115
1 Voice over IP in Mobile Networks Ludde Algell Department of Communication Systems Lund Institute of Technology

Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

Embed Size (px)

Citation preview

Page 1: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

1

Voice over IP in Mobile Networks

Ludde Algell

Department of Communication Systems

Lund Institute of Technology

Page 2: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

2

Page 3: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

3

Executive Summary

Title: Voice over IP in mobile networks.

Author: Ludde Algell

Tutor: Ulf Körner

Objective: Voice over IP is rapidly transforming fixed line networks. The new technology

slashes prices on telephony in an unprecedented manner. However it is not

clear if Voice over IP will have the same effect on mobile telephony. The

objective of this thesis is to determine if there are essential differences between

fixed and wireless voice over IP and in which ways IP will affect mobile

operators.

Analysis: In order to determine how VoIP will affect mobile operators the following

areas were investigated:

• A background description of VoIP

• The current market for fixed VoIP

• Radio access technologies and VoIP

• VoIP and new services in the mobile network

Conclusions: Mobile operators are unlikely to, in the coming 3 years, experience the same

type of competition from VoIP as fixed line operators are experiencing. The

main reason is the bandwidth-limited radio interface that requires services, such

as voice calls, to be highly optimized. At present VoIP is an inefficient way of

delivering voice service. There will also be a lack of attractive VoIP handsets.

Currently, VoIP calls made with VoIP applications are not substituting mobile

calls. VoIP applications are mainly used for international calling. By offering

subscribers the possibility to use VoIP applications over mobile broadband it

should therefore be possible for a mobile operator to increase revenue, without

cannibalizing on existing voice revenue.

The threat from alternative access technologies like WiMAX and WiFi is not

imminent for mobile operators’ voice revenue. Mobile operators with 3G

networks could however see negative impact on mobile data revenue. WiFi

network can be launched fast and at low cost. It is therefore recommendable

for operator’s to implement a WiFi strategy.

Page 4: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

4

Page 5: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

5

Foreword

This report is the result of a Masters thesis project at Millicom International Cellular and the

Department of Communication Systems at Lund Institute of Technology.

Thanks to Won-Suck Song at Millicom and Ulf Körner at the Department of Communication

Systems. Also thanks for great support, ideas, and corrections from Thomas Beijar, Philip

Henriksson and Anjna Mehta

Ludde Algell

Stockholm, December 18, 2005

Page 6: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

6

Page 7: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

7

1 Introduction............................................................................................................... 11

2 Introduction to IP Telephony .................................................................................... 13

2.1 Circuit switched networks .....................................................................................................13

2.2 Packet-switched networks......................................................................................................14

2.2.1 TCP/IP............................................................................................................................................... 15

2.2.2 RTP.................................................................................................................................................... 16

2.3 IP telephony protocols ............................................................................................................16

2.3.1 Session Initiation Protocol ............................................................................................................... 17

2.3.2 H.323................................................................................................................................................. 17

2.4 Categories of VoIP ..................................................................................................................17

2.5 Speech Coding and Codecs ....................................................................................................19

2.5.1 Codec negotiation in VoIP............................................................................................................... 19

2.5.2 Wideband codecs.............................................................................................................................. 20

2.5.3 Efficiency and Bandwidth................................................................................................................ 20

2.6 Header compression................................................................................................................22

2.6.1 Slow start and congestion control ................................................................................................... 22

2.6.2 Conext ............................................................................................................................................... 23

2.6.3 Robust Header Compression ........................................................................................................... 23

2.6.4 Performance improvements ............................................................................................................. 23

2.7 Measuring voice quality .........................................................................................................24

2.8 VoIP and Quality of Service ..................................................................................................25

2.8.1 Bandwidth ......................................................................................................................................... 25

2.8.2 Latency .............................................................................................................................................. 25

2.8.3 Jitter ................................................................................................................................................... 26

2.8.4 Reliability.......................................................................................................................................... 26

2.8.5 Reliability.......................................................................................................................................... 27

2.9 Provisioning QoS.....................................................................................................................27

2.9.1 IntServ or Flow Based Control........................................................................................................ 28

2.9.2 DiffServ............................................................................................................................................. 28

2.9.3 Smart routing .................................................................................................................................... 28

2.9.4 Blocking VoIP traffic by providing sub par quality....................................................................... 28

2.9.5 Comments ......................................................................................................................................... 29

Page 8: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

8

3 Current market for fixed Voice over IP..................................................................... 30

3.1 Business fixed line VoIP .........................................................................................................30

3.2 Residential fixed line replacement VoIP .............................................................................31

3.3 Instant Messaging and Softphones .......................................................................................32

3.4 Major VoIP providers ............................................................................................................36

3.5 Future development ................................................................................................................37

3.6 Market Value ...........................................................................................................................38

3.7 Comments.................................................................................................................................38

4 Voice over IP over Wireless Channels....................................................................... 40

4.1 Basics of Radio Communication...........................................................................................40

4.1.1 Frequency, Power and Coverage:.................................................................................................... 40

4.1.2 Radio Resources and Cost ............................................................................................................... 42

4.1.3 Non Line of Sight Communication ................................................................................................. 43

4.1.4 System Capacity Improvements ...................................................................................................... 43

4.1.5 Bandwidth Limits ............................................................................................................................. 45

4.1.6 Evolution Radio ................................................................................................................................ 45

4.1.7 Spectrum Licenses............................................................................................................................ 46

4.1.8 Spectrum Availability ...................................................................................................................... 46

4.1.9 Comments ......................................................................................................................................... 46

4.2 Cost structure of cellular network........................................................................................48

4.2.1 Comments ......................................................................................................................................... 50

4.3 Voice over IP and WCDMA..................................................................................................51

4.3.1 Softphone’s impact on capacity....................................................................................................... 51

4.3.2 Latency .............................................................................................................................................. 53

4.3.3 HSDPA.............................................................................................................................................. 53

4.3.4 Comments: ........................................................................................................................................ 56

4.4 Voice over IP and CDMA-2000 ............................................................................................57

4.4.1 EV-DO .............................................................................................................................................. 58

4.4.2 Evolution........................................................................................................................................... 59

4.4.3 Comments ......................................................................................................................................... 59

4.5 Voice over IP and WiMAX....................................................................................................60

4.5.1 Performance:..................................................................................................................................... 62

4.5.2 Deployment: ..................................................................................................................................... 63

Page 9: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

9

4.5.3 Comments ......................................................................................................................................... 64

4.6 VoIP and WiFi .........................................................................................................................65

4.6.1 Voice over WiFi ............................................................................................................................... 66

4.6.2 Deployment....................................................................................................................................... 67

4.6.3 Issues ................................................................................................................................................. 69

4.6.4 Comments ......................................................................................................................................... 70

4.7 VoIP and FLASH-OFDM......................................................................................................72

4.7.1 Technology ....................................................................................................................................... 72

4.7.2 Deployment....................................................................................................................................... 72

4.7.3 Comments ......................................................................................................................................... 73

5 Mobile Operator implemented Voice over IP............................................................. 74

5.1 IMS ............................................................................................................................................74

5.1.1 IMS – Technical overview............................................................................................................... 75

5.1.2 Implementation ................................................................................................................................. 77

5.1.3 Convergence ..................................................................................................................................... 78

5.1.4 New Services .................................................................................................................................... 78

5.1.5 Comments ......................................................................................................................................... 80

5.2 Push-to-talk ..............................................................................................................................81

5.2.1 Services offered through PoC.......................................................................................................... 81

5.2.2 Technology Performance ................................................................................................................. 82

5.2.3 Deployments ..................................................................................................................................... 83

5.2.4 Comments ......................................................................................................................................... 84

5.3 Unlicensed Mobile Access ......................................................................................................84

5.3.1 Equipment:........................................................................................................................................ 84

5.3.2 How does it work?............................................................................................................................ 85

5.3.3 Deployments ..................................................................................................................................... 85

5.3.4 Network load .................................................................................................................................... 87

5.3.5 Growth of broadband access............................................................................................................ 87

5.3.6 IMS and UMA .................................................................................................................................. 88

5.3.7 Comments: ........................................................................................................................................ 88

5.4 Application based VoIP in 3G networks .............................................................................89

5.4.1 Cost of mobile data........................................................................................................................... 89

5.4.2 Price on telephony ............................................................................................................................ 90

5.4.3 Interconnect fees............................................................................................................................... 91

5.4.4 International traffic is initiated from fixed line network................................................................ 91

5.4.5 Alternative methods for making international calls ....................................................................... 92

Page 10: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

10

5.4.6 Using softphone over a 3G network................................................................................................ 93

5.4.7 Comments: ........................................................................................................................................ 94

6 Conclusion................................................................................................................. 95

7 Resources ................................................................................................................ 101

8 Acronyms................................................................................................................. 106

9 Appendix.................................................................................................................. 107

9.1 Link budget ............................................................................................................................107

9.2 OFDM .....................................................................................................................................108

9.3 CDMA (Code Division Multiple Access) ...........................................................................109

9.4 List of Codecs.........................................................................................................................113

9.5 Frequency bands ...................................................................................................................114

Page 11: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

11

1 Introduction

The initiative for this thesis comes from mobile operator Millicom International Cellular. The

company sees it as important to be well informed in what way VoIP will affect mobile

operators.

The key difference between VoIP and traditional telephony is that for the first time the

applications and the transport will be separated. This is a major shift in the infrastructure of

telephony. Traditionally the network and the application have been one and the same, the

phone network, PSTN, was build for one purpose i.e. delivering voice communication. Now

with the use of one IP-infrastructure for communication voice will become just one, albeit

important, application. Combined with the significantly lower cost structure for IP-networks

VoIP will dramatically change the telecommunication industry.

Mobile voice over IP refers to a system in where the last part of the communication is carried

over a wireless link. This could either be a cellular system where current technology is replaced

with voice over IP or it could mean using VoIP capable handset used in a wireless local area

network.

Skype is mentioned a few times in this thesis. This is because the brand is well known and

easily related to VoIP. It should be noted however that when Skype is used as an example

there are many other solutions that could provide the same service.

Problem discussion

Voice over IP is quickly transforming the fixed line networks in a rapid pace. The new

technology slashes prices on telephony in an unprecedented manner. However it is not clear if

IP will have the same effect on mobile telephony. The objective is therefore to investigate if

there are essential differences between fixed and wireless voice over IP and in what ways IP

will affect mobile operators.

Areas of inquiry

The questions that are aimed to be answered are as follows.

• Why are fixed line networks leading the way in voice over IP rollout?

Page 12: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

12

• When is voice over IP expected to be commercially available for mobile operators?

• Which operators are in the lead for a voice over IP rollout?

• How will VoIP be introduced in mobile networks?

• Are applications such as Skype a threat to operator’s revenue?

• Alternative access technology and VoIP.

Delimitations

The thesis focuses on the technical issues of Voice over IP, leaving opportunity for continued

research with a more market oriented approach.

Thesis structure

To give a broad understanding of VoIP, chapter 2 gives a broad background of VoIP, how it

differs from traditional telephony and why quality and reliability have yet to make significant

progress.

Chapter 3 describes the market for fixed VoIP. It outlines the major providers of IP-telephony

that provide replacement service to traditional telephony and those which provide services that

complement traditional telephony.

Chapter 4 investigates why VoIP as seen in fixed networks will not successfully penetrate the

wireless world without considerable adoptions. This is done by explaining the fundamentals of

mobile communication and the challenges that exists for providing bandwidth and coverage

with radio. The chapter then discusses different third generation network access technologies

and presents a time frame when VoIP is expected to replace existing technology.

Mobile operators not only see VoIP as a way to lower the cost per delivered bit. They are more

interested in the new services that IP can bring. The most promising services, as described in

chapter 5, include Unlicensed Mobile Access, Push-to-talk. The chapter then explains how

these services relate to a new echo system called IP Multimedia Subsystem. The chapter

further discusses how VoIP applications may be deployed in a WCDMA network without

necessarily negatively affecting the operator’s revenue.

The thesis is summarized in chapter 6.

Page 13: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

13

2 Introduction to IP Telephony

IP telephony or Voice over IP, VoIP, uses packet-switched networks for call transportation whereas traditional

telephony uses circuit-switched networks. This chapter will first explain the two types of networks and then

continues with a more in-depth description of packet switched networks. Knowledge of the IP-packet structure

and the technique of compressing IP headers is fundamental for understanding the problems of efficiently

introducing voice services using IP in cellular networks. The chapter also explains why good quality is harder to

achieve over VoIP as compared to circuit-switched networks.

2.1 Circuit switched networks

Circuit switched technology has been used in the traditional telephone network, PSTN for

more than one hundred years. Over circuit-switched networks, when a call is made, the

connection between the parties is maintained throughout the call. Because the points are

connected in both directions there exists something similar to a circuit, hence the circuit

switched name.

In the early days of telephony the path was truly dedicated. This means that for a call between

New York and Los Angeles a physical line of copper would be established over the entire

distance. Now various calls are digitalized and trunked together in high capacity fiber optic

cables, this means that each call does not have its own physical wire. Instead it is called a

virtual circuit since all the information follows a unique path throughout the call.

Circuit switched technology is well suited for real-time application such as voice. By routing

the information over a unique path, for the duration of the call, the information is received in

the order it was sent and in an even flow see Figure 1.

Page 14: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

14

Figure 1. The information is sent in a single path throughout the call.

A major drawback with circuit switched technology is that it is a fairly inefficient way of

sending data. Whether or not information is sent the connection is occupied, thus consuming

128kbps throughout the call even if no information is transmitted.

2.2 Packet-switched networks

In a packet-switched network there is no reserved or dedicated capacity for each user. The

principle is more of a best effort sort; the capacity will be shared among the users but no

guarantees regarding throughput or other parameters can be given. The packets that contain

the voice may traverse the network independently of one another, see Figure 2. The packets are

then assembled in the right order at the receiving end.

Figure 2. The information packets may traverse the network independently. At the

end the packets are put in the right order.

This strategy works very well for bursty traffic rather than continuous; when browsing a

webpage no information must be sent after a page is downloaded. Instead, the capacity

becomes available for other users. Several users can also share one connection and the

Page 15: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

15

available resources are distributed evenly. In the circuit switched case, new users will be

blocked if system has reached its maximum capacity.1

Packet switching allows each packet to be routed through the fastest and least congested path

to its destination. If a connection is lost along the path, packets will find an alternative route,

thus making packet switching very flexible.

Introducing telephony on packet switched networks is initially not a perfect match. Because

the packet switched networks were built with a focus on serving as much data with best-effort

quality, issues like latency [2.8.2] and jitter [2.8.3] were not a focus point.

2.2.1 TCP/IP

TCP/IP is the family name for a set of communication

protocols that are used to provide a means of communication

through data networks. The family members include, among

others, Internet Protocol (IP), Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP). TCP/IP, is like

other protocols divided into layers with each layer handling

different tasks.

In the protocol stack (see Figure 3) IP resides in the network

layer. IP provides two services to the upper layers, addressing

and fragmentation and reassembly of long and short TCP

protocol data units. IP gives no guarantees on flow control,

reliability or error recovery to the underlying layers. Instead higher

levels handle these functions. IP is thus a best effort delivery

service.

The TCP and UDP protocols are found in the transport layer. They provide a flow of data for

the upper layers. Common for both TCP and UDP is that they partition the data into

appropriate sizes before handing them over to the underlying layers. TCP is considered reliable

1 http://computer.howstuffworks.com/ip-telephony6.htm

Figure 3.

The IP stack

Page 16: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

16

as it provides guarantees of delivery where as UDP has no such built in functions and is

therefore considered less reliable. When sending a packet a number, or checksum, will be

placed in the UDP field. By looking at this checksum at the endpoint it is possible for a router

to determine if a packet has been damaged or not. If damage is detected, that packet will be

discarded.

2.2.2 RTP

RTP is used to provide end-to-end delivery service for data that has real time characteristics

like voice or video. The RTP protocol gives the possibility of adding a notion of time to packet

communications. While encoding at the source a time stamp is set on the packet before it

enters the network. At the destination this time stamp is used to regenerate the content at the

same rate it was encoded. A receiver can be used at the destination for setting a delivery pace

independent of network induced jitter.2

2.3 IP telephony protocols

An IP telephony protocol, or session protocol, is needed to provide the same services and

capabilities that the PSTN can offer. When two endpoints are communicating, or in any form

exchanging information, a session is said to be established. The session protocol’s function is

to handle the signaling between two endpoints. More in specific it has to:

• Locate an endpoint

• Contact the endpoint

• Find out the capabilities of the two endpoints, e.g. what codecs [2.5] that are supported,

what sampling rate can be used etc.

• Modify existing session

• Terminate session

There are currently two major standardized protocols to handle voice over IP. The Session

Initiation Protocol and H.323.

2 Delivering Voice over IP Networks, D. Minoli, E. Minoli. Wiley

Page 17: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

17

2.3.1 Session Initiation Protocol

The Session Initiation Protocol, or SIP has emerged as the predominant protocol for handling

multimedia sessions. Its origins come from the Internet organization Internet Engineering

Task Force, IETF. The relationship with the Internet world can clearly be seen since SIP is

based on two other widely used protocols, HTTP and SMTP.

2.3.2 H.323

SIP and H.323 can be viewed as two competing standards. There is however a clear shift

towards SIP. H.323 is said to be rather complicated in comparison and the specification is

almost six times as long as the SIP specification. The complexity of H.323 comes from its use

of a multitude of other protocols. Developers also find SIP easier to work with since it is, like

its HTTP foundation, text based. H.323 is on the other hand is binary based and will thus be

rather complicated to debug or extend.3 That the two standard comes from groups with

different view on network strategies is clear. H.323, from the telephony world, is said to be

network centric while SIP puts the intelligence at the endpoints and runs over a “dumb”

network.

2.4 Categories of VoIP

VoIP can be divided into five major categories: IP-to-IP, IP-to-PSTN, PSTN-to-IP-to-PSTN,

PSTN-to-IP. IP-to-PSTN-to-IP. With the interconnection of various networks users may use a

mixture of the categories depending on whom they call. It is thus not necessary to have

different terminals for the different categories.

