(S3) ∃[µn,Un]n∈N ⊂ S0 : [µn,Un]→ ∂O.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 9 / 21

Page 32: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Content

1 Review of existence theorems2 Application of Rabinowitz theorem

1 Turing Instability in RD systems2 Existence of bifurcation branch3 Non-compactness and a priori estimates4 Summary Theorem5 Generalization

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 10 / 21

Page 33: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Motivation pattern formation

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 11 / 21

Page 34: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system I

Reaction-diusion system:

∂tu = d1∆u + f (u, v)

∂tv = d2∆v + g(u, v)in (0,∞)× Ω,

with Neumann boundary conditions

∂u

∂n= 0 =

∂v

∂non Ω.

Turing's idea (1952) of the difusion-driven instability:

(u∗, v∗) stationary, spatially homogeneous solution,

(u∗, v∗) stable without diusion,

(u∗, v∗) unstable with diusion.

The task

searching for non-homogenous stationary solutions.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 12 / 21

Page 35: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system I

Reaction-diusion system:

∂tu = d1∆u + f (u, v)

∂tv = d2∆v + g(u, v)in (0,∞)× Ω,

with Neumann boundary conditions

∂u

∂n= 0 =

∂v

∂non Ω.

Turing's idea (1952) of the difusion-driven instability:

(u∗, v∗) stationary, spatially homogeneous solution,

(u∗, v∗) stable without diusion,

(u∗, v∗) unstable with diusion.

The task

searching for non-homogenous stationary solutions.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 12 / 21

Page 36: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system I

Reaction-diusion system:

∂tu = d1∆u + f (u, v)

∂tv = d2∆v + g(u, v)in (0,∞)× Ω,

with Neumann boundary conditions

∂u

∂n= 0 =

∂v

∂non Ω.

Turing's idea (1952) of the difusion-driven instability:

(u∗, v∗) stationary, spatially homogeneous solution,

(u∗, v∗) stable without diusion,

(u∗, v∗) unstable with diusion.

The task

searching for non-homogenous stationary solutions.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 12 / 21

Page 37: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system II

Characterisation of Turing Instability owing to1 diusion

(u∗, v∗) stable without diusion,(u∗, v∗) unstable with diusion;

2 perturbations

(u∗, v∗) stable with respect to constant perturbations,(u∗, v∗) unstable with with respect to non-constant perturbations;

3 self-organisation assume Ω = LΩ0

∂tu =d1L2

∆u + f (u, v)

∂tv =d2L2

∆v + g(u, v)

in (0,∞)× Ω0,

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 13 / 21

Page 38: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system II

Characterisation of Turing Instability owing to1 diusion

(u∗, v∗) stable without diusion,(u∗, v∗) unstable with diusion;

2 perturbations

(u∗, v∗) stable with respect to constant perturbations,(u∗, v∗) unstable with with respect to non-constant perturbations;

3 self-organisation assume Ω = LΩ0

∂tu =d1L2

∆u + f (u, v)

∂tv =d2L2

∆v + g(u, v)

in (0,∞)× Ω0,

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 13 / 21

Page 39: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system II

Characterisation of Turing Instability owing to1 diusion

(u∗, v∗) stable without diusion,(u∗, v∗) unstable with diusion;

2 perturbations

(u∗, v∗) stable with respect to constant perturbations,(u∗, v∗) unstable with with respect to non-constant perturbations;

3 self-organisation assume Ω = LΩ0

∂tu =d1L2

∆u + f (u, v)

∂tv =d2L2

∆v + g(u, v)

in (0,∞)× Ω0,

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 13 / 21

Page 40: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system III

Taylor expansion around (u∗, v∗):

∂tu = d1∆u + b11u + b12v + n1(u, v),

∂tv = d2∆v + b21u + b22v + n2(u, v).

Conditions for Turing instability:

trB < 0,detB > 0,

b11d2 + b22d1 > 0,(b11d2 + b22d1)2 > 4d1d2 detB.