• In IP-to-IP two users are connected to each other through the Internet, without the

involvement of the PSTN, see Figure 4. The consumer premises equipment, CPE could be

a standard PC or mobile phone equipped with a softphone client such as Skype, AIM or

MSN Messenger [3.3.2].

3 Comparison of H.323 and SIP for IP Telephony signaling, Ismail Dalgic,

Hanling Fang

Page 18: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

18

Figure 4. IP-to-IP. Softphone on a computer

• In IP-to-PSTN the call IP-call is routed to a gateway that connects the call the PSTN, see

Figure 5. Users can thus bypass long distance charges by the use of local call termination.

Such call is associated with termination fees and will thus not generally be free too the

users.

Figure 5. IP-to-PSTN. A user can call regular phones from his computer

• PSTN-to-IP, in this case a user can receive a call anywhere in the world using the same

local number, see Figure 6. The caller dials a local number that connects the call through a

gateway to the Internet. The call is then routed to user’s destination.

Figure 6. PSTN-to-IP. A user can receive calls from the PSTN

• PSTN-to-IP-to-PSTN. When both endpoints of a call are using the PSTN, see Figure 7.

The call is the connected to a gateway and then transported over an IP-network. This kind

of service is becoming increasingly common and major players such as British Telecom are

upgrading their network with IP technology. PSTN-to-IP-to-PSTN is also commonly

found when using calling cards for long distance calls.

Page 19: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

19

Figure 7 PSTN-to-IP-to-PSTN. Calling cars can use VoIP in parts of the transmission

• IP-to-PSTN-to-IP. At present two users that use a wire line replacement service and want

to call each other will be routed over the PSTN, see Figure 8. Eventually it will be possible

that the initiating SIP-server look up the desired phone number and sees that this is an IP-

connection and routes the call over IP the entire way

Figure 8. Subscribers to two different VoIP operators can be connected over the

PSTN.

2.5 Speech Coding and Codecs

In its most fundamental form, speech coders are analogue-to-digital converters. The analogue

speech waveform is sampled periodically and for each input voltage level a digital value is

assigned. To achieve a high quality output, either a complex codec or high bandwidth is

necessary. Speech codecs can also have a built in error correction feature to be used over

unreliable connections. The drawback is that the speech quality degrades as more bits are used

to build up redundancy.

2.5.1 Codec negotiation in VoIP

VoIP makes it easier to introduce new codecs due to the fact that the endpoints are generally

more intelligent. During the call set-up, two endpoints can negotiate on which codec to use,

based on available resources and network conditions. Therefore, it is possible to use wide-band

codecs that produce a better sounding voice stream.

Page 20: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

20

2.5.2 Wideband codecs

The traditional PSTN has a sampling rate of 8 kHz. With that rate it is possible to distinguish

frequencies up to 4 kHz. Fricative sounds such as “f” or “s” contains energy at higher

frequencies than 4 kHz. As a result, “f” and “s” become indistinguishable in a traditional

phone call. Figure 9 plots an “e” and an “s”. One can clearly see that the “s” has a peak of

energy that lies past 4 kHz. By implementing a wide band codec, the perceived quality is under

good network conditions, superior to that of normal telephony.

10

20

30

40

50

60

70

80

90

100

110

0 5000 10000 15000 20000

Frequency [Hz]

Energy[dB]

e-sound

s-sound

Figure 9 “s” and “f” contains energy at frequencies above 4000 Hz making them

indistinguishable.4

2.5.3 Efficiency and Bandwidth

If low bandwidth usage is a requirement, complex codecs has to be used. Complex codecs

bring long packetization delays and the need for high computing power. In IPv4 the

RTP/UDP/IP header is 40 bytes. A payload (here voice) of 40 bytes would result in 50%

efficiency. The required bandwidth BW can be derived from the output rate R (in bits/s),

header size H (in bits) and payload sample size S (in milliseconds), using

S

HRBW +=

4 Global IP Sound

Page 21: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

21

At a bit rate of 64kbps it will take 5 ms to accumulate 40 bytes but the required bandwidth

would be quite high. With 8 kbps it will take 40 ms to accumulate 40 bytes5, and the required

bandwidth will be lower at the expense of an increased delay.

There is an engineering trade-off between achieving an acceptable packetization delay and low

bandwidth. Many systems use 20ms sample sizes and a bit rate of close to 10 kbps to achieve

a compromise between bandwidth, efficiency and introduced delay.

A commonly used codec is G.711. It is found in fixed telephone replacement services like

Vonage. G711 uses a bit rate of 64 kbps with 20 ms sample duration. If deployed over an

Ethernet link it will use an overhead of 58 bytes consisting of

• IP, 20 bytes

• UDP, 8 bytes

• RTP, 12 bytes

• Ethernet 18 bytes

Resulting in a bandwidth of

BW = 64kbps+58 � 8bits

20ms= 87.2kbps

5 Bur Goode Senior Member IEEE, Voice Over Internet Protocol (VoIP)

Page 22: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

22

2.6 Header compression

For applications such as voice where the payload

often ranges around 20 bytes the overhead

becomes a considerable part of each packet, see

Figure 10.With header compression techniques

the header can significantly be reduced.

The information in the header is what enables

communication over networks, large and small.

The information consists of the destination

address, source address, ports, protocol

identifiers, error checks etc, see Figure 11. This

information is fairly consistent between two

consecutive packets. For examples it is highly

unlikely that the Source IP Address would be

different during a session. Other fields in the IP

packet may change more frequently, but if does

it often happens in a non-random manner. All

this implies that it is possible to represent the IP

information in fewer bits.

2.6.1 Slow start and congestion control

TCP/IP relies on slow start and congestion avoidance. This means that the transfer speed is

kept low initially to determine network congestion. As the first chunks of data are delivered

successfully, speed is increased. If packets are lost the TCP protocol interprets this as

congestion in the network and lowers the sending data rate and the process starts over again.

This works fine in a wire line environment where the data pipe does not suffer significant

interference and packets are rarely lost due to the physical link. In a radio environment the

situation is quite different. The radio channel is as far as one can get from a stable and reliable

data link. Packets are frequently lost and speed decreases and therefore reaching high

throughput becomes a problem. Essentially, this means that TCP/IP is not a perfect match for

Figure 11. An IP-packet with different

information fields

Figure 10. The IP header can be large

compared to the payload

Page 23: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

23

air link protocol. Some of the issues mentioned above can be solved using features such as

forward error correction (FEC). 6

2.6.2 Conext

When initiating a session in a system that uses header compression, the first packets are sent

uncompressed to build up a context. This context is formed on both the compressor side and

the de-compressor side. The number of packets required to build a context after a data flow

has been initiated is closely related to the quality of the transfer link. With high, Bit Error

Rate, BER it will take more time. When the context is established on both sides the

compressor will reduce the headers to the extent possible. If an error occurs resulting in

several lost packages the context may have to be rebuilt. For this build-up a number of

uncompressed headers must be sent.7

2.6.3 Robust Header Compression

Current implementation of header compression such as RObust Header Compression, ROHC,

are good at handling packet loss without losing the context, hence the word robust. By sending

fewer bits over the air interface the risk for a corrupted package decreases. Because TCP/IP

relies on slow start and congestion control, packet loss is seriously affecting network

throughput. By implementing a header compression technology the gain is twofold, first by

sending less overhead and second by decreasing the risk for packet loss.

The header can be reduced from 40 bytes down to a minimum of 1 byte under ideal

conditions. Typical average values should however around 2-4 bytes for IPv4 and 3-5 bytes for

IPv68 Within 3GPP the Robust Header Compression or ROHC was chosen as the standard

header compression technique. It will be implemented in Release 6 of UMTS at the end of

2006 or 2007.

2.6.4 Performance improvements

Compared to circuit switched solutions the overhead caused by IP leads to a lower system

capacity for handling voice calls. Simulations in a UMTS shows that with VoIP, capacity can

6 Northstream White Paper, Operator Options Beyond 3G7 Interview Joakim Enerstam, Effnet8 Interview Mats Nordström, Ericsson Research

Page 24: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

24

reach only 50% of a circuit switched implementation. With header compression is possible to

achieve 90%.9

Header compression techniques must be implemented on both ends of the communication

link. In UMTS network it can be found both in the terminals and the RNC’s. The standard is

to be implemented in 3GPP Release. 6. It is then left to infrastructure providers, handset

manufacturers and operators to implement these standards in their products and services. An

estimate is that header compression using ROHC will be operational in 2007.10

2.7 Measuring voice quality

Voice quality is measured using subjective techniques. A number of listeners will under

controlled conditions give a score to a specific call or codec. 5 is excellent, 4 is good, 3 is fair, 2

is poor, 1 is unacceptable. An average is calculated to determine the Mean Opinion Score or

MOS. Several conditions may be simulated such as packet loss environmental noise and

tandem encoding/decoding to measure their effects on perceived quality. Tandem

encoding/decoding occurs when the connection crosses networks using different types of

codecs11.

9 Voice-over-IP-over-Wireless, K. Svanbro, J. Wiorek, B. Olin10 Interview, Mats Nordström, Ericsson Research.11

http://www.cisco.com/univercd/cc/td/doc/product/access/acs_mod/1700/1750/

1750voip/intro.htm

Page 25: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

25

2.8 VoIP and Quality of Service

Real time applications, such as voice, are very sensitive to variations in network conditions. A

standard file download is not. However, these applications share the same infrastructure

making it difficult to provide capacity and reliability parameters when designing a network. In

this chapter the different parameters that determine quality of service are considered and how

quality can be increased or guaranteed.

The main parameters that affect quality of VoIP communication are:

• Bandwidth

• Latency

• Jitter

• Reliability

2.8.1 Bandwidth

If a communication link offers insufficient bandwidth, packets will be dropped and lost.

Therefore, it is important to foresee that the bandwidth requirements are met through out the

whole link.

2.8.2 Latency

Latency is the time it takes for one packet to traverse the network from one node to another,

see Figure 12. The ITU has set the limit for latency to 150ms. If latency is above 50ms there are

echo effects that must be handled.

Page 26: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

26

Figure 1212Latency is introduced in various parts of the network

2.8.3 Jitter

Jitter is variation in latency. Because packets traverse the network independently, they may

require different time to reach their destination. For data services this has a negligible effect.

However, during a voice conversation it is important that each voice packet is delivered at the

same rate it was sent. To avoid jitter, buffers must be used in the receiving end. The buffer

will also fix packets that arrive in the wrong order. Such buffers increase latency, thus making

a trade-off between low latency and jitter.

2.8.4 Reliability

Reliability can be measured in many different ways. The most common method is looking at

packet loss or bit loss. Since RTP data is sent over the unreliable UDP protocol, most codecs

have built in error correction. Such error correction can handle error correction of up to

roughly 5 percent before quality degrades.13

12 12 http://www.protocols.com/papers/voip2.htm

Page 27: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

27

2.8.5 Reliability

Reliability can be measured in different ways, the most common is however to look at packet

loss or bit loss. Since RTP data is sent over the unreliable UDP protocol most codecs have

built in error correction. Such error correction can handle error correction of up roughly 5

percent before quality degrades.14

Reliability can also be measured in terms of availability of the network (do you mean

“unavailability”?). The traditional PSTN has a very high reliability, close to 99.999%, or a few

minutes per year. In order for VoIP to gain widespread usage, temporary outages must be

minimized. Broadband service for enterprises promises service availability of 99.8%15. This

means that the service can be unavailable more for than one hour per month. Additionally, the

risk of power outage and planned maintenance must be included. Some argue that these lower

requirements make IP-infrastructure less expensive, as compared to traditional

telecommunication systems.16

When a VoIP service fails, software failure is the most common cause, accounting for more

than 47% of the cases17. This indicates that VoIP has some maturity issues that must be

addressed.

2.9 Provisioning QoS

The common way to provision QoS over IP has been over-dimensioning the network. By

utilizing a bigger data pipe network related problems will diminish. If all the links in a network

route traffic at 30% of peak capacity, there should not be any problem with congestion or lost

packets.18 Others argue that over-provisioning will not hold when more and more of the traffic

consists of real-time voice or video.19 The underlying debate is whether it would be less costly

to overprovision than to introduce control functions to constantly monitor the network.

15 http://www.bredbandsbolaget.se/portal/FORETAG_INTERNETACCESS16 Ulf Olsson - Ericsson White Paper – Combinational Services.17 www.lighreading.com/document.asp?doc:_id=5386418 Interview Stefan Hagbard TeliaSonera19 Ericsson White Paper, Softswitch in mobile networks

Page 28: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

28

Other than increasing bandwidth there are few alternatives that can be used to handle high

priority traffic. Traffic could be routed around congested links or packets can be given priority

in router queues. Three key concepts are IntServ, DiffServ and smart routing, as described

below.

2.9.1 IntServ or Flow Based Control

IntServ is based on reserving resources through the network and is sometimes called a “flow

based” solution. When an application requests a certain QoS level, resources are reserved on

each of the routers in the network. IntServ, however, is not seen as a solution that would scale

well in a large IP network with thousands of users. The problem is that the traffic generated

from controlling the network is quite large compared to the small amount of traffic that VoIP

generates.20

2.9.2 DiffServ

In DiffServ each IP packet is flagged with a QoS priority. Throughout the network these

packets will be given priority in routers thus avoiding congestion. The main benefit of DiffSer

is that it is simple compared to IntServ, but will still offer significant improvements on current

best-effort networks.21

2.9.3 Smart routing

IP is relies on destination-based routing, sending all packets over the shortest path without

regards to the load on different links. By using smart routing, packets will take the best route,

which may not be the shortest, based on information on congestion and other parameters in

the network.

2.9.4 Blocking VoIP traffic by providing sub par quality

Broadband operators are interested in taking a share in the expanding market. Currently, many

of them are only providing a fat data pipe and there have been attempts to interfere with VoIP

traffic. In the US, Federal Communications Commission (FCC) reached a $15.000 consent

decree with Madison River Communication after it was found to have interfered with VoIP

traffic. The company pledged not to block VoIP traffic in the future.22 However, it is still

20 Bur Goode, Voice over Internet Protocol21 Bur Goode, Voice over Internet Protocol22 http://informationweek.smallbizpipeline.com/60405214

Page 29: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

29

possible for operators to indirectly block traffic. By giving priority to traffic from their own

services such as telephony or TV a network owner could effectively set a lower priority to

other types of traffic. It will be clearly significantly more complicated to determine if such

operation can be deemed illegal.

2.9.5 Comments

Modern codecs produce a data stream of down to 5 kbps. Lower bit rate codecs give inferior

quality. It is not credible that the codec will gain any significant improvements in the coming

years. It has also been shown that the overhead produced by the Internet Protocol has a

significant impact on the resulting bit rate.

Considering that circuit switched telephony has been around for more than 100 years VoIP is

still in its infancy. There is thus a challenge for VoIP providers to implement systems for

maintaining end-to-end quality of service.

Page 30: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

30

3 Current market for fixed Voice over IP

The Voice over IP market is in a turbulent phase. According to Sandvine there are some 1100 VoIP providers

operating today.23 These operators range from multinational long distance carriers to small local operators and

applications that run on standard PCs. This chapter discusses the different segments and describe how each is

deployed. The market for VoIP can be divided in to 3 major categories:

• Business fixed line VoIP

• Residential fixed line replacement VoIP

• Softphone VoIP

3.1 Business fixed line VoIP

A survey made by Heavy Reading among companies in the telecommunication industry

showed that three quarters have already deployed VoIP in parts of their network. Still, the

survey found that the vast majority of the traffic was carried over traditional circuit switched

technology. The respondents expected that CAPEX savings would be non-existent or low

while OPEX is considered to have a greater potential to lower costs.

24

23 http://www.lightreading.com/document.asp?doc_id=7285424 www.tns-infratest.com

Page 31: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

31

3.2 Residential fixed line replacement VoIP

The fixed line replacement segment is dominated by companies that are competing heads up

with the wire line service providers. The goal with their service is to get a look a feel that is not

different from traditional telephony. A typical provider like the US based company Vonage

provides the client with a handset with the same functions as a normal telephone, differing

only in that it plugs into the broadband connection instead of the telephone network. Vonage

uses the term “Bring your own broadband” meaning that Vonage piggybacks on infrastructure

provided by broadband network operators. A user plugs his phone in to an adapter and can

then use Vonage’s services. While Vonage is considered the market leader in this segment,

there are several options available.

The traditional fixed line telephone companies are overseeing their current networks to

determine, which upgrades are needed to maintain competitiveness. British Telecom of the

U.K has announced its plans to make a £10bn investment in its network. BT sees it as

necessary to increase capacity in order to offer new services such as VoIP, broadband and TV.

25

25 www.tns-infratest.com

Page 32: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

32

3.3 Instant Messaging and Softphones

3.3.1 Instant Messaging

Instant Messaging, or IM, is an electronic communication tool through which users can send

text messages and files. It could be viewed as a cross between email and telephone; more

personal and direct than an email and less intrusive than a call. It provides an effective medium

for communication that requires swift but not immediate answers like “can we meet after

lunch?”

A survey conducted by Opinion Research Corporation showed that 66 percent of 13-to-21-

year olds send more instant messages than email. A year ago that number was 49 percent. 20

percent of the respondents said they were interested in making phone calls from their IM-

application. According to AOL, quoting data from ComScore Media Matrix, more than 80

million people regularly use IM.26

3.3.2 Softphone

The softphone is an evolved version of Instant

Messaging enabling users to place phone calls to other

IM-clients or the PSTN, see Figure 13. By searching the

Internet one can, in a few minutes find more than 90

applications that can be downloaded to a PC and

provide PC-to-PC and PC-to-PSTN calls27. These

applications vary from those that use proprietary

closed protocols like Skype to open source projects

that use the SIP protocol like Wengo.

Softphones are not targeted as being fixed line

replacements. A strong incentive for not being a

26 http://news.zdnet.com/Study%3A+teenagers+favor+IM+to+e-mail/2100-

9588_22-5944265.html?part=rss&tag=feed&subj=zdnn

Figure 13. Softphone Skype

Page 33: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

33

telephone service is that the providers do not have to comply with several laws and regulations

to which traditional telephone companies must comply. These include the ability to call

emergency services or for federal agencies to legally intercept if necessary. Countries like China

have plans to ban the use of unregulated VoIP services.28

There are a great number of VoIP-capable IM/Softphones available. A search at

www.download.com gives over 100 hits of IM-application. Below is a selection of the most

popular applications listed.

Yahoo / MSN

Yahoo has built up a large user base in Japan topping 4.7 million subscribers in first quarter of

200529. In June 2005 Yahoo acquired DialPad to have access to DialPad's Pc-to-phone calling

capabilities. Since then Yahoo has teemed up with British Telecom to provide BT customers

with Pc-to-phone calling through Yahoo messenger30. Yahoo is believed to have 21.9 Million

instant messaging clients in the US31.

Microsoft has offered its VoIP-capable instant messenger service MSN Messenger for a

number of years. In 2005 Microsoft acquired Teleo, a company that provides PC-to-phone

access. Goldman Sachs analysts see the move as a way for Microsoft to better integrate

services currently found in its portfolio such as MSN, Outlook or even Xbox games.

According to Nielsen/NetRating MSN had 27.3 million unique users in September.32

Yahoo and MSN have now decided that their respective services should be compatible with

each other, which further manifests the interest in IM-services.

28 http://www.forbes.com/technology/feeds/afx/2005/09/08/afx2214918.html29 Source: Point Topic30 http://www.bt.com/btcommunicator/index.jsp31,31,31http://customwire.ap.org/dynamic/stories/M/MICROSOFT_YAHOO?SITE=CAS

DT&SECTION=HOME

Page 34: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

34

Google

Google launched its Instant Messenger service Google Talk in 2005. Google uses the open

Instant Messaging protocol XMPP. The idea is to connect people to advertisers that buy

services from Google.

AOL

AOL provides one of the most widely deployed Instant Messenger services today, most

noticeably in the US market with 51.5 million users33. It has long had PC-to-PC VoIP

capabilities but has recently launched a service that enables clients to call regular phones. The

service will not be softphone based however. Instead users will use an adapter to which they

connect their regular landline phone. AOL’s strategy is thus not to directly make their existing

IM clients to start making calls to the regular phones. Instead the company is targeting its base

of broadband subscribers to move over from traditional telephony to VoIP. 34

Trillian

Trillian is an application developed by Cerulean Studios that makes it possible for users to

connect to multiple IM platforms, using only one application. A user can be connected to

MSN Messenger and AOL simultaneously without having to launch both applications.

Skype

During 2005 Skype has created a lot of buzz. It differs from the traditional IM client because it

is based on distributed peer-to-peer technology thereby not relying on central servers. Skype

reports that their software has been downloaded over 200 million times and that it has over 60

million accounts registered. Over 2 million people have opted to use its PC-to-PSTN

SkypeOut service35. Skype was acquired in September 2005 by eBay, which is interested both in

Skype’s user base and the possibility of integrating its auctioning service with live

communication. Skype will have an estimated revenue of $60 million 2005 and an estimated

revenue of $200 million 2006.36

34 http://www.lightreading.com/document.asp?doc_id=8058735 www.skype.com36 http://www.centerformarketintelligence.com/analystviews/20050927-

WeeklyReport.htm

Page 35: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

35

The Switchboard

The Switchboard is a different kind of Softphone because it is a program that is runs online.

One could compare it with having an email-client like Outlook versus an online email account

like Hotmail. Switchboard uses Java to enable people to make free calls across the world.

Switchboard has, in spite of their interesting technology, not attracted any significant number

of subscribers.

Page 36: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

36

3.4 Major VoIP providers

Table 1 Major VoIP service providers

Company Product Misc Service Type8x8 Packet 8 Wire line replacement, offers video

telephony to both business and residential.Unlimited monthly US plan for $19.95

IP-to-IPIP-to-PSTNPSTN-to-IP

AOL Total Talk Available both as integrated with AOL’s IMclient AIM and in an adapter version.Monthly unlimited $34.95 to call landline inthe US and Canada

IP-to-IPIP-to-PSTN

AT&T Call Vantage 53.000 subscribers years end 2004. $29.95unlimited monthly plan.

IP-to-IPIP-to-PSTNPSTN-to-IP

BroadVoice BroadVoice $19.95 unlimited international plan. IP-to-IPIP-to-PSTNPSTN-to-IP

BT BTCommunicator

Venture with Yahoo Messenger. Softphonewith international rate starting at 0.5p/minute. Requires fixed line subscriptionwith BT

IP-to-IPIP-to-PSTN

Cablevision OptimumVoice

Unlimited national $34.95601.208 subscribers37

IP-to-IPIP-to-PSTNPSTN-to-IP

Comcast Comcast Bundled services with TV and Internetconnection from 39.95. 83.000subscribers38

IP-to-IPIP-to-PSTNPSTN-to-IP

Cox Cox Bundled services, TV and Internet. 130.000subscriber39

IP-to-IPIP-to-PSTNPSTN-to-IP

Google Google Talk User open standard protocol Jabber. Serviceconnected with Goggle’s Gmail service.

IP-to-IP

Microsoft MSNMessenger

IM client integrated in Windows. MS claims180M active user accounts / month. Hasacquired Teleo for PSTN capabilitiesAnnounced deal with Yahoo to let userscommunicate using respective IM client.

IP-to-IP, soonintegrationwith PSTN

Skype Skype Softphone. 60M+ registered users. Theservice. Accounted for 46.2 percent ofVoIP minutes used in North America.

IP-to-IPIP-to-PSTNPSTN-to-IP

37 http://www.lightreading.com/document.asp?doc_id=8431238,38 http://www.cabledatacomnews.com/dec05/dec05-1.html

Page 37: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

37

Skype users accounts for 35.8 percent ofindividual VoIP users.40

TimeWarner

Unlimited local calling, unlimited instatecalling, unlimited long distance $39.95854.000 subscribers41

IP-IPIP-PSTNPSTN-IP

Vonage Vonage Several national and international plans.Unlimited national from $24.95. 1M+Users. Market leader in replacementcategory

IP-to-IPIP-to-PSTNPSTN-to-IP

Yahoo YahooMessenger

Has recently acquired DialPad which willgive PSTN capabilities to Yahoo Messenger

IP-to-IPSoonintegrationwith PSTN

3.5 Future development

The way forward is all but clear. Telecom operators will not stand by and let software players

set the terms of the market. However, the proprietary nature of these applications, could

hinder the development of the market. A step forward has definitely been the announcement

of Yahoo and MSN to make their services compatible with one another. Google entrance in

the market and their choice of and open standard protocol is seen as a big thing. From the

cellular world companies like Verizon and Cingular already offer their subscribers access to

IM-clients like MSN and Yahoo. Typically they charge a flat fee of $2-$3 per month that allows

subscribers to send and receive an unlimited amount of instant messages.42

For the operator offering a softphone could be a way to more tightly integrate their

subscribers. A subscriber would have one contact number and calls would be routed to

different points of access. When away from the computer, calls would be routed the

subscriber’s mobile phone. During a business trip to Japan, for example, calls made could be

answered on his laptop PC at a lower cost compared to is anwered on his mobile phone.

Operators have an opportunity to expand their businesses into areas where they have so far

been quite unsuccessful. Because the system, ideally, would be based on open standards the

subscribers would have access to their favorite IM-applications and at the same time the

40http://www.lightreading.com/document.asp?doc_id=75833&site=lightreading&

WT.svl=news1_341 http://www.cabledatacomnews.com/dec05/dec05-1.html42 http://news.zdnet.com/2100-3513_22-5298633.html

Page 38: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

38

enhanced features provided by the operators. The operator would need to create software that

lies on top of other IM-application and aggregate their functions and features much like

Trillian [0]. This is not seen as a technically challenging operation.43

3.6 Market Value

The market for VoIP products and services is expected to grow dramatically over the next few

years. Forecasts from Frost and Sullivan predict that the global market will be worth �8.15

billion in 2007.44

45

3.7 Comments

The growth of broadband connections seems to be the single most important cause for the

uptake of VoIP.46 Many of the VoIP providers are also providers of broadband connection.

Examples of such are: Comcast, AOL, Cablevision.

43 Tele244,45 http://www.tns-infratest.com/06_BI/bmwa_english

/Faktenbericht_8/Abbildungen/Folie404.JPG

46 Arthur D. Little, Broadband Report 2004

Page 39: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

39

Instant Messaging and softphones are markets that are growing exponentially. Operators

should develop solutions in order to increase their market footprint. Such applications should

be made using open standards.

The proliferation of VoIP over fixed lines will indirectly have an effect on wireless VoIP in

that it speeds up the evolution to an all-IP telecommunication scenario. With an all-IP

infrastructure on the fixed line side, upgrading mobile network will become more economical.

Page 40: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

40

4 Voice over IP over Wireless Channels

The mobile sector is lagging the fixed sector with a couple of years. This chapter will explain why there is a

difference between fixed and mobile VoIP. We first use a general approach describing the fundamentals of

radio communication. This is of use when discussing future development of new access technologies. Next we look

at the cost structure of a mobile network. This will give some incitements for deploying VoIP but also some

arguments against it. We then look at access technologies such as WCDMA, CDMA2000, WiMAX and

WiFi and see if or how VoIP will be introduced.

4.1 Basics of Radio Communication

A spectrum is a group of frequencies in which a radio service can be deployed. Spectrum is a

limited resource and has proven to be a valuable asset. A number of interests must be

considered when distributing these resources: military communication must not be hindered;

television broadcasts should be received with good quality, etc. Every country has a federal

agency that handles the distribution of this resource.

4.1.1 Frequency, Power and Coverage:

Frequency and range are related in that a higher frequency yields a shorter range. In the

frequency band used for mobile communication, 500-2500 MHz, a rule of thumb is that

doubling the frequency will halves the range. This is because higher frequency is subject to

greater attenuation47 and that it does not benefit from diffraction (to bend around buildings) as

much as lower frequencies48. Deploying a network in the 950 MHz band would therefore

require about � as many base stations as in the 1900 MHz band. Lower frequency bands are

thus highly interesting for telecommunications operators. The drawback of lower frequency

bands is that they do not provide large amounts of spectrum. In Sweden for an example, the

available spectrum in the 450 MHz band is only 2 x 4.5 MHz + 2 x 1.8 MHz. This can be

compared with UMTS, which has been allocated 2x60 MHz in the 2 GHz band. Because the

area covered by one base station is very large at low frequency the throughput-per-area will be

moderate making it unsuitable for densely populated areas.49 There is no difference, however,

47 Fredrik Tufvesson, Department of Electrical Science, LTH48 Wireless Communication49 www.PTS.se

Page 41: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

41

in throughput depending on at what frequency the band is located, 5 MHz bandwidth will

provide the same throughput at 1 GHz, as it will at 10 GHz.

Power

Coverage is dependent on power. The stronger the signal the farther the signal will reach.

Although it is possible to increase output power from a base station almost indefinitely, doing

the same from a battery driven terminal is simply impossible. Using high output power would

also cause interference on other base stations.

Gugliemo Marconi conducted the first radio transmissions in 1895, occupying a great amount

of spectrum but capable of sending only a small amount of information. In 1901 the first

transatlantic transmission with a high power amplifier blanked a great part of the globe. In fact,

using that technology only 50 simultaneous conversations could take place in the whole world.

Bandwidth, Frequency and Coverage

The relationship between bandwidth and coverage can further be explained by the following

equation, leaving modulation and coding unchanged

��

��

�+��

��

�=

rrf

f

B

BR loglog10 �

in which R is the required performance improvement in dB, B is the bit rate to achieve at

frequency f. Br and fr are the references used. � is a propagation factor for frequency. The

value of � is 33.4 according to the COST 231 – Hata-model and 20 for free space propagation.

The graph below plots R as a function of frequency, assuming the two aforementioned values

of �.

Looking at the plot for �=35, to achieve 100mbps in the 5 GHz band, one must improve the

link budget (see [9.1]) with 30dB, corresponding to reduced coverage. If one instead uses 1

GHz, R needs to be only 6.5dB higher to achieve the same coverage50, see Figure 14.

50 Masahiro Umehira – Research and Development of Broadband Wireless

Access Technologies

Page 42: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

42

Figure 14 Increased bandwidth or frequency leads to less coverage

The equation states that an increase in bandwidth has a negative effect on coverage. With less

coverage there will be a need for building new and expensive base stations. It is thus unlikely

that there will be any significant substitution from circuit switched to VoIP before the latter

can achieve similar performance over the radio link.

4.1.2 Radio Resources and Cost51

The cost of building a network can be described by the following equation:

)(QfABNCserviceuserusersystem

Csystem = the cost of the system

Nuser = the number of users

Buser = Bandwidth of user

Aservice = the service area covered (volume indoors)

f(Q) = function of the required Quality of Service

51 J. Zander – Economics of Broadband Wireless Access Systems

Page 43: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

43

This equation shows that it is not possible to scale bandwidth and maintain coverage and cost.

In order to offer a higher bandwidth Buser to the users and maintain system cost Csystem, one or

more of the other parameters would have to be lowered. This means either reducing coverage

(Aservice), fewer users (Nuser) or a reduced quality of service (f(Q))

The cost of providing ubiquitous coverage increases with transfer speed. A likely scenario is

thus that high data speeds are concentrated to areas where people actually are e.g. airports,

train stations and cafes. In other areas, users will have access to moderate access speeds. Big

cellular technologies like WiMAX and UMTS will thus be complemented with hotspot

solutions like WiFi. The equation that governs how cost relates to transfer rates tells us the

importance of using available resources efficiently. It also gives an indication that VoIP over

the radio interface will first be introduced when there are solutions available that are as

effective, in a radio resource perspective, as circuit switched traffic.

4.1.3 Non Line of Sight Communication

An essential characteristic in mobile radio communication is that there is no need for line of

sight between the user and the base station. At frequencies above 2.5 GHz non line-of-sight

propagation is very limited. In fact there are hardly any mobile networks deployed in

frequencies above 2.5 GHz.52

Frequencies above the line of sight requirement can be used for services where line sight is not

an issue e.g. backhaul transmission from base station or wireless broadband access. At higher

frequencies the signal becomes more susceptible to atmospheric conditions like fog, rain or

snow. This drawback has to be weighted against the great amount of available bandwidth.

4.1.4 System Capacity Improvements

The number of simultaneous conversation has, obviously, increased dramatically since

Marconi’s first broadcasts [0]. In the last 45 years it has increased by a million times. To

increase capacity there are four main options:

• Frequency division

• Modulation techniques

• Spatial division

52 Patrik Wikström, Netcom Consultants

Page 44: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

44

• More spectrum

Of the million-fold improvement, a 45x improvement comes from the use of more spectrum.

A 4x improvement from the ability to divide the spectrum into ever narrowly defined slices, or

frequency division. Frequency division leads to less interference outside the intended

frequency and remove the approximations that are needed to “tune in”. A 5x improvement

comes from techniques such as AM, FM, time division and approaches to spread the

spectrum. The rest, or 1600-fold improvement comes from confining radio areas with the use

of cells.

It could be interesting to view these improvements in terms of how many conversations, voice

or data, a system can handle. It turns out that this number has doubled every 30 months for

the past 104 years. This relation is sometimes referred to as Coopers law.53 Cellular telephony

is therefore based on creating small islands of non-interfering zones thus increasing the system

throughput.

53 http://www.arraycomm.com/serve.php?page=cellCooper

Page 45: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

45

4.1.5 Bandwidth Limits

There is an upper bound for how much data that can be transferred in a given link. Claude

Shannon described this limit in 1948.

)/1(log2 NSBWC +�=

C= Error free data

BW = Bandwidth

S=Signal level

N=Noise level

Signal power inherently decreases with distance. At best, noise is kept constant. Today’s radio

technologies are approaching the Shannon limit by the use of effective modulation and coding.

The noise level N is the thermal noise that always is present and could be seen as a constant.

There are then two parameters left, Signal level S and Bandwidth BW. As described [0] it is not

possible to increase output power without causing increased interference. Thus it is not likely

that there will be any significant improvement on system capacity through improved radio

bearers.54

Current radio technologies are approaching the Shannon limit and there is not much room for

radical improvements in transfer speed in the coming years. At a given frequency and

bandwidth the number of base stations required to give coverage and adequate throughput is

roughly the same for competing access technologies. Today’s 3G technologies are increasingly

gaining benefits from economics of scale making the introduction of a completely new radio

system to deliver the same type of service unlikely.

4.1.6 Evolution Radio

A study conducted by Rysavy research found that the difference in performance between radio

access technologies is becoming less noticeable. In a live network many factors will ultimately

limit throughput and therefore, the introduction of a new radio bearer will have less impact.

Instead, the focus should be on improving the signal to noise ratio, SNR, by interference

54 Rysavy Research – From GPRS to HSDPA and beyond

Page 46: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

46

coordination between sectors and the use of intelligent antennas or MIMO technology.55 Such

improvements can be made on any type of access channel, thus making the choice of

technology less and less important.

4.1.7 Spectrum Licenses

Some frequencies have been made license-exempt, e.g., the 2.4 GHz band in Europe.

Microwave ovens, DECT-telephones, WiFi and Bluetooth are example of technologies that

use this frequency band. A communication service deployed in the license-exempt band would

thus be subject to severe interference. This is why all major communication networks operate

in licensed frequency bands. In these bands the license holder is exclusively allowed to

operate, thus keeping the radio environment free from interference

In 2000 various European countries held auctions for licenses to the 3G networks. In the UK

the 5 licenses generated an income of �37.8 billion and in Germany it generated �54 billion.56

In retrospect some argue that this price was too high and that it has hurt the ongoing

deployment of networks. It does however give an indication of how valuable this resource is

and at the same time the difficulties associated with free unlicensed spectrum

The agency that is responsible for licenses can set terms under which a technology may be

used. As an example in Europe, spectrum in the 3.5 GHz band only allows fixed or nomadic

use, thus making it useless for an operator interested in offering mobile service.