Consequences:Ç+ −+ −

å,

Ç+ +− −

å, d1 d2,

Sets of critical points:

Cj =

®[d1, d2] ∈ R2

+, d2 =1

κj

Çb12b21

d1κj − b11+ b22

å´.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 14 / 21

Page 41: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system III

Taylor expansion around (u∗, v∗):

∂tu = d1∆u + b11u + b12v + n1(u, v),

∂tv = d2∆v + b21u + b22v + n2(u, v).

Conditions for Turing instability:

trB < 0,detB > 0,

b11d2 + b22d1 > 0,(b11d2 + b22d1)2 > 4d1d2 detB.

Consequences:Ç+ −+ −

å,

Ç+ +− −

å, d1 d2,

Sets of critical points:

Cj =

®[d1, d2] ∈ R2

+, d2 =1

κj

Çb12b21

d1κj − b11+ b22

å´.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 14 / 21

Page 42: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system III

Taylor expansion around (u∗, v∗):

∂tu = d1∆u + b11u + b12v + n1(u, v),

∂tv = d2∆v + b21u + b22v + n2(u, v).

Conditions for Turing instability:

trB < 0,detB > 0,

b11d2 + b22d1 > 0,(b11d2 + b22d1)2 > 4d1d2 detB.

Consequences:Ç+ −+ −

å,

Ç+ +− −

å, d1 d2,

Sets of critical points:

Cj =

®[d1, d2] ∈ R2

+, d2 =1

κj

Çb12b21

d1κj − b11+ b22

å´.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 14 / 21

Page 43: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system III

Taylor expansion around (u∗, v∗):

∂tu = d1∆u + b11u + b12v + n1(u, v),

∂tv = d2∆v + b21u + b22v + n2(u, v).

Conditions for Turing instability:

trB < 0,detB > 0,

b11d2 + b22d1 > 0,(b11d2 + b22d1)2 > 4d1d2 detB.

Consequences:Ç+ −+ −

å,

Ç+ +− −

å, d1 d2,

Sets of critical points:

Cj =

®[d1, d2] ∈ R2

+, d2 =1

κj

Çb12b21

d1κj − b11+ b22

å´.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 14 / 21

Page 44: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system III

Taylor expansion around (u∗, v∗):

∂tu = d1∆u + b11u + b12v + n1(u, v),

∂tv = d2∆v + b21u + b22v + n2(u, v).

Conditions for Turing instability:

trB < 0,detB > 0,

b11d2 + b22d1 > 0,(b11d2 + b22d1)2 > 4d1d2 detB.

Consequences:Ç+ −+ −

å,

Ç+ +− −

å, d1 d2,

Sets of critical points:

Cj =

®[d1, d2] ∈ R2

+, d2 =1

κj

Çb12b21

d1κj − b11+ b22

å´.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 14 / 21

Page 45: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system III

Taylor expansion around (u∗, v∗):

∂tu = d1∆u + b11u + b12v + n1(u, v),

∂tv = d2∆v + b21u + b22v + n2(u, v).

Conditions for Turing instability:

trB < 0,detB > 0,

b11d2 + b22d1 > 0,(b11d2 + b22d1)2 > 4d1d2 detB.

Consequences:Ç+ −+ −

å,

Ç+ +− −

å, d1 d2,

Sets of critical points:

Cj =

®[d1, d2] ∈ R2

+, d2 =1

κj

Çb12b21

d1κj − b11+ b22

å´.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 14 / 21

Page 46: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Turing's model in reaction-diusion system IV

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 15 / 21

Page 47: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence of bifurcation branch

Let d2 = d02 be xed and let µ = d1 be bifurcation parameter.

Weak formulation for U = [u, v ] ∈ [W 1,2(Ω)]2:∫Ωµ∇u∇ϕ− (b11u + b12v + n1(u, v))ϕ dx = 0∫

Ωd02∇v∇ϕ− (b21u + b22v + n2(u, v))ϕ dx = 0

∀ϕ ∈W 1,2(Ω).