4.1.8 Spectrum Availability

As mentioned above spectrum is a limited resource. Available frequencies vary from country

to country making it hard to deploy a standard that can be adopted through out the world and

thus benefit from economics of scale. See table [9.5],

4.1.9 Comments

From a VoIP perspective there is no “preferable” frequency, VoIP is from a radio perspective

not different from any other service; low frequencies are bandwidth limited and cover a large

area, high frequencies are bandwidth abundant but with limited coverage.

55 Rysavy Research – From GPRS to HSDPA and beyond56 http://www.gsmworld.com/gsmeurope/faq/3g.shtml

Page 47: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

47

Since available spectrum is limited the most likely scenario is that existing networks move over

to VoIP when it provides the same capabilities and efficiency as circuit switched technology.

Due to interference in the license exempt bands it will be hard to deploy reliable services as the

number users increases. The idea of deploying a city- or nation wide network in the license

exempt band to offer a VoIP service is therefore greeted with skepticism.

New access technologies has only had a marginal effect on system capacity compared to the

gains derived from creating non-interfering cells. The creation of non-interfering cells has,

without question, been the most important factor for fulfilling Cooper’s law. This evolution is

likely to continue, with the use of more small high capacity cells where user can access

advanced network services.

Different access technologies only show marginal differences in capacity when deployed in the

same frequency band. Rolling out a new network like WiMAX would thus be more of a

political decision about freeing up spectrum resources. In Europe where the 2 GHz band is

reserved for UMTS technology a WiMAX solution would have to be deployed in the 3.5 GHz

band. To achieve acceptable coverage a large number of sites would have to be built. This

makes it plausible that new access technologies will not compete heads up with existing

technologies but more find a niche market such a fixed wireless broadband. From a mobile

VoIP perspective it is thus not likely that new technologies could bring any significant

improvement over already deployed infrastructure using circuit switched technology.

VoIP can bring significant improvements for network operator in form of a network that is

easier to maintain. This benefit has to be weighed against the increase in bandwidth over the

radio interface that a VoIP solution implies. This also shows the fundamental difference

between fixed line VoIP and wireless VoIP. In the fixed world the last mile access bandwidth

will always be abundant from a voice perspective. Using 10 kbps or 100 kbps will make no

difference when the available bandwidth will be 10-100 Mbps. The radio spectrum will as

shown always be a scarce resource that will require efficient use.

It is thus likely that the core network will start the VoIP-transition leaving the radio interface

unchanged until VoIP is as effective as circuit switched solutions. Current networks are highly

Page 48: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

48

optimized for carrying voice traffic and new technology using VoIP in the radio interface will

only be introduced when it can provide equivalent as effective.

4.2 Cost structure of cellular network57

As seen in the graph below, the major expenses for a mobile operator are associated with

marketing, billing and administration, constituting almost 55% of total cost. Equipment costs

such as base stations and switching equipment constitute only a minor part, roughly 15% taken

over system lifetime.

58

Operator costs are divided into two main groups, capital expenditure (CAPEX) and operating

expenditure (OPEX). CAPEX comes from investments made in infrastructure, such as base

stations, base station sites, switching equipment or other expenses related to building the

network. OPEX originates from three different kinds of costs:

Customer driven: Includes costs to get new subscribers to the network, terminal subsidies

and dealer commissions.

57,57 J. Zander- Low Cost Broadband Wireless Access – Key Research Problems

and Business Scenarios

Page 49: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

49

Revenue driven: Associated with the cost to get people to use the services in the network or

the cost that the traffic is generating. Marketing and sales staff belongs to revenue driven

costs.

Network driven: Cost of running the network, transmission, site rental and maintenance.

The estimates below show that CAPEX costs are dominated by the cost of sites. Site costs

include acquisition and civil engineering and will vary considerably depending on site location.

The costs of base station and network equipment are both approximately half that of the cost

of the sites.

Page 50: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

50

One can summarize the cost structure as:

• The cost of equipment is not the dominating expenditure of overall network CAPEX or

OPEX

• Equipment cost is likely to be reduced over time as prices fall, and the fraction between

equipment cost and overall cost will be reduced even more

• Site construction and deployment are a major expenditure.

• Maintaining the network is costly

4.2.1 Comments

Since a large part of the cost of running the network comes from administration and

maintenance there could incentives for introducing an IP-based infrastructure. Legacy

telephone network requires a variety of experts on different parts of the system. With a more

IP-centric system there will be easier to find skilled people at a lower cost.59

The cost of sites is dominating the capital expenditure. New access technologies like WiFi that

is easy to install could be a viable path for extending network coverage and capacity especially

if an investment could be shared between the location owner and the operator. The cost for

the equipment constitutes a minor part and is likely to fall as more base stations are deployed

59 Interview Stefan Hagbard TeliaSonera

Page 51: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

51

and more manufacturers enters the marker. This will make it hard to provide a solid business

case for a technology like WiMAX to compete for the same type of clients as current mobile

operators. It is thus likely that new access technology will find its niche market as a provider of

broadband access in rural areas with underdeveloped infrastructure.

4.3 Voice over IP and WCDMA

WCDMA is the leading 3G-radio access technology and is sometimes said to be the European

3G technology referring to CDMA2000 as the American version. WCDMA stands for

Wideband Code Division Multiple Access. WCDMA has similarities with the GSM system

since it uses the same packet core network found in GPRS. In fact, a network that has been

upgraded to support GPRS needs only a new RAN, Radio Access Network. However, the new

RAN is substantially different and requires large investments to achieve reasonable coverage.

There were two main focuses when developing UMTS/ third generation network, first and

foremost it was seen as necessary to increase the capacity of handling voice calls. The second

reason was the possibility of offering new and advanced services. The developers found it

most suited to give the standard both circuit- and packet switched capabilities. The higher bit

rates provided by the network would enable services such as video telephony and interactive

gaming. The uptake on these services has however been slow and operators are consistently

seeking ways to spur network traffic.

4.3.1 Softphone’s impact on capacity.

A user equipped with a laptop PC and a 3G data card, could

use a softphone [3.3] to place phone calls Existing softphones are

developed for fixed broadband connection with little or no

concern is taken for bandwidth consumption. A WCDMA system

is, like other CDMA based systems, interference limited. This

means that when a user transmits data he adds to the interference

in the system. It is therefore essential to use resources as

efficiently as possible. With a higher bit rate overall system

capacity falls dramatically.

Harry Holma provides in WCDMA for UMTS a simplified

example how packet overhead affects system capacity. A 12.2 kbps voice carries 244 bits per

Figure 15. PC-Data card for

3G connectivity

Page 52: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

52

20 ms. This will be our reference. In tests I have conducted Skype has consumed a bandwidth

of roughly 30 kbps. This means that each packet contains 600 bits per 20 ms packet. The

reduction in capacity would then be:

10 � logSkype_bit _ rate

circuit _ switched _bit _ rate

��

��

10 � log600_bits

244 _bits

��

�� = 3.9dB

Resulting in a reduced system capacity of

1�10(�3.9 /10) = 59%

These calculations will only give rough estimates of the impact of VoIP applications in the

radio network. But they do, however, give and indication on the importance of managing

available resources in an efficient way.

The major penalty that is associated with the use of Skype is produced by the overhead from

the IP-protocol as described earlier. The fact that Skype uses a 13.3 kbps codec has only minor

effects. Header compression is however to be implemented in coming releases of both

CDMA2000 and WCDMA.

With the use of header compression it will be possible to reduce overhead on to approximately

3.5 bytes. With a 12.2 kbps codec this would give a penalty of

10 � log244 + 3.5 � 8

244

��

�� = 0.5dB

Resulting in a capacity reduction of only

1�10(�0.5 /10) =11%

Many networks have both GSM and WCDMA. An operator can move voice users between

the different access technologies depending on network load. This will however not be

Page 53: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

53

possible with a softphone solution. Legacy packet based network like GPRS cannot provide

the radio link that a VoIP call requires. It is both bandwidth limited and suffers from high

latencies, possibly exceeding 800 ms. Handoff between different base stations is not as smooth

as in WCDMA.

4.3.2 Latency

Latency could potentially be a problem for VoIP communications in current releases of

WCDMA. A typical value today is close to the 150 ms limit that ITU has set for achieving

acceptable quality [2.8.2]. Latency issues become even more problematic in loaded networks.

4.3.3 HSDPA

Many WCDMA network operators are in the process of planning or implementing 3GPP

Release 5. The key element of release 5’s higher data rates capabilities is the introduction of

HSDPA, High Speed Downlink Packet Access. In HSDPA a new transport channel is

introduced, HS-DSCH or High Speed Downlink Shared Channel. Two of the most prominent

features of WCDMA, fast power control and variable spreading factor are not found in

HSDPA. Instead the upgrade introduces:

• Adaptive Modulation and Coding, AMC,

• Fast Packet Scheduling, FPS,

• Short Transmission Time Interval, TTI.

• Hybrid ARQ.60

Power control and AMC

HSDPA introduces the Fast Link Adaptation function and higher order modulation (16

QAM). Instead of controlling the output power the system focus on adapting the modulation

to the radio environment. Higher order modulation requires improved EC/Ior ratio. High ratio

is available to users close to node B or users that have good radio environment in general. This

feature, commonly known as rate adaptation or link adoption, is very efficient for services that

can tolerate variations in the data rate.61 In a live system the scheduler evaluates different users

radio condition, how much data that are in node B’s buffer, time passed since last transmission

60 UMTS Networks: Architecture, Mobility and Services, by Heikki Kaaranen,

Ari Ahtiainen, Lauri Laitinen, Siamäk Naghian, Valtteri Niemi61 Ericsson White Paper, WCDMA Evolved

Page 54: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

54

and other parameters. The scheduler uses this information to determine which user to send to

and what modulation and number of codes that shall be used.

Short TTI

The short TTI makes it possible for the scheduler to take advantage instantaneous favorable

radio conditions. Thus with a large number of users in a cell it will be possible to transmit on

high data rates a large part of the time by switching between users with a short time interval,

see Figure 16.62

Figure 16. Short TTI makes it possible to benefit from instantaneous favorable radio

conditions.63

Latency

In HSDPA intelligence is moved from the RNC to Node B. This way retransmission can be

controlled directly by Node B, which means shorter delay and faster retransmissions. HSDPA

will also use Hybrid-ARQ, which will decrease the number of retransmissions in the radio

access Latency will also be reduced, field test show latency numbers down to 40ms in the radio

network compared to 150 ms in current releases.64

62 Rysavy Research, Data capabilities GPRS to HSDPA and beyond.63 Ericsson White Paper – Evolution of WCDMA64 Interview Johan Sköld, Ericsson Research

Page 55: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

55

Performance:

Using 15 codes it will be possible to achieve data throughput of 14.4 Mbps. 15 codes will

however not be available in initial releases due to the complexity of memory handling and the

processing power required. System capacity will also increase compared to WCDMA due to

the use of higher order modulation and an improved scheduling process, optimized for

increasing system throughput. In WCDMA the scheduling is optimized to achieve data rates

with little variation through out the cell.

Improved scheduler benefits packet switched traffic

The scheduler in HSDPA is highly optimized for packet switched traffic. Today WCDMA

only uses dedicated channels for data. The dedicated channels are relatively inflexible and it

takes time to adjust to changing requirements. When using a circuit switched voice service, a

16 kbps dedicated channel will be able to support it. With VoIP, there will be a need to

sometime update the header compression context and a higher bandwidth is thus required.

This is not done easily with current WCDMA.

With the scheduler used in HSDPA it will be possible to intelligently hold packets in the base

station depending on what type of service that is being transmitted. Since speech is produced

with an interval of 20 ms where each packet contains only small amount of information a few

packets could be sent in one of the high capacity time slots if the service parameters allows.

Packets in line to be sent over the air interface can also be stripped of their IP-header and be

sent as one big packet. By trading between delay and capacity HSDPA will be able to offer

higher data using VoIP than existing circuit switched solution.

HSDPA is as mentioned an improvement only to the downlink. Tests show however that

system voice capacity would benefit from an introduction of IP-based telephony even if it

were only initially applied to the downlink.65

65 Interview Mats Nordberg, Ericsson Research

Page 56: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

56

Evolution

HSDPA will be succeeded by HSUPA sometimes in 2007-2008, see Figure 17. HSUPA, High

Speed Uplink Packet Access will bring improved performance to the uplink. HSUPA will use

some of the characteristics of HSDPA such as short TTI and HARQ. Due to physical

characteristics of the uplink it will not be possible to introduce higher order modulation in the

same way as with HSDPA. The increment in uplink capacity is believed to enhance overall cell

throughput with as much as 85.66

The advantage of the UMTS system is that it allows operators to follow a highly standardized

path. UMTS integrates operators’ legacy GSM network with the data solutions of tomorrow.

The massive industry support renders infrastructure and end user terminals at competitive

prices.

Figure 17. Evolution of WCDMA.

4.3.4 Comments:

UMTS/WCDMA is the dominant 3G technology today and is likely to become even more so

in the near future. Its close connection to GSM/GPRS makes it the natural step for such

operators to upgrade their networks. In Europe the choice of WCDMA is very much a

political one and the future steps are likely to involve several regulatory agencies and other

governmental institutions.

66 Rysavy Research, Data capabilities GPRS to HSDPA and beyond.

Page 57: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

57

There is also a significant reduction in system capacity when using a non-optimized VoIP

application like Skype. The reduction is due to the fact that the Skype uses a high bit rate codec

and that the protocol produces a lot of overhead. From an operator’s perspective replacing a

highly efficient circuit switched solution with a wasteful packed solution seems highly

unrealistic. It is thus not in the operator’s interest to move their voice service users over to

VoIP before there are some significant improvements done.

Although technically possible to use VoIP in a WCDMA network today it is not likely to have

any major impact before the aforementioned upgrades are implemented.

According to industry representative a fully functional end-to-end duplex VoIP solution is

likely to be available on the WCDMA market in 5 years time.67 The reason for implementing

this will be that it provides a more efficient solution than existing circuit switched technology.

The GSM/GPRS networks that have already been deployed are expected to remain in service

for a long period of time, some say past 2015. These network provide efficient voice service

using circuit switched technology meaning that VoIP will coexist with legacy equipment.

4.4 Voice over IP and CDMA-2000

Qualcomm developed the first commercially available CDMA standard in the 1990s. It has

since then been deployed in various countries in the US, Asian and South American markets.

CDMA2000 is an enhancement to that original technology and provides in particular higher

data rates. Today there are some 270 million subscribers using CDMA technology. 68

Although considered part of the IMT2000 standard, which is a “3G stamp”, CDMA2000 1X is

not thought of to be a genuine 3G standard due to only moderate data rates. In a comparison

with the GSM/UMTS standard CDMA2000 1X is more of an equivalent to the GPRS

overlay.69 It is instead the EV-DO that provides the enhanced data capabilities.

67 Interview Ericsson68 http://www.cdg.org/worldwide/index.asp69 3G Standards: The Battle Between WCDMA and cdma2000 – paper presented

at Nordic ICTR Workshop, August 2004, Helsinki

Page 58: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

58

4.4.1 EV-DO

CDMA2000 1xEV-DO stands for Evolution-Data Only and is an enhancement to the data

capabilities of CDMA2000. It offers peak downlink data rates of 2.4Mbps. The data

capabilities in DO are handled in a separate channel thus requiring additional spectrum. This

overlay lacks circuit switched capabilities making it effective on providing high data rates.

In a CDMA2000 typically 1.25MHz is used for voice and with EV-DO an additional 1.25MHz

is occupied for providing enhanced data capabilities. EV-DO uses much of the same

techniques found in HSDPA to improve data rates. These include higher order modulation,

efficient scheduling adaptive modulation and coding. The key difference is however that EV-

DO does not have circuit switched capabilities. There are currently some 17 Million

subscribers using EV-DO 3G technology.

Page 59: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

59

4.4.2 Evolution

Rev A is mainly an enhancement on the uplink. Downlink throughput could achieve 3.1 Mbps

and uplink would be boosted up to 1.8 Mbps.70 Rev A also brings some important

improvements for maintaining quality of service using flow based control.

Initially DO was to be followed by DV, or Data-Voice. DV would have circuit switched

capabilities. Qualcomm has said they are not going to push a technology shift to EV-DV and

the future for it is a bit unclear.71 With Rev B, EV-DO will be able to provide scalable

bandwidth solutions. This will make it possible for operators to deploy EV-DO in bandwidths

from 1.25 MHz up to 20 MHz providing a maximum 46 Mbps in the downlink and 27 Mbps

in the uplink.72

Figure 18. Evolution of CDMA2000

4.4.3 Comments

A problem for operators that decide to go with EV-DO is that they cannot allocate voice

services in the EV-DO frequency band since it has no circuit switched support. Today, data

only accounts for a small part of network utilization and in even lesser extent to revenue. Since

an operator cannot use the EV-DO spectrum for voice they will lose efficiencies gained from

70 http://www.qualcomm.com/technology/1xev-do/revA.html71 Northstream White Paper, Operator options beyond 3G.72 http://www.qualcomm.com/technology/1xev-do/solution.html

Page 60: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

60

load balancing and trunking efficiencies. Another issue with EV-DO is that a terminal cannot

maintain voice and data connections simultaneously much like GSM today.73 It is therefore

necessary for operators with EV-DO to look at VoIP in order to use their specttrum

efficiently. Verizon has already shown some interest for such solutions.74

When WCDMA has been upgraded with HSDPA/HSUPA there is likely commercial systems

available that uses EV-DO and VoIP. This means that for the time being UMTS operators do

not have to put major focus on full-duplex VoIP alternatives.

4.5 Voice over IP and WiMAX

WiMAX stands for World-wide Interoperability for Microwave AXess. It has emerged from

the IEEE 802.16 WirelessMAN (Metropolitan Area Network) group of standards. The

standard has been around a few years, first as 802.16 in 10-66GHz and later in 2003 as 802.16a

in 2-11GHz.75

To promote the spread of the standard WiMAX-Forum was founded in 2001. IEEE is only

involved in the MAC and physical layer of a standard, so the forum fills an important part in

the process of obtaining interoperability. The WiMAX forum has evolved from being

compromised by a few tech companies to a massive force supported by over 300 industry wide

enterprises, ranging from chip manufacturers to mobile operators.