Let us dence operators:

A : 〈Au, ϕ〉 =

∫Ωuϕ dx ∀u, ϕ ∈W 1,2(Ω),

Nj : 〈Nj(u, v), ϕ〉 =

∫Ωnj(u, v)ϕ dx ∀u, v , ϕ ∈W 1,2(Ω)

and obtain operator formulation:

D([µ, d02 ])U − B([µ, d02 ])AU − N(U) = 0 (OR)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 16 / 21

Page 48: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence of bifurcation branch

Let d2 = d02 be xed and let µ = d1 be bifurcation parameter.

Weak formulation for U = [u, v ] ∈ [W 1,2(Ω)]2:∫Ωµ∇u∇ϕ− (b11u + b12v + n1(u, v))ϕ dx = 0∫

Ωd02∇v∇ϕ− (b21u + b22v + n2(u, v))ϕ dx = 0

∀ϕ ∈W 1,2(Ω).

Let us dence operators:

A : 〈Au, ϕ〉 =

∫Ωuϕ dx ∀u, ϕ ∈W 1,2(Ω),

Nj : 〈Nj(u, v), ϕ〉 =

∫Ωnj(u, v)ϕ dx ∀u, v , ϕ ∈W 1,2(Ω)

and obtain operator formulation:

D([µ, d02 ])U − B([µ, d02 ])AU − N(U) = 0 (OR)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 16 / 21

Page 49: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence of bifurcation branch

Let d2 = d02 be xed and let µ = d1 be bifurcation parameter.

Weak formulation for U = [u, v ] ∈ [W 1,2(Ω)]2:∫Ωµ∇u∇ϕ− (b11u + b12v + n1(u, v))ϕ dx = 0∫

Ωd02∇v∇ϕ− (b21u + b22v + n2(u, v))ϕ dx = 0

∀ϕ ∈W 1,2(Ω).

Let us dence operators:

A : 〈Au, ϕ〉 =

∫Ωuϕ dx ∀u, ϕ ∈W 1,2(Ω),

Nj : 〈Nj(u, v), ϕ〉 =

∫Ωnj(u, v)ϕ dx ∀u, v , ϕ ∈W 1,2(Ω)

and obtain operator formulation:

D([µ, d02 ])U − B([µ, d02 ])AU − N(U) = 0 (OR)

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 16 / 21

Page 50: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Existence of bifurcation branch

Let d02 be xed.

Consider µ0 s.t. [µ0, d02 ] lies just on one hyperbola Cj (the eigenvalue

κj is simple).

Then µ0 is a bifurcation point of the equation (OR). Let us designate a set

S = [µ,U] ∈ R+ × [W 1,2(Ω)]2, 0 6= U solutionR+×[W 1,2(Ω)]2

and S0 its component containing [µ0, 0]. Then S0 satises at least one of

the following conditions:

(S1) ∃µ 6= µ0 : [µ, 0] ∈ S0

(S2) ∃[µn,Un]n∈N ⊂ S0 : µn + ‖Un‖ → ∞(S3) ∃[µn,Un]n∈N ⊂ S0 : µn → 0+

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 17 / 21

Page 51: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Non-compactness and a priori estimates

In 1D case: The bifurcation branch S0 is non-compact, which means that

S0 satises the condition (S2) or (S3).

A priori estimates for Thomas model

ut = d1∆u + a − u − %uv

1 + u + ku2

vt = d2∆v + α(b − v)− %uv

1 + u + ku2

‖u‖ ≤ C1d1

‖v‖ ≤ C2

∃d1 s.t. ∀d1 > d1 there does not exist non-constant stationary

solution.

Notes:

ϕ := u − 1|Ω|

∫Ω u(x) dx , ψ := v − 1

|Ω|∫

Ω v(x) dx ,

the most dicult estimate:∫Ω|∇ψ|2 dx ≤ d1

d1

∫Ω|∇ψ|2 dx .

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 18 / 21

Page 52: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Non-compactness and a priori estimates

In 1D case: The bifurcation branch S0 is non-compact, which means that

S0 satises the condition (S2) or (S3).

A priori estimates for Thomas model

ut = d1∆u + a − u − %uv

1 + u + ku2

vt = d2∆v + α(b − v)− %uv

1 + u + ku2

‖u‖ ≤ C1d1

‖v‖ ≤ C2

∃d1 s.t. ∀d1 > d1 there does not exist non-constant stationary

solution.

Notes:

ϕ := u − 1|Ω|

∫Ω u(x) dx , ψ := v − 1

|Ω|∫

Ω v(x) dx ,

the most dicult estimate:∫Ω|∇ψ|2 dx ≤ d1

d1

∫Ω|∇ψ|2 dx .

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 18 / 21

Page 53: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Non-compactness and a priori estimates

In 1D case: The bifurcation branch S0 is non-compact, which means that

S0 satises the condition (S2) or (S3).

A priori estimates for Thomas model

ut = d1∆u + a − u − %uv

1 + u + ku2

vt = d2∆v + α(b − v)− %uv

1 + u + ku2

‖u‖ ≤ C1d1

‖v‖ ≤ C2

∃d1 s.t. ∀d1 > d1 there does not exist non-constant stationary

solution.

Notes:

ϕ := u − 1|Ω|

∫Ω u(x) dx , ψ := v − 1

|Ω|∫

Ω v(x) dx ,

the most dicult estimate:∫Ω|∇ψ|2 dx ≤ d1

d1

∫Ω|∇ψ|2 dx .

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 18 / 21

Page 54: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Summary theorem

Consider Thomas RD system in one-dimensional space

ut = d1∆u + a − u − %uv

1 + u + ku2

vt = d2∆v + α(b − v)− %uv

1 + u + ku2

∂u

∂n=∂v

∂n= 0.

Let a, b, α, %, k be positive constants satisfying Turing Instability with

corresponding homogenous stationary solution [u, v ].

Then for every [d1, d2] ∈ DU there exists at least one stationary solution of

Thomas model, which diers from [u, v ].

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 19 / 21

Page 55: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Generalization

Derivation of a prior estimates for general class od models

ut = d1∆u + a10 + a11u + a12v − Q(u, v)

vt = d2∆v + a20 + a21u + a22v − γQ(u, v)

Other possibilities:

Non-compatness of the bifurcation branch in higher dimension

Existence of the bifurcation branch in the intersection of two

hyperbolas in higher dimension

General theorem about existence of bifurcation branch - case of even

multiplicity

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 20 / 21

Page 56: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Generalization

Derivation of a prior estimates for general class od models

ut = d1∆u + a10 + a11u + a12v − Q(u, v)

vt = d2∆v + a20 + a21u + a22v − γQ(u, v)

Other possibilities:

Non-compatness of the bifurcation branch in higher dimension

Existence of the bifurcation branch in the intersection of two

hyperbolas in higher dimension

General theorem about existence of bifurcation branch - case of even

multiplicity

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 20 / 21

Page 57: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

Generalization

Derivation of a prior estimates for general class od models

ut = d1∆u + a10 + a11u + a12v − Q(u, v)

vt = d2∆v + a20 + a21u + a22v − γQ(u, v)

Other possibilities:

Non-compatness of the bifurcation branch in higher dimension

Existence of the bifurcation branch in the intersection of two

hyperbolas in higher dimension

General theorem about existence of bifurcation branch - case of even

multiplicity

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 20 / 21

Page 58: Vyu ití vet o existenci a jednoznacnosti re ení ...mafia.fjfi.cvut.cz/download/mafia16/mafia_2016_kozak.pdf · Motivation Mathematical model based on system of di erential equations:

D¥kuji za pozornost.

Michal Kozák (FNSPE CTU) Existence theorems 23rd May 2015 21 / 21