Today there are a few twists to the 802.16 standard, the original, 802.16a has been more or less

overrun by newer revisions. Currently work is being focused on 802.16-2004 or 802.16d which

was ratified in October 2004. Next step will be 802.16e, a mobile flavor that follows the

802.16-2004 standard yet incompatible with it. The mobility of 802.16e is likely to come in

incremental steps starting with fixed/nomadic use where users have to turn off their

equipment during transport.76

73 Rysavy Research, Data capabilities. GPRS to HSDPA and beyond74 http://www.unstrung.com/document.asp?doc_id=7115075 Signals Research Group, WiMAX Opportunities and challenges in a

Wireless World76 Rysavy Research, Data capabilities. GPRS to HSDPA and beyond

Page 61: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

61

Usage:

The 802.16-2004 is a fixed wireless technology. A fixed technology is one that is not easily

movable, e.g. they have large outdoor antennas. This means that it is thought of to be a

replacement technology for DSL or broadband cable providers in such areas where

infrastructure is non-existent or inadequate for high speed Internet. It is likely to be deployed

in scarcely populated rural areas where distance makes it difficult to use DSL technology. It

can also serve as a high-speed data link for corporate subscribers.

Initially CPE will be an outdoor fixed antenna and an indoor modem. The trend is however to

move towards indoor self-installable equipment, see Figure 19.

Figure 1977. WiMAX deployment models

Technology:

Although the final word has not been said in the standardization process there are some key

elements that will not be changed. WiMAX uses OFDM multiplexing technology with variable

77

http://www.lightreading.com/document.asp?doc_id=82739&page_number=1&image

_number=1

Page 62: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

62

levels of QAM modulation78 WiMAX uses many of the same technologies that are found in

HSDPA and EV-DO to increase throughput and spectrum efficiency, these include HARQ,

adaptive modulation and efficient scheduling.

Spectrum:

Initially 802.16-2004 was a 2-11GHz-band technology. There is also potential to deploy

WiMAX in the cellular bands and 700MHz. The most likely are however, 2,1GHz, 2.3GHz,

2.5GHz, and 3.5GHz.79 This poses some threats to achieving cheap mass market CPE since

these would have to comply with a number of frequencies. Initial focus is however likely

however to be on 3.5GHz. The 3.5 GHz band is in many countries restricted to fixed or

nomadic use making thus making it a less plausible competitor to existing mobile networks

such as UMTS.

4.5.1 Performance:

It is a bit difficult to assess real network performance of access technologies. The actual

throughput that a user may experience depends on a variety of factors. Conducting

measurements on a single isolated base station may lead to numbers that are very favorable

compared to a live system that receives interference from a multitude of surrounding base

stations and active users. Since there are no major deployments of WiMAX systems there are

no “real world” data available. The standard, however, supports up to 70 Mbps in 20 MHz

spectrum.80 Such high rates will not be available over large distances since it requires 64QAM

modulation, which requires excellent radio environment. Figure 20 shows the capacity of a 3.5

MHz carrier deployed at 3.5 GHz. As shown the data rates are more down to earth than

numbers often seen in the press where 70 mbps over 50 km seems highly realistic.

78 Intel White Paper, Understanding WiMAX and 3G for Portable/Mobile

Broadband Wireless79 Michael Thelander: WiMAX, Opportunities and Challenges in a Wireless

World80 http://www.wi-fiplanet.com/tutorials/article.php/3550476

Page 63: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

63

Figure 20. WiMAX performance over 3.5 MHz bandwidth deployed at 3.5 GHz81

When used in smaller frequency bands like 5 or 10 MHz it is not clear if it has a direct

advantage to HSDPA.82 The technology will however be more efficient in the uplink due

better orthogonality than WCDMA systems. An advantage of OFDM based technology is that

it is easy to scale up if more bandwidth is available something that cannot be done with in a

WCDMA. This makes it attractive for point-to-point operation at high frequencies where

bandwidth is abundant.

QoS:

To be able to blend a variety of services, including VoIP, there needs to be way to prioritize

between traffic. The WiMAX standard has support for QoS in its MAC layer.83 This is

probably an even more important factor than achieving higher and higher data rates.

4.5.2 Deployment:

Interoperability testing for 802.16d has recently been initiated. There are thus no “real”

WiMAX solutions available today. What exists are a number of “WiMAX ready” or “pre-

WiMAX” solution. Companies providing such products states that only small software

81

http://www.lightreading.com/document.asp?doc_id=82739&page_number=1&image

_number=282 Rysavy Research, Data capabilities. GPRS to HSDPA and beyond83 http://www.wimaxforum.org/technology

Page 64: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

64

upgrades will be necessary to achieve compliance and interoperability, however some research

believes that new ASICS solutions will be necessary, especially for the CPE.84

In July, Sprint and Nextel stated that the combined entity is under obligation to

“fulfill its voluntary commitment to meet certain milestones for offering service in 2.5GHz

band, unless circumstances beyond its control prevent the merged entity from reaching those

milestones.” The merged company is to provide 15 million Americans with wireless broadband

within 4 years and then additionally 15 millions within 6 years. This could lead to a significant

boost to WiMAX access technologies. Sprint is cooperating with Intel to provide chip sets and

with Motorola for WiMAX trials starting late 2005 through 2006.85

4.5.3 Comments

WiMAX like EV-DO does not have circuit switched capabilities and will thus need to support

VoIP, the revenue generated from voice services is too large to ignore. It is not clear however

how the mobile flavor of WiMAX will be marketed or even built. Going heads up with

operators of traditional UMTS or CDMA2000 technology is far too challenging for probably

any company. In some aspects WiMAX offers higher throughput than UMTS. But the success

for a new technology will probably not lie in download speed alone. This fact has been proven

for 3G where only recently the data traffic in the networks has started to increase due to the

introduction of new services.

WiMAX should have potential as a fixed wireless broadband solution has potential to be

economically successful. The mobile flavor 802.16e, see Figure 19, will meet fierce competition

from both CDMA2000 and WCDMA: As said, the actual throughput is likely to be fairly

similar regardless of what technology is to be used. The high throughputs that are often

mentioned with WiMAX are mainly because of use of more spectrum (20 MHz) and favorable

radio conditions and less about the physical characteristics of the radio channel. The mobile

flavor will also have a hard time to explain what the actual difference between different 3G

technologies actually is, selling only on higher data bit rate will probably fail. As voice

84 Michael Thelander: WiMAX, Opportunities and Challenges in a Wireless

World85 Unstrung,

http://www.unstrung.com/document.asp?doc_id=78580&WT.svl=news2_2

Page 65: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

65

communication is still what constitutes the lion share of mobile operator’s revenue the supply

of attractive handsets is crucial. Considering the time it has taken since the initial launch of

UMTS to meet market demand of slick and functional terminals the business case for mobile

WiMAX looks even grimmer.

4.6 VoIP and WiFi

WiFi is the acronym for Wireless Fidelity. WiFi has been developed by the IEEE, under the

working name 802.11, to provide medium range wireless connectivity. The different flavors of

the 802.11 family are all characterized by their use of unlicensed spectrum in either the 2.4GHz

(802.11b, 802.11g) or the 5.8GHz (802.11a) band. Coverage can be up to 100 meters under

ideal conditions. The 2.4 GHz band is widely used by different electronic devices ranging

from microwave ovens to DECT-cordless phones. Interference from such devices makes it

hard to deploy reliable communication services. 802.11a uses frequencies in the 5 GHz band

over 12 non-overlapping channels with OFDM technology. For a list of WiFi standards, see

Table 2.

Table 2. Different flavors of WiFi

Standards under consideration

802.11e Enhances the 802.11 Media Access Control layer for quality-of-service features,such as prioritizing voice or video traffic.

802.11k Creates a way for access points for pass specific radio frequency and health andmanagement data to higher-level management applications

802.11n Designed to boost throughput, not raw data rate, to 100M bit/sec. The idea is tomake WLANs feel like 100M bit/sec Ethernet LANs

802.11r Allows fast, secure, seamless handoff of a VoWiFi connection among access points.Standard established802.11a WLANs for the 5-GHz band, with a data rate of 54M bit/sec. Is becoming less

deployed802.11b WLANs in the 2.4-GHz band, 11M bit/sec data rate802.11d Enables 802.11 hardware to work in various countries where it cannot today.802.11g Also in the 2.4-GHz-band, but used OFDM modulation to reach 54M bit/sec802.11h Supports measuring and managing the 5-GHz radio signals in 802.11a WLANs802.11i Repairs weaknesses in the Wired Equivalent Privacy encryption schemeSource: OECD based on data from Network World Fusion

Page 66: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

66

Figure 21. WiFi evolution of the most common standards

User equipment

The main driver for hotspot deployment is the proliferation of WiFi equipped laptops. The

market share for laptops is increasing on the expense of desktop shipments and in some

markets laptop share exceeds desktop share. Strategic Analytics expects that the number of

WiFi equipped laptops will top 140 million by 2008.86 According to research firm Dell’Oro the

business segment of WiFi equipment will be worth 1.1 billion dollar and by 2009 it will be

worth 3.5 billion dollars.

4.6.1 Voice over WiFi

Voice over WiFi, or VoWiFi, is the name for providing VoIP over WiFi technology. It has

been seen as specially appealing to enterprise users that can combine their wireless network

with VoIP.

WiFi is seen as a cost effective access technology that can cover small areas at low expense.

Due to its simplicity it does not require any special knowledge to set up a WiFi site.

86 http://www.gsmw orld.com/news/media_2004/

Page 67: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

67

Handsets

The pioneers in the VoWiFi handset market are UTStarcom and Symbol Technologies. These

handsets have been available for the corporate market since 2002.

Shipments have been kept at low numbers mainly due to a hefty price tag. New handsets are

however entering the market. Vonage announced in December 2005 that it would bring its

first WiFi handset to the market. At $80 Vonage subscribers will be offered a UTStarcom

F1000. With the device user will be able to place and receive calls at any public hotspot using

their existing Vonage subscription. The relative immaturity of the technology is reflected in

that it will only be possible to connect to public hotspots, i.e. networks that are open. This will

effectively block Vonage users from using the service at closed networks like those provided

found at Starbucks.87

Handsets capable of handling WiFi connectivity in addition to cellular technologies like GSM

or CDMA are referred to as dual mode handsets. Research firm ABI Research predicts that 50

million dual mode handsets will be shipped in 2009.88 More on this in [5.3]

Amongst other, Nokia have announced that they are releasing several new models with WiFi

in 2006.89

With the emergence of Softphones like Skype that offer PocketPC versions new players like

Dell are likely to provide a compelling alternative for providing voice service over WiFi

networks.

4.6.2 Deployment

The deployment of WiFi access points is accelerating as broadband penetration increases and

equipment prices are falling. Today there are about 100.000 public hotspots according to

Informa Telecom and Media90. Research firm ON World expects that by 2009 there will be

174.000 hotspots in Europe alone.91 The number of people connecting to hotspots is growing

87 http://news.zdnet.com/2100-1035_22-5992450.html88 http://www.3g.co.uk/PR/April2004/6982.htm89 www.nokia.com90 http://news.zdnet.co.uk/

communications/wireless/0,39020348,39222683,00.htm91 www.onworld.com

Page 68: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

68

and by the end of 2004 they were about 20 Million.92 Analyst firm Ovum expects however that

the uptake of WLAN will be a slow process in many corporations due to lack of security

guarantees and the availability of existing fixed Ethernet connections.93

Roaming agreements are being established and today it is possible for a user to connect

through WiFi at almost any place in the world. Boingo is a WiFi hotspot aggregator that offers

revenue sharing agreements to hotspot providers so that these do not have to systems to

handle access and billing. Boingo has currently signed up some 20.000 hotspots worldwide.94

T-Mobile has a WiFi network built up by over 7000 hotspots in the US. These are located in

places such as FedEx stores, Kinko’s Office and Print Centers and airports. Subscribers of T-

Mobile mobile phone services can include WiFi connectivity in bundles plans.

There are plans in cities like Philadelphia and San Francisco to rollout citywide WiFi networks

in the next couple of years.95 The idea is to offer affordable broadband access to people in

unprivileged groups.

The main driver for VoWiFi deployment is from leveraging the investments in WiFi networks

that are being deployed in corporate offices. With a VoWiFi solution workers could potentially

increase the functionality of PDAs and laptops. The Radicati Group estimates that the share

of corporate phone lines using VoIP will grow to 44% in 200896.

In a corporate environment a VoWiFi could be integrated into existing PBX by using a

VoWiFi gateway making it possible to connect to the PSTN

In July 2005 Skype announced a deal with Boingo that will enable users of Skype to access

Boingo’s WiFi network.97 The deal lets Skype user get access to Boingo’s nationwide WiFi

network for a discount price of $7.95 per month for unlimited use. For Boingo the deal could

92 http://www3.gartner.com/5_about/press_release/pr17feb2004a.jsp93 Ovum, Wireless Voice Over IP94 www.boingo.com95 http://www.phila.gov/wireless/briefing.html96 OECD, Development of voice over WiFi by integrating mobile networks97 http://www.skype.com/company/news/2005/boingo.html

Page 69: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

69

boost network traffic and with that revenue. Skype has also shown interest for launching a

Skype capable handset.

4.6.3 Issues

There are a number of issues associated with the emergence of VoWiFi. These are mainly

related to the nature of the underlying protocol stack of the 802.11 family. WiFi was developed

for data usage and delivering high quality voice has not been a priority. The IEEE is in the

process of setting the 802.11e standard. This new member is expected to bring additional QoS

guarantees to WiFi. Since a standardization process is frequently subject to delays the major

player has developed proprietary solutions in order so insure a satisfying level of reliability.

Network Capacity

Offering VoIP services in WiFi networks will put extra stress on network management. The

network has to consist of enough access points to ensure low packet loss and sufficient

capacity. The network has to be monitored so that no access point is receiving an un-

proportional amount of traffic. Ideally the network should be carefully planned so that

effective penetration through walls, floors and ceilings can be assured. The challenge of

roaming between different access points and sub network has to be addressed. The goal is that

the switchover can be made in less than 50ms.

Bandwidth is also a potential problem in WiFi networks. Both the air interface and backhaul

need careful planning. The bandwidth offered by a base station is most adequate in an

unloaded network and could support up to 5-8 calls simultaneously using 802.11b.98 But with a

number of users running time critical real time applications like voice, packet loss will become

a concern.

Due to the limited coverage and capacity of an WiFi-access point it will be necessary to use

quite a large number of them to achieve acceptable quality. This in turn means that switching

between different access points will become an even greater problem since it will happen

frequently, see Figure 22.

98 OECD, Development of Voice Over WiFi

Page 70: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

70

Figure 22. Multiple access points will be needed to achieve good quality in a WiFi

network. This requires that handoffs between access points can be done effectively.

Security

The security concerns of WiFi are not unjustified. The most commonly used technology to

increase security is called WEP. WEP is considered fairly easy to crack requiring some 10-15

million packets, equivalent of 2 weeks of network traffic in a small network. Since there are

programs available to automatically do this it poses a serious threat.99 There are however new

standards like WPA that provides enhances security. With upcoming standards in the 802.11

family security will further be addressed.

Using security standards such WPA a user has to be re-authenticated on every switch of access

point, a process that takes some 500ms. To solve this issue the IEEE have developed the

802.11r standards.100

4.6.4 Comments

There has been considerate debate over the business case of deploying WiFi networks. Some

believes WiFi will become a commodity that will be taken for granted, much like hot water in a

hotel room or a newspaper at a café. For a mobile operator offering WiFi-service to their

subscribers could be a way to increase customer loyalty. A study conducted by Pyramid

research found that the WiFi venture of T-Mobile would more be justified if the churn from

99 http://www.wi-fiplanet.com/tutorials/article.php/2106281100 Mobile VoIP Competitive Landscape, On World

Page 71: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

71

T-Mobile cellular business was decreased by only 0.2%.101 On the side is Verizon, which in

August 2005 pulled the plug on its WiFi rollout in New York City. The company stated that

they are instead pursuing with its strategy to deploy its EV-DO technology.102

Creating a nationwide WiFi network will require and significant amount of roaming

agreements. These agreements will not only involve comparable WiFi providers but most likely

also various wire line operators, mobile operators and ISP’s. As shown in previous chapters it

will not be cheaper to use WiFi compared to other access technologies for creating a

nationwide footprint. For mobile operators VoWiFi should not be seen as a major threat.

Voice communication is not only about placing calls; it is also, perhaps even more, about being

able to receive calls. It is likely that people will continue to pay a premium for this feature

exclusively offered by mobile operators.103 With bundled offers mobile operators are likely to

be able to retain minutes placed and received in their network. However, mobile operators are

aggressively promoting broadband connections using 3G networks. These may encounter

fierce competition from citywide rollout of WiFi networks. The advantage of building a

citywide network is that its coverage is clearly manageable. As described in [4.1.2] providing

high bandwidth over a densely populated and limited area makes economic sense. A mobile

operator will not only be judged on its peak performance but also if it can provide reasonable

coverage. It will therefore be necessary for operators to also service less profitable regions.

Voice over WiFi is likely to gain considerable traction in the near future. The key point is that

it the technology is bandwidth abundant considering the small coverage area. This makes

tackling the radio limitations described above less problematic. It is also a very cheap

technology meaning that operators or business owners will not stand or fall with the choice of

technical solutions.

101 Pyramid Research, Is WiFi wagging the 3G dog?102 http://www.devxnews.com/article.php/3501611103 Interview Jens Zander

Page 72: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

72

4.7 VoIP and FLASH-OFDM

Flarion is the company behind FLASH-OFDM, Fast Low-latency with Seamless Handoffs

Orthogonal Frequency Division Multiplexing. Flarion is currently in the process of setting its

solution as the IEEE 802.20 standard for mobile broadband. However, the process has slowed

down with the announcement of the mobile version of 802.16e. IEEE does not allow

overlapping standards and the similarities between the two technologies might make it hard to

getting an IEEE stamp on 802.20.

4.7.1 Technology

A key feature of the Flash-OFDM system is that it can handle prioritization. When a user

enters the network that users profile is determined. The system can set priority according to

the user’s profile; a high paying customer can “skip the line” in a congested network. The

system can also support different priority classes. Where for example voice is prioritized over

simple web browsing. This type of differentiation makes Flarion’s system suitable for

emergency communication. In the event of a large-scale emergency, rescue workers will be

given priority over any other type of traffic104. Accordingly a Flash-OFDM system has been

implemented in Washington D.C to support their testing of public safety network.105

The Flarion technology is available today in a wide range of frequencies from 400Mhz up to

3.5Ghz. It uses 1.25MHz of paired spectrum or 5MHz paired if deployed with the

abovementioned Flexband technology. Due to restrictions in the issued 3G licenses Flarion

technology may find it hard to move into the 1.9-2,1 GHz territories in Europe. Moreover

Flarion offers a ready to ship consumer products such as PC-Cards although the company

expects third party manufacturers to produce the devices under license.106

4.7.2 Deployment

The weakest side of Flarion solution is its current deployment. At the moment operators are

conducting trials at several different location although a fully commercial deployment has yet

104 Signals Ahead, No.1 April 19, 2004105 Government of District of Columbia.106 Northstream White Paper, Operator options beyond 3G

Page 73: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

73

to be seen. This might change with the decision of the finish government to go for the Flarion

option in the deployment of a 450MHz nationwide data network.

Nextel has since 2004 had a test system up and running in Raleigh, North Carolina. With the

merger with Spring Nextel has dropped its plans for deploying a nationwide FLASH network

since Sprint has followed the ED-DO path. Operator implemented VoIP

4.7.3 Comments

What makes FLASH-OFDM interesting is that is based on OFDM. A seems to be well

understood that the next generation radio access technology, Super 3G or 4G, will be based on

this technique. Also interesting is the highly data centric approach that FLASH-OFDM

provides where low latency has been a priority during development. In 2005 CDMA giant

Qualcomm acquired Flarion. This move is seen as a recite on the potential of the Flarion and

the OFDM technique.

Page 74: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

74

5 Mobile Operator implemented Voice over IP

When speaking with mobile operators and equipment providers, their view of Voice over IP in the mobile

networks is not about implementing a full duplex VoIP solution to replace existing circuit switched technology.

Operators are seeking ways to introduce new services and additional content in a cost efficient manner. For this

IP has showed to be very promising. In this chapter we take a look at how the industry views the ongoing

transition towards IP and VoIP.

5.1 IMS

IMS stands for IP Multimedia Subsystem. It is a concept developed by 3GPP to enhance

GSM-operators’ capabilities in deploying IP-based services in 3G cellular networks. With IMS

an application can be developed and launched and instantly be accessible through various

platforms and different network access technologies, see Figure 23.

Figure 23, IMS will enable fast and efficient content distribution over multiple

platforms.

Page 75: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

75

The promising deliverables of IMS have piqued the interest of the fixed network world in its

path to upgrading to next generation networks. These fixed network operators are currently

among the strongest supporters of IMS because they have a more urgent need to seek

additional revenue; telephony revenue is falling and broadband prices keep plunging so the

operators need a quick fix to create revenue generating applications.107

The Internet can be seen as one big cloud that contains every possible format and application.

The majority of these applications run independently of one another making it difficult to

develop services that can be accessible without downloading extra plug-ins or applications.

The strength of the telecommunication industry has traditionally been its ability to create

standardized services e.g. SMS, and MMS. Consider the example of a cellular subscriber who

whishes to look at a video clip: if it is done from a mobile phone the subscriber will most likely

not have to download a new application to view the clip. However, if the same clip were

accessed from a standard PC over the Internet, the recipient may need to download additional

applications (QuickTime, Window Media Player, Flash, Real Video, etc.). Subscribers of phone

services thus have higher expectations that things will work. The telecommunication industry

sees this as an asset justifying their premium prices.108 IMS will be able to make the real time

adaptation, depending on what type of access the subscriber is on. This is referred to as

network awareness. If the subscriber’s use a laptop pc connected to a broadband access a

richer and fuller content can be delivered as opposed to if the user access the same content

from a mobile phone. The idea is to deliver content with minimal adjustment over different

access technologies.

5.1.1 IMS – Technical overview

IMS will function as a bearer of signaling and traffic over an IP-layer and operate as a “routing

engine” or “session control” application that can match different user’s profiles with the right

call/session-handling servers.

IMS relies on SIP as its basic signaling mechanism. Simply put, SIP is a way of finding and

routing control signals between endpoints. The IMS architecture extends this function and

puts it into a framework of networks elements to fulfill various roles such as service triggering,

107 Light Reading; Telecom’s Technology Hotspots108 Interview Vodafone

Page 76: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

76

authentication (is the person who he claims to be), authorization (is this person allowed to

access such data), and network interconnection. It is thus an architecture that provides IP

connectivity between endpoints. IMS is also thought to provide greater support for QoS

functions currently not found in SIP.109

CSCF and HSS

With IMS a user will access content through a dynamically associated standardized access

point, the Call Session Control Function, CSCF. The CSCF routes different kinds of

applications to endpoints in the network

The HSS, or Home Subscriber Server, creates a database for subscriber data with identity

profile and billing permissions for all the services and devices in the account. The HSS can also

interact with the Home Location Register HLR in mobile networks and keep information

consistent over multiple networks. What this means is that a user will be able to access the

same personalized services regardless of what type of access technology he is using. A user can

start a session from his home PC watching a video clip and maintaining a conversation with a

friend talking about the video clip. When the user leaves his home he can maintain the session

on his mobile phone. The transition between the platforms is handled by IMS.

As shown in Figure 24, IMS operates outside the packet core of the network making it access

and even backbone agnostic.

109 Webinar Light Reading,

http://www.lightreading.com/webinar_archive_home.asp?webinar_id=27493

Page 77: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

77

Figure 24, IMS system architecture

5.1.2 Implementation

With Release 5, IMS is introduced in the core network. The IMS framework does not

specifically introduce a VoIP service. It is more a way to simplify the establishment of IP

sessions between terminals. It is however left to the Open Mobile Alliance to specifically

design the applications and to ensure interoperability of handsets from different

manufacturers. This is where the ball currently lies in the rollout of PoC.110

In an industry survey presented second quarter of 2005, ABI Research asked 125 people within

the telecommunication industry when they expected that IMS would be available,

110 Interview Anna Svensson, Ericsson

Page 78: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

78

0

5

10

15

20

25

30

(%)

2005 2006 2007 2008 2009 2010 2011 2012 2013

Source: ABI Reasearch

When will IMS be universally available?

5.1.3 Convergence

Convergence means eliminating barriers that exists between different platforms and networks.

The idea of being able to offer services that will run on all existing platforms is attractive to

both operators and specific service providers like sports network ESPN. It will ideally make it

possible for them to develop a single service that can be broadcasted to a variety of platforms

and networks without specific adaptations. IMS enable operators to rapidly develop or buy

and launch new services into their network.111

The possibility of offering blended services and faster service introduction are the main

benefits for service providers. For equipment vendors, network convergence and faster

service introduction are seen as the key benefits of IMS.

5.1.4 New Services

In a GPRS network it is possible to establish a connection between a terminal and a location

on the Internet. What IMS does is to improve this by making it a lot easier to establish IP-

connections between two terminals. It is not a specific service that will be offered to customers

but instead it is seen as a service enabler. Higher-level application will use IMS as an efficient

way to enhance communication between people. It is possible to achieve the same bells and

111 Interview Vodafone

Page 79: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

79

whistles in other ways without using IMS, but it gets increasingly difficult to provide seamless

integration between services and networks as the number of application grow. IMS will reduce

the need for “inventing the wheel” every time a new application is to be launched.112

Presence and Group List Management

Presence and group list management will be two of the top

features in the IMS system. With presence it will be

possible to allow a set of users to obtain information

about the availability status of other users, see Figure 25.

IMS can distinguish between different media types, users

and user preferences. The system will also be aware of

what devices a user is available on, e.g. laptop, PDA,

mobile phone, the type of connection he is using and

adjust the content to give the user a better experience.

When accessing a movie clip from a laptop using high

speed broadband connection the user receives high quality

images and sound whereas when accessing from a mobile

phone the content has to be adapted to moderate

bandwidth and small screen size.

With group list management users will be able to create network-based group definitions that

can be used by any service within the IMS system. A user can set up buddy lists, block lists,

public and private groups and different chat groups. In short, the user will be able to control

all different forms of communication easily from one place.113

These services provided by IMS can then be integrated into applications such as “Push-to-

Talk”. IMS is attractive to the industry because it will be significantly easier to develop services

at a lower cost, as compared to developing stand-alone applications.114

112 Interview Vodafone113 Ericsson White Paper, IMS – IP Multimedia Subsystem, Ulf Olsson114 Interview Ericsson

Figure 25, Buddy list

Page 80: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

80

Combinational services

IMS will also make it possible to offer combinational services. An example of a combinational

service is one in which two persons are playing a game while at the same time maintaining a

voice conversation. With IMS it will be possible to do this over one radio bearer using VoIP.

Another scenario is that the use of the contact list will accelerate the demand for sharing

photos and other files while at the same time having a conversation. This can be done today

but it requires two separate radio bearers thus consuming resources inefficiently.115

5.1.5 Comments

IMS is more seen as an evolution than a revolution. Services could be developed and deployed

in the network without the use of IMS. In the long run however it is seen as necessary to be

able to fast and over multiple platforms launch new services. The mobile centric view focus

has now moved towards the fixed line industry since this sector is seriously lacking attractive

services to compete with both fixed VoIP services and mobile telephony.

IMS could be seen as a way for network equipment providers to push a new technology to the

market. For content providers it is seen as an effective way of delivering their product.

However, considering the low market uptake on services launched in 3G networks, some

operators are not looking for a way to more easily launch new services but to actually find new

services to launch.116

It is clear that third party applications that run outside IMS could provide equal functionality as

IMS. The goal for the industry is however to create an eco-system in which they can keep

control over network services and charge accordingly.117

From a VoIP perspective it is IMS’s capabilities to manage point-to-point IP connection and

the interaction between different networks is the most interesting. IMS will however make it

into the mobile networks long before VoIP does. Many of the features found in IMS are

dependent on VoIP for successful implementation. These can be the different push-services

115 Interview Nokia116 Tele2117 Interview Nokia

Page 81: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

81

and services based on presence. VoIP is necessary for applications provided by IMS to

seamlessly interact.

5.2 Push-to-talk

Push-to-talk will become a standardized feature in coming releases of UMTS. This can be seen

as the first network backed technology to use voice over IP in the UMTS world.

Push-to-talk is a service that introduces one-to-one and one-to many instant voice

communication. The principle is straight forward, just push and talk, the answering party does

not even have to activate its terminal to answer the call, making it similar to a walkie-talkie. 118

Nextel has offered the service in its iDen network for almost 10 years.

Push-to-talk can be divided into three categories:

• Proprietary packet switched

• Proprietary circuit switched

• Standardized packet switched, or Push-to-talk over cellular (PoC)

The third option is the one drawing most attention lately. PoC refers to the Push-to-talk

standard backed by the Open Mobile Alliance. OMA seeks to make PoC available across a

variety of terminals and platforms thus increasing interoperability and service attractiveness.

PoC will be first widely deployed application using Voice over IP.

Ericsson, Nokia, Siemens and Motorola drafted the PoC specification in the fall of 2003. The

specification uses functionality found in IMS.

5.2.1 Services offered through PoC

The first service likely to hit the market is one to one communication, see Figure 26. This can

either operate in auto answering mode or in a fashion similar to today’s phone call where the

caller must accept the incoming call in order to initiate a conversation.

118 http://www.nokia.com/nokia/0,8764,46740,00.html

Page 82: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

82

Figure 26. Push-to-Talk, One-to-one.

Additional service will be PoC “one-to-many”, see Figure 27, where the participants are either

pre-defined groups or instantly created groups, the initiating user push on button and will

instantly be connected to multiple other users.

Figure 27. Push-to-Talk. One-to-many

Since PoC will be developed in close cooperation with the IMS standard PoC will add typical

IMS features like presence management, instant messaging and the possibility to share photos

during a PoC conversation119. As PoC is a half-duplex service it is not likely to have a negative

impact on traditional voice revenue. It fills a different need, like a blend between a text

message and a normal phone call.

5.2.2 Technology Performance

In a Push-to-talk over circuit switched technology, timeslots will be allocated for each user

through out the whole session. During periods of silence no data is transmitted but the time-

slots are still allocated but no information is sent affecting negatively system capacity. With a

circuit switched solution, transport latency between the endpoints will never be a problem and

typical values are around 150ms. Setup latency would be approximately 3-5 s

119 http://www.3g.co.uk/PR/Feb2004/6603.htm

Page 83: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

83

GRPS/EGPRS also uses time-slots as radio resource but available time-slots can be shared by

a group of user and are not constantly allocated. With a packet based approach the choice of

codec can be done quite freely. Codec negotiation is done by the end the terminals and there is

no need for transcoding equipment in the network. Thus to increase network capacity it will be

possible to use low bandwidth consuming codecs like half-rate AMR if the loss of quality is

considered acceptable.

With a packet based Push-to-talk solution transport latency will be higher compared to circuit

switched push-to-talk. This fact is due to some network state transition timers resulting in that

the end-to-end transport latency could be as much as 3 seconds. It should be noted however

that since push-to-talk only offers half duplex communication latency is not as big of a

concern as with full duple duplex communications.

Estimates shows that PoC will be between 5.5 – 13 times more efficient from e network

perspective as circuit switched push-to-talk. This efficiency gain is associated with the fact that

using packet switched technology it is possible for several users to share one time slot in the

GPRS radio channel. In the core-network the packet switched alternative does not show any

great differences in terms of efficiency120.

5.2.3 Deployments

The standardized version of PoC has yet to gain full traction. There are a number of

proprietary solutions readily available on the market. Nokia offers one solution where it can

provide the necessary PoC servers and handsets to operators. Vodafone Sweden offers Nokia’s

solution and subscribers gets unlimited usage of the service for $9.8 per month. Users can also

sign up for a one-day subscription for $0.98.121

The standardized architectural framework for PoC is as mentioned above already done. The

process is now in the hands of OMA to solve interoperability between terminals and different

vendor’s solutions. 122

120 Northstream, Overview and comparison of Push-to-talk solutions121 www.vodafone.se122 Interview Anna Kristoffersson, Ericsson

Page 84: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

84

5.2.4 Comments

Push-to-talk over cellular is a good example of how VoIP will make it in to the networks. It

has gained attention because it offers a new service deployed over existing infrastructure and

with considerable efficiency gains over circuit switched technology

Being an operator and manufacturers backed service it will become integrated with other

services in IMS such as presence thus creating a functional and, for the user, easy service.

5.3 Unlicensed Mobile Access

Unlicensed Mobile Access, UMA, is an initiative from 3GPP to provide access to the same

services found in GSM/GPRS/UMTS services over unlicensed spectrum technologies such as

Bluetooth or WiFi. The UMA protocol will provide both roaming and handover between

cellular networks and public or private WLANs using dual mode handsets and VoIP.123

Development of UMA began in late 2003 and was finished in 2004124. Participants in the

forum are Alcatel, British Telecom, Cingular, Ericsson, Kineto Wireless, Motorola, Nokia,

Nortel Networks, O2, Research in Motion, Rogers Wireless, Siemens, Sony Ericsson, T-

Mobile US.

Research shows that 80% of mobile calls are being made from either the office or from the

home.125 The industry is enthusiastic about using broadband connection to deliver the same

services found in mobile networks: Mobile operators see a chance of lowering cost per

delivered data bit and increasing indoor coverage, fixed line operators are seeing a new source

of revenue as calls are being connected through their data network.

5.3.1 Equipment:

• Terminals must to be equipped with both a WiFi or Bluetooth radio chip and a cellular

radio chip (GSM, WCDMA, CDMA2000 etc), this is called a dual-mode handset.

• WiFi/Bluetooth access point to connect the terminal to the broadband connection

• Broadband connection to connect to the network controller

• A network controller to handle the handover between cellular access and broadband

access.

123 http://www.umatechnology.org/124 Ovum Report – Mobile VoIP – Technical Overview125 Northstream Operators Options Beyond 3G

Page 85: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

85

5.3.2 How does it work?

• When within range, a user with an UMA-enabled device connects to the local network. For

voice services it will use VoIP, see Figure 28.

• Through the existing local Internet connection the device connects to the UNC to be

authenticated and authorized

• If approved, the subscribers’ current location is stored in the core network is updated and

all traffic will be routed through the Unlicensed Mobil Access Network, UMAN instead of

the cellular network

• When losing connection with the unlicensed wireless network it connects to the licensed

cellular network

• During a GSM/GPRS session on a cellular network a subscriber can seamlessly be handed

over to the UMA network with no interruption of the service. Much in the same way as a

handover within the cellular network.

Figure 28. Unlicensed Mobile Access126

5.3.3 Deployments

Residential

BT in Britain is currently offering its BT Fusion based on the UMA standard127. BT offers

it’s subscribers 100 anytime, any network minutes for £9.99 per month and 200 minutes for

126 http://www.umatechnology.org/overview/index.htm

Page 86: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

86

£14.99 a month. When not connected to its home access point via Bluetooth a subscriber

uses Vodafone’s cellular network in the table referred to as BT Mobile Network. At home

the subscribers call at a rate equal to that of a fixed line. To the right are the prices from

two Swedish operators, which will serve as reference.

Table 3. Price comparison between BT Bluephone and Swedish operators. Prices in

Sterling Pounds.128

Call type BT MobileNetwork

Connected to BT FusionHome Hub

VodafoneSweden

Tele2Sweden

Time Anytime Daytime Evenings &Weekends Anytime Anytime

Nationallandline

10p 8.5p 5.5 p 5p 3.5p

In mobilenetwork

10p 10p 10p 5p 3.5p

Other mobile 30p 30p 30p 5p 3.5pText message 10p 10p 10p 5pPicturemessage

30p N/A N/A

Voicemail 10p 10p 10pInternational from 15p From 15p4 from 15p From 5p

There is currently only one phone model available with BT’s offer, a Motorola V560. Users

interested in the service must be subscribers to BT landline phone and BT broadband.

Business

Potential business clients would be retailers, hospitals and other sectors with large “on

premises mobile work force”. In a business case presented by Motorola with a 1500 people

work force on a 90.000 m2 facility, investments in infrastructure and system integration would

be $337.500 resulting in cost savings of $40 monthly per user129. According to the company

the investment would be recovered within two years.

127

http://news.zdnet.co.uk/communications/wireless/0,39020348,39203738,00.ht

m128 www.bt.com, www.tele2.se, www.vodafone.se129 Analysis Research, 2005

Page 87: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

87

5.3.4 Network load

An operator’s system load over time can typically be as seen in Figure 29. Users are at home the

network load falls considerably leaving the system with excess capacity. This situation may very

well vary; in suburbs and other residential areas the curve might appear to be different. The

benefits from using UMA to offload cellular networks need to be individually analyzed fro

each site.

Figure 29. System load varies during the day. Using alternative access technologies

will thus not always make sense since there could be excess capacity. (Figure not

based on real data)

5.3.5 Growth of broadband access

Research firms expect the number of dual-mode handsets sold in 2009 to be around 100

millions mainly targeted on the business market. Other research firms predict that the majority

of phones will be dual-mode. Nokia will launch a number of WiFi equipped models during

2006.

In combination with the rapid growth of broadband connections, which estimated to reach

370 million by 2010130 up from a current 175 million131, there are some arguments that the

130 Arthur D. Little Broadband Report 2004131 http://www.dslforum.org/dslnews/pdfs/Q22005briefingsummary.pdf

Page 88: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

88

UMA technology could get a foothold on the market. A study by Disruptive Technologies

predicts that there will be 5.5 million homes using UMA handsets over WiFi.132

5.3.6 IMS and UMA

Although UMA is an independent service it can be integrated into IMS. UMA is an important

part in IMS since it provides the physical access to between two types of networks. With UMA

it will be possible to deliver bandwidth-consuming media content within the IMS framework

in a cost efficient manner when such connections are available.

5.3.7 Comments:

There are a number of issues that must be solved before any large-scale deployment will be

seen. At present there are only proprietary solutions that can offer Quality of Service

Guarantees [2.7] in the WiFi-access. This means that an of-the-shelves access-point might

offer unacceptable quality. There is however standards under development that will be able to

prioritize voice traffic over data traffic. For large-scale deployment vertical roaming and billing

agreements have to be established.

UMA is a technology initiative that has yet to prove its sustainability as a business model. The

adoption by the market will be highly dependent on the meeting the expectations of promised

cost savings.133

UMA and its use of VoIP technology has similarities with Push-to-talk in that it is an industry

initiative that has been brought up in order to offer a new attractive services at a lower cost.

The success of the technology depends on how the industry will convince their customers,

who many times already enjoy plans with unlimited voice minutes, the need for yet another

technology.

As seen in the tariff table, prices for BT Fusion are lower than for a mobile call. The user gets

access to their phonebooks and the solution will, if everything works out, provide an

interesting service. There are however some issues with BT’s solution. The major concern

being the limited range of Bluetooth wireless technology with a maximum reach of some 10

132 http://www.wirelessweek.com/article/CA626287.html?spacedesc=Departments

133 Interview Nokia

Page 89: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

89

meters, which could result in a very limited indoor coverage. This is very much in contrast to

the original idea of providing improved indoor coverage. As shown in the table prices are

exceeding by far those in other European countries. One also has to consider that the

subscriber have to be a subscriber to both BT landline and BT broadband. UMA is more likely

to attract corporations where many of the calls are intra-corporate/intra-building. Operators

that have deployed WCDMA have more problems providing adequate indoor coverage due to

less penetration capabilities in the higher frequency bands. Operators are always trying to meet

demand with the lowest possible resources. From a UMA perspective this means that not all

areas would potentially benefit from moving users from one access technology to another as

described by Figure 29.

As discussed in previous chapter the cost of providing ubiquitous coverage increases with

bandwidth. With such model it is of interest to investigate if deploying voice service over high

capacity small range access technologies does make economical sense. The chances are greater

that bandwidth consuming application like video or file downloads will have to meet the

economical rationale for using hotspot access. But as presented in the business case by

Motorola, there probably are situations where an investment in WiFi access will be

economical.

5.4 Application based VoIP in 3G networks

With presence function, file sharing, short messages together with voice and video, Instant

Messaging applications create an attractive bundle of applications. In combination with an

attractive user interface these IM-clients has become a very usable tool for communication.

The next step for these applications is to be made available on mobile phones. This move can

soon happen as mobile phones start using more advanced operating systems capable of

running a breed of applications.

5.4.1 Cost of mobile data

Prices on mobile data services have fallen considerably in Sweden. From a $2 price tag per

megabyte it is now possible to subscribe to data bundles where the cost per megabyte is below

3 cents.

Page 90: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

90

Table 4. Price of mobile data offered by Swedish operators

Cost for dataOperator Monthly

allowance (GB)Price ($) Price / MB

TeliaSonera 3 109 0.036Vodafone 1 63 0.063Tele2 1 25 0.025The price war is likely to continue as operators seek ways to increase network traffic. Since all

major operators in Sweden offer their subscribers unlimited access to TV-broadcast over

cellular networks, network capacity does not seem to be the bigger issue. The vast majority of

calls are still being made over the GSM network leaving operators with both WCDMA and

GSM with plenty of available capacity.

5.4.2 Price on telephony

In 2004 the average subscriber in Sweden used 69 minutes of airtime. 134 Prices are falling

rapidly and potential clients are offered considerable subsidies on handsets

The operators are bundling more and more minutes and the plans are basically flat-fee. The

ability to receive phone can be viewed as a flat-fee in most counties since the subscriber is not

charged for incoming calls.135

Table 5. Price Comparison between Swedish mobile operators

Cost for voiceOperator Offer Price ($) Price / min Other

TeliaSonera Unlimited in-network and fixedline calling. 136

51 N/A All calls areassociated with aconnect fee of$0.076

Vodafone 5999 anytime anynetwork minutes137

94 0.016

Tele2 3000 anytime anynetwork minutes138

63 0.021

134 www.PTS.se135 Interview Jens Zander136 www.teliasonera.se137 www.vodafone.se138 www.tele2.se

Page 91: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

91

5.4.3 Interconnect fees

When a phone call is terminated in another operator’s network the initiating party will have to

pay a interconnect fee. In Sweden this rate is regulated and should mirror the cost of

production of the call plus reasonable return on the investment in infrastructure Currently

Swedish operators pay more for terminating a call than it charges from their subscribers.139 If

the operator only provides the data connection it does not have to pay anything to other

operators. Since interconnect fees are a major source of income it should be further analyzed

how it affect individual operators. A reasonable idea is that small operators pay more than they

receive.

5.4.4 International traffic is initiated from fixed line network

Subscribers interested in long distance calling have traditionally not been using their mobile

phone. They have either called from their landline and/or used a calling card.140 In Sweden,

international traffic from mobile phones only accounts for 18 percent of that traffic initiated in

the fixed network.141 Those who already have Skype are likely to make the great majority of

their international calls from Skype. What they are interested in is thus a broadband

connection. It should thus be possible to make part of these make their calls using a 3G

connection. Initially with a laptop PC and when available using attractive handsets

139 http://www.telekomidag.com/FMPro?-DB=artiklar.fp5&-

lay=cgi_tc4&id=15329&-Format=/ti/nyheter/artikel.html&-find140 Marcus Nylén, Alpha Telecom141 www.pts.se

Page 92: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

92

5.4.5 Alternative methods for making international calls

People interested in making cheap international calls have for more than 40 years been able to

do so by using calling cards. There are three main groups that make international calls, see

Figure 30. They are very much ethnical. Newly immigrated persons do not have access to a

fixed line phone. Therefore calls are either made from a phone booth or a friend’s home using

a pre-paid calling card. The second group is the established immigrant. They have a fixed line

at home and can use post-paid calling plans. The third group is the ones that do not make that

many calls internationally. These do not in general care so much about the cost of the call

when they every one in a while make one. This group is also the one that has the strongest

financial power.

Page 93: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

93

Figure 30. The ethnical triangle of international calling

Calling card companies believe that the main impact from VoIP-applications like Skype is on

the top level of the pyramid. With time it does however seem to also impact the other groups.

Since Skype requires both a PC and a broadband connection the financially weakest group

might use “Skype-centers” for communicating. In such the user gets access to a Skype

equipped PC with broadband connection.

5.4.6 Using softphone over a 3G network

It was previously shown that it is possible to run a VoIP-application like Skype in a WCDMA

network [4.3.1]. Using such solution, with the prices listed above, the per minute price would

be competitive but still be undercut by the operator’s own monthly minutes, see Table 6.

Table 6. Price comparison between VoIP application and operator’s implemented

solution

Operator Monthlyallowance(GB)

Price($)

Price /MB

Monthlyminutes

Price/minuteusingSkype142

TeliaSonera 3 109 0.036 6000 0.0183Vodafone 1 63 0.063 2000 0.0315Tele2 1 25 0.025 2000 0.0125

Handsets

Handsets that will be able to run VoIP application are likely to be found in the upper segment

due to the relative complexness of running an external application. By time this is likely to

142 Assuming 0.5 MB / min

Page 94: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

94

change and more and more terminals will be able to do this. Considering that low end mobiles

make up the bulk

5.4.7 Comments:

As shown above, the per-minute price for using Skype vs. traditional telephony is not very

different when looking at domestic calls. To be able to use “free” mobile calling with Skype

both users have to have a monthly data account thus increasing revenue even more.

That is why, in my opinion, Skype does not pose a direct threat to mobile operators. A

competitive war on monthly minutes between operators is probably worse than users starting

to use additional data services.

Current Skype users are typically first movers that quickly start using new technology. They

probably make a large part of their international calls using their broadband connection. If an

operator offered them access to Skype via the mobile terminal it is, in my opinion, unlikely to

have an adverse effect on revenue. By creating bundles of services it should be possible for

operators to maintain regular domestic calls in their network and have additional revenue from

data generated from VoIP applications.

As an additional option operators could launch their own softphone services. These should be

made as open as possible preferably using existing SIP-based solutions. Creating such

application is not technically difficult.

Page 95: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

95

6 Conclusion

Voice over IP is an incredibly broad term. It carries a variety of meanings. Essentially, VoIP may be divided

into five areas. Each one of these areas poses different challenges to mobile operators.

People within the industry see the evolution towards VoIP in the core networks

as a “no-brainer”. The core network is also the most mature in which to begin

an IP-transition. Having a solid IP-infrastructure is likely to become more and

more important as services based on IMS make their debuts in mobile

networks. The massive upgrades that fixed network operators are undertaking [3.2] is thought

to have significant impact on future development towards IP based mobile networks since the

usefulness of a network is proportional to the square of the number of users.

VoIP is deployed in the fixed line world prior to the wireless world because of

the capacity and proliferation of fixed broadband access. Compared to other

services that can be delivered over broadband connections, e.g. video on

demand, VoIP is not very bandwidth intense.

On the wireless side, capacity constraints and existing efficient circuit switched solutions make

VoIP currently improbable. Due to the overhead caused by the IP protocol [2.2.1] and IP’s

Page 96: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

96

data-centric approach, in which packet loss is handled by retransmissions, the protocol is not

efficient from a radio access point of view. This is shown as not desirable in the bandwidth-

limited radio world [0]. Therefore, it is clear that there must be several improvements to both

the radio access network and VoIP implementation before operators will have full duplex

VoIP solutions, as seen in the fixed line world. For WCDMA this is not expected to happen

before 2010. At that time a more packet-friendly radio interface will be implemented which

can leverage the benefits from VoIP [4.3.3].

There are however new access technologies such as EV-DO, WiMAX, WiFi, Flash-OFDM

that do not require circuit-switched technologies. Of these, only EV-DO has any significant

deployment [4.4.1]. For a WCDMA operator it would not be crucial to stay on the alert for

VoIP alternatives before 2010. By then there are likely to be many live networks using EV-DO

and VoIP. The leading full duplex VoIP operators are thus found in the CDMA2000 world,

e.g. Verizon Wireless.

In the fixed line world, traditional telephone companies are seriously, and

rightfully so, concerned about the entrance of VoIP applications like Skype.

However, mobile operators are in a better position to meet competition

from such applications:

• The service that traditional fixed line operators offers is very basic making it easy for

alternative VoIP operators to compete on prices. A fifty-year-old fixed line phone would

serve its purpose but a fifty-week-old mobile phone would probably not be able to use the

latest services offered by the mobile carrier. This means that the mobile community has

consistently evolved and is more used and accessible to new services. VoIP applications

will therefore meet fiercer competition from mobile operator’s own communication

solutions. It is also important to think of the large amounts of money that mobile

operators spend on advertising new services to the subscribers. It will thus not be easier

for a VoIP application to make people interested in sending photos and files or other type

of service. At the end, what will matter is that the service is attractive and easy to use the

specific platform is not.

• Using the bandwidth starved radio interface will always be associated with a cost.

Currently, VoIP applications use resources wastefully. Compared to an operator-based

solution it may consume 3 times as many resources. It should thus be possible for

Page 97: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

97

operators to transfer this cost of access to the subscribers, regardless of how they use their

connection. This is why Skype will not be seen as “free of charge” as it is in the fixed line

world. With intelligently designed bundles of airtime it should be possible to mitigate the

negative impact from VoIP-applications.

• With time, more refined handsets are likely to be introduced capable of handling advanced

VoIP applications. They will however still make up only a minor part of the 1 billion

mobile phones that will be sold in 2009. Even though some people will install a VoIP

application most people will not. It is therefore likely that the uptake on VoIP application

will slow down once early adopters have made their move.

• An enormous advantage of mobile operator is that it can offer their subscribers a very

reliable service. Considering that a VoIP application is dependent on a 3G access

technology it will be difficult to offer complete coverage.

• A price war between operators is likely to be is far more dangerous for operator revenue.

Mobile operators, as opposed to the companies behind VoIP applications, generally have

the financial capabilities of running deficits in order to attract new subscribers, e.g.

subsidizing terminals. Therefore it will be more difficult for VoIP providers, specifically

VoIP application providers, to run deficits because their competitive advantage is in

providing a low priced service.

International phone calls are mainly initiated from either fixed line networks or by the use of

calling cards. It is thus an untapped market that mobile operators should pursue. A strategy

would be to offer a data-plan that would give unlimited calling with a third party VoIP

application like Skype. As described in [5.4.5] the market for long distance calling is

segmented. Therefore, it should be possible to attract new subscribers and increase the

demand for data services without having an adverse effect on existing voice revenue. The lack

of terminals to support a VoIP application will initially limit the use to laptops equipped with a

PC-card. This is clearly a different way of communicating, as compared to the familiar mobile

phone. This will limit the usage to specific calls and in combination with well-designed voice

bundles, operators are likely to be able to increase their total revenue from subscribers

interested in VoIP.

Existing circuit switched networks are a cost efficient way to provide voice

communication. VoIP can however introduce new services that are both more

Page 98: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

98

efficient and exclusive to the use of IP [5.1.4.] Long before full duplex solutions are available

new services will be introduced that use VoIP.

The first service to be widely deployed is push-to-talk over cellular, PoC [5.2]. PoC is a good

example that IP-technology will be used when it provides better and cheaper solutions than

circuit switched technology. Combining different networks with UMA-like technology will also

drive the growth of VoIP [5.3]. UMA can be seen both as a threat and an opportunity to

mobile operators. UMA is thus not a clear-cut case and the success of the technology depends

on several variables. For an operator with poor in-door coverage in a country with high

broadband penetration the solution should be interesting. But, as said, it all depends on the

country-specific scenario.

As described in [3.3] there is a growing demand for Instant Messaging (IM) applications that

can provide alternative forms of communication. Overall, operators should pay attention to

which new services equipment suppliers and application developers are offering. This growing

popularity of IM applications can represent a shift in how people communicate. This is why

new systems like IMS are crucial for operators who want to be able to offer new and attractive

services. IMS will also bring efficiencies because it can blend traditional data applications that

use voice with IP solutions. IMS is also fundamental for introducing coming IP-based services.

Operators should also look at the possibility to complement their existing

infrastructure with WiFi. WiFi is an effective technology to overcome the

problems in creating high bandwidth over small areas as described in [4.1.2].

Instead of building a network with ubiquitous coverage, bandwidth is

concentrated to carefully located hotspots. The cost of building the WiFi-network can be

motivated by a reduced churn from the cellular operator’s traditional business as described in

[4.6.4]. Initially the limited supply of Voice over WiFi handsets will limit the use of these

hotspots to data sessions [4.6.1].

Because WiFi radio chip is incorporated into nearly every laptop today there is no need to

subsidize terminal equipment. This also means that after launching an access point a great

number of users will be able to instantly use it. Thus ideally giving a shorter payback period.

Page 99: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

99

WiFi will, if not managed in the right way, pose a clear threat to operator’s desire to provide

wireless broadband connections. It is possible for a greenfield operator to launch a wireless

data service in highly profitable areas at low cost. This is illustrated in Figure 31 with a

horizontal line. For operators with 3G networks, WiFi can be seen as cannibalizing on data

revenue, example of such is Verizon’s decision to halt its WiFi rollout in favor of EV-DO

[4.6.4]. It is thus a challenge for operators to come up with a product strategy that can segment

the data market so that overall revenue is maintained.

Being able to place calls from whatever location is a great feature of mobile telephony. But

equally important is the possibility to receive calls. The limited coverage of WiFi access will not

make Voice over WiFi able to fulfill the latter, positioning the service as a non-direct

competitor to mobile telephony. However, the technology could pose a threat to some areas of

cellular operation. It is as an example possible that larger companies, as described in [5.3.3],

could move to a WiFi solution. This is specifically true for mature markets with a “wireless

aware” office environment.

New access technologies such as WiMAX will not pose a direct threat to mobile operators.

Currently, no standardized solutions are available. This study concludes that the capacity and

cost of a network becomes less and less dependent on the specific access technology used

since all networks are performing in the vicinity of physical limits. WiMAX does however have

some interesting broadband-like capabilities making it more likely to complement fixed

broadband technologies like DSL. Although a new technology can bring performance

improvements there are a number of other considerations that need to be accounted for. As

described in [4.1.8] spectrum is a limited resource. This means that political arguments have

considerable weight when deciding on future systems, e.g. the rollout of UMTS in Europe.

Even without any regulation it will still be hard to find spectrum in the sub 2.5 GHz band

where non line of sight communication is favorable.

Before a standard is widely accepted and interoperability is guaranteed between different

manufacturers it will be difficult to provide attractive handsets to the market. Considering the

time it has taken for introducing attractive and affordable handsets for WCDMA the

difficulties should not be underestimated. Such issues will with time be solved, but for now it

Page 100: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

100

places voice delivered over alternative access technologies well below the maturity line in Figure

31

Figure 31. Threat/opportunity vs. maturity to mobile operator’s for different VoIP

alternatives.

Page 101: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

101

7 Resources

Business Reports

Broadband Report 2004, Arthur D. LittleEmailed from Arthur D. Little

Development of voice over WiFi by integrating mobile networks, OECDwww.oecd.org/dataoecd/37/48/34741342.pdf

From GPRS to HSDPA and beyond, Rysavy Researchwww.3gamericas.org/pdfs/rysavy_data_sept2004.pdf

Is WiFi wagging the 3G dog? Pyramid Research

Mobile VoIP Competitive Landscape, On Worldwww.onworld.com/voip/mvoipbundle.htm

Mobile VoIP – Technical Overview, Ovum

Overview and comparison of Push-to-talk solutions, Northstreamwww.northstream.se/21/page.asp?page_id=4166&type=custom%2Fnorthnews&item_id=8

Signals Ahead, No.1 April 19, 2004

Telecom’s Technology Hotspots, Light Reading

WiMAX, Opportunities and Challenges in a Wireless World, Michael Thelanderwww.cdg.org/resources/white_papers/files/WiMAX%20July%202005.pdf

Wireless Voice Over IP, Ovum

Literature

Delivering Voice over IP Networks, D. Minoli, E. Minoli. Wiley

UMTS Networks: Architecture, Mobility and Services, Heikki Kaaranen, Ari Ahtiainen, LauriLaitinen, Siamäk Naghian, Valtteri Niemi

WCDMA for UMTS, Harry Holma

Wireless Communication, Theory and Practice. T. Rappaport

Online Articles

3G Standards: The Battle Between WCDMA and cdma2000 – paper presented at Nordic

ICTR Workshop, August 2004, Helsinkiwww.cict.dk/publications/workingpaper.view.php?id=100070

Page 102: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

102

Comparison of H.323 and SIP for IP Telephony signaling, Ismail Dalgic, Hanling Fangwww.iptel.org/info/references/papers/misc/Dalg9909_Comparison.pdf

Economics of Broadband Wireless Access Systems, J. Zanderwww.s3.kth.se/~jensz/Economics_of_Wireless.pdf

Low Cost Broadband Wireless Access – Key Research Problems and Business Scenarios, J.Zanderwww.s3.kth.se/radio/Publication/Pub2004/TimGiles2004_1.pdf

Research and Development of Broadband Wireless Access Technologies, Masahiro Umehirawww.ntt.co.jp/tr/0401/files/ntr200401012.pdf

Voice over Internet Protocol, Bur Goodehttp://ieeexplore.ieee.org

Voice-over-IP-over-Wireless, K. Svanbro, J. Wiorek, B. Olinhttp://scholar.google.com/url?sa=U&q=http://ieeexplore.ieee.org/iel5/7069/19062/00881384.pdf

News Articles

100,000 Wi-Fi hotspots by the end of 2005, Zdnet UK, September 27, 2005http://news.zdnet.co.uk/communications/wireless/0,39020348,39222683,00.htm

AOL's Got VOIP Again, Light Reading, September 14, 2005http://www.lightreading.com/document.asp?doc_id=80587

BT launches "watershed" fixed and mobile handset, Zdnet UK, June 15, 2005http://news.zdnet.co.uk/communications/wireless/0,39020348,39203738,00.htm

Cable Is the Voice of VOIP, Light Reading, November 15, 2005http://www.lightreading.com/document.asp?doc_id=84312

China may ban unregulated VoIP services; Shenzhen blacklists Skype, Forbes, September 8,2005http://www.forbes.com/technology/feeds/afx/2005/09/08/afx2214918.html

FCC Fines N.C. Provider For VoIP Blocking, Information Week, March 3 2005http://informationweek.smallbizpipeline.com/60405214

Making the Most from WEP, WiFi Planet, March 6, 2003http://www.wi-fiplanet.com/tutorials/article.php/2106281

Mobila samtrafikavgifter måste sänkas, Telekomidag.com, November 3, 2005http://www.telekomidag.com/FMPro?-DB=artiklar.fp5&-lay=cgi_tc4&id=15329&-Format=/ti/nyheter/artikel.html&-find

North American MSOs Top 1 Million Mark for VoIP Subs, Cable Digital News, September 1,2005http://www.cabledatacomnews.com/sep05/sep05-2.html

Packet Voice Over Broadband, Light Reading, March 3, 2005

Page 103: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

103

www.lighreading.com/document.asp?doc:_id=53864

Skype Rules North American VOIP, Light Reading, June 16, 2005http://www.lightreading.com/document.asp?doc_id=75833&site=lightreading&WT.svl=news1_3

Sony Ericsson Mobile Phones Push to Talk Wireless, 3G, February 20, 2005http://www.3g.co.uk/PR/Feb2004/6603.htm

Sprint Nextel Preps Wireless BB, Unstrung, August 5, 2005http://www.unstrung.com/document.asp?doc_id=78580&WT.svl=news2_2

Study: Teenagers favor IM over e-mail, Zdnet, November 10, 2005http://news.zdnet.com/Study%3A+teenagers+favor+IM+to+e-mail/2100-9588_22-5944265.html?part=rss&tag=feed&subj=zdnn

UMA's Stepping Stone to IMS, Wireless Week, July 15, 2005http://www.wirelessweek.com/article/CA626287.html?spacedesc=Departments

Verizon Talks Cellular VOIP, Unstrung, March 31, 2005http://www.unstrung.com/document.asp?doc_id=71150

Verizon, Cingular get hooked to IM, Zdnet News, August 5, 2004http://news.zdnet.com/2100-3513_22-5298633.html

Verizon Wireless Cuts NYC Wi-Fi, DevX.com, April 29, 2005http://www.devxnews.com/article.php/3501611

Vonage to sell Wi-Fi phone,, Zdnet News, December 12, 2005http://news.zdnet.com/2100-1035_22-5992450.html

WiMax/802.16 Revealed, WiFi Planet, September 21, 2005www.wi-fiplanet.com/tutorials/article.php/3550476

White Papers

Combinational Services, Ericssonhttp://www.ericsson.com/ericsson/corpinfo/publications/review/200 ...

Evolution of WCDMA, Ericssonhttp://www.ericsson.com/products/white_papers_pdf/wcdma_evolved.pdf

Gigabyte Performance, Flarion White Paperhttp://www.flarion.com/products/whitepapers/Gigabyte%20Performance.pdf

Operator Options Beyond 3G, Northstreamhttp://www.northstream.se/page/custom/northnews/get_news_file.asp?id=86

Softswitch in mobile networks, Ericssonwww.ericsson.com/products/white_papers_pdf/3025_softswitch_mobile_A.pdf

Understanding WiMAX and 3G for Portable/Mobile Broadband Wireless, Intelwhitepapers.silicon.com/0,39024759,60118993p-39000800q,00.htm

Page 104: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

104

Interviews

Anna Kristoffersson, Ericsson, September 15, 2005

Jens Zander, November 24, 2005

Joakim Enerstam, Effnet July 14, 2005

Johan Sköld, Ericsson Research, September 14, 2005

Marcus Nylén, Alpha Telecom, November 9, 2005

Martin Rönnlund Nokia, September 19, 2005

Mats Nordström, Ericsson Research September 27, 2005

Patrik Wikström, Netcom Consultants, July 15

Stefan Hagbard TeliaSonera, September 14, 2005

Åke Andersson, Tove NilssonVodafone, August 24, 2005

Websites

ABI Researchwww.abiresearch.com

ArrayCommwww.arraycomm.com/serve.php?page=cellCooper

Boingowww.boingo.com

Bredbandsbolagetwww.bredbandsbolaget.se/portal/FORETAG_INTERNETACCESS

British Telecomwww.bt.comwww.bt.com/btcommunicator/index.jsp

CDMA Development Groupwww.cdg.org/worldwide/index.asp

Ciscohttp://www.cisco.com/univercd/cc/td/doc/product/access/acs_mod/1700/1750/1750voip/intro.htm

DSL Forumhttp://www.dslforum.org

Gartnerhttp://www3.gartner.com/5_about/press_release/pr17feb2004a.jsp

Global IP Soundwww.globalipsound.com

Government of District of Columbia.www.phila.gov/wireless/briefing.html

Page 105: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

105

GSM Worldwww.gsmworld.com/news/media_2004/www.3g.co.uk/PR/April2004/6982.htm

OnWorldwww.onworld.com

Qualcommwww.qualcomm.com/technology/1xev-do/solution.htmlwww.qualcomm.com/technology/1xev-do/revA.html

Swedish National Post and Telecom Agencywww.pts.se

Webinar Light Readingwww.lightreading.com/webinar_archive_home.asp?webinar_id=27493

Nokiawww.nokia.com/nokia/0,8764,46740,00.html

Northern Lightwww.centerformarketintelligence.com/analystviews/20050927-WeeklyReport.htm

Skypewww.skype.com/company/news/2005/boingo.html

Tele2www.tele2.se

TeliaSonerawww.teliasonera.se

TNS Infratestwww.tns-infratest.com

UMA Technologywww.umatechnology.org

UMTS Forumwww.umts-forum.org/servlet/dycon/ztumts/umts/Live/en/umts/Resources_fastfacts

Vodafonewww.vodafone.se

WiMAX Forumwww.wimaxforum.org/technology

Page 106: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

106

8 Acronyms

3GPP 3rd Generation Partnership Project, WCDMA

3GPP2 3rd Generation Partnership Project, CDMA2000

BER Bit Error Rate

BSC Base Station Controller

CDMA Code Division Multiple Access

FLASH-OFDM Fast Low-latency Access with Seamless Handoff OFDM

GPRS General Packet Radio System

GSM Global System for Mobile Communication

HSDPA High Speed Downlink Packet Access

HSUPA High Speed Uplink Packet Access

IMS IP Multimedia Subsystem

Node B The base station in a UMTS network

OFDM Orthogonal frequency-division multiplexing

PoC Push-to-Talk over Cellular

PSTN Public Switched Telephone Network

QAM Quadature Amplitude Modulation

RNC Radio Network Controller

UMA Unlicensed Mobile Access

UMTS Universal Mobile Telecommunications System)

UNC UMA Network Controller

VoIP Voice over Internet Protocol

WCDMA Wideband CDMA

WiFi Wireless-Fidelity

WiMAX Worldwide Interoperability for Microwave Access,

Page 107: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

107

9 Appendix

9.1 Link budget

A link budget is calculated as the difference between signal power sent by the transmitter and

the received signal at the end point. This amount must at least be equal to the receiver

sensitivity.

A typical link budget could be as found in WCDMA for UMTS

12.2 kbps voice service (120 km/h)

Transmitter (mobile)Max. mobile transmission power (W)As above in dBmMobile antenna gain (dBi)Body loss (dB)Equivalent Isotropic Radiated Power (EIRP) (dBm)

Receiver (base station)Thermal noise density (dBm/Hz)Base station receiver noise figure (dB)Receiver density (dBm/Hz)Receiver noise power (dBm)Interference margin (dB)Total effective noise + interference (dBm)Processing gain (dB)Required Eb/No (dB)Receiver sensitivity (dBm)

Base station antenna gain (dBi)Cable loss in the base station (dB)Fast fading margin (dB)Max. Path loss (dB)Log normal fading margin (dB)Soft Handover gain (dB) multi cellIn-car loss (dB)Allowed propagation loss for cell range (dB)

0.12521.00.03.018

-174.05-169.0-103.23-100.225.05-120.2

18.02.00.0154.27.338.0141.9

abcd = a+b-c

efg=e+fh=g+10*log(3840000ij=h+ik=10*log(3840/12.2)lm=l-k+j

nopq=d-m+n-o-prstu=q-r+s-t

Page 108: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

108

Varying parameters

Different radio propagation environments will alter the parameters such as Soft Handover and

In-car loss while different equipment will have effect on parameters such as base station

antenna gain.

When the link budget is established a propagation model for calculating the range is applied to

the link budget. As an example there is the Okumura-Hata propagation model. These models

need some additional information such as sending and receiving antenna height. The model

below is for a suburban system where the base station antenna height is 30 m and the mobile

antenna height reaches 1.5 m with a carrier frequency of 1950 MHz

L =137.4 + 35.2 � LOG(R)

Where R = Range and L is the link budget.

It should be noted that this is a simplified model and to get accurate results one should include

more parameters and consider where in the cell you want to calculate the link budget. An

example is the loss provided by the in-car parameter. Such loss is only relevant when the

received signal is close to the thermal noise floor. Close to a base station the attenuation will

affect both signal and noise equally thus not affecting the signal to noise ratio in significant

way. But nevertheless the model will give a number by the hand to use for further

investigations.143

9.2 OFDM

OFDM is a modulation technique that up until recently has not been available for consumer

products. The inherent complex calculation, e.g. FFT, requires advanced microprocessor, has

up until recently not been possible to manufacture at competitive prices.

The OFDM technique takes the data stream and divides it into smaller stream. A 1Mbps

stream could be divided into 100 streams of 10kbps. Each of these streams are then mapped

143 Interview Netcom Consultants

Page 109: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

109

onto a unique frequency and combined together using the Inverse Fast Fourier Transform to

obtain the time domain waveform to be transmitted.

OFDM is especially efficient in environments where multipath delay is common, e.g. urban

and indoor environment. By carefully selecting the tones Intra Symbol Interference can greatly

be reduced since the delay spread represents a much smaller fraction of the lengthened symbol

time144

9.3 CDMA (Code Division Multiple Access)145

In a CDMA system all users transmits simultaneously. This results in that a user receives

interference from all other users in the own and neighboring cells. To be able to distinguish

the right signal each user is given a unique code, hence code-division multiple access.

Chip rate

When making a voice call the codec produces a data stream of roughly 16 kbps. Each bit of

this stream is then multiplied with the unique code that the network has assigned to the

subscriber. When sending a ”1” the code word, typically 64 bits long would be sent, a ”0”

would be the inverse of the 64 bit code word. This process will effectively broaden the signal

since instead of sending one bit, 64 bits are sent. The output transmitted through the air equals

16 kbps x 64 = 1024 kbps. This rate is called the chip rate and is held constant; a lower bit rate

is thus multiplied with a longer code word and vice versa. The process of multiplying is called

spreading.

Spreading and de-spreading

At the receiver the reverse will occur. The 64-bit word representing one bit has to be ”de-

spreaded” by multiplying the received word with the same code word used when ”spreading”

the signal. The advantage of such process is the signal will receive a signal strength

enhancement of 64 making it more tolerate to interference.

144 Flarion White Paper, OFDM for Mobile Communications145 WCDMA for UMTA, Harry Holma

Page 110: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

110

These codes should ideally be orthogonal. The result of multiplication of two orthogonal

codes is always zero and this is the base of the interference robustness of CDMA systems. A

user with a different spreading code will not affect the de-spreading of another user. The

problem is that the number of spreading codes is limited; there are as many orthogonal codes

as there are spreading codes. This would not be a problem when studying an isolated cell but

when receiving interference from neighboring cells the number of orthogonal codes would

quickly run out. Using different frequency in neighboring cells could solve this problem but

this would limit the available bandwidth.

Page 111: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

111

To overcome this problem, CDMA uses semi-orthogonal codes; these are called Pseudo-noise

or PN codes. Multiplying two near orthogonal codes will not give 0 but close enough. The

mayor advantage of PN codes is that there are more or less an unlimited amount of them.

Processing gain:

One of the advantages of using a high chip rate is that there will be a processing gain.

10 � logchip_ rate

user _bit _ rate

��

��

As an example, a 12,2 kbps speech codec is commonly used in WCDMA systems. Here the

processing gain will be

10 � log3.84Mcps

12.2kbps

��

�� = 25dB

This means that the required signal to noise ratio in the radio interface Eb/N0 can effectively

be much lower. It is obvious that this processing gain becomes less significant with higher

bandwidth and at 2 Mbps the processing gain will only be around 2.8dB.146

This processing gain alone does not come for free, however, since it requires more bandwidth.

Instead there are other parameters that give CDMA advantages.

The wideband nature in conjunction with the processing gain gives the possibility to use a

frequency reuse factor of 1, which enables high spectral efficiency.

With a wideband signal, different propagation paths can be resolved with higher accuracy in

comparison with signal that uses lower bandwidth. The result is a higher robustness towards

interference.

Cell breathing

When more users are added to a cell the noise increases. Since the signal to noise ratio has to

reach a certain ratio each user has to transmit at a higher output power. Terminals are very

146 Harry Holma, WCDMA for UMTS

Page 112: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

112

limited in their output capabilities the only solution is to be closer to the base station. This

means that the cell size shrinks an effect that is called cell breathing.

Page 113: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

113

9.4 List of Codecs

Codec Algorithm Frame Size/Lookahead

Usual rate Comments

G.711 PCM 0.125 ms/0 64 kbps Universal useG.722 0.125 ms/1.5

ms58,56 or 64kbps

Wideband coder

G.726 ADPCM 0.125 ms/0 32 kbps High quality, lowcomplexity

G.728 LD-CELP 0.625 ms/0 16 kbps High quality intandem;Recommended forcable

G.729(A) CS-ACELP 10 ms/5 ms 8 kbps Widespread useG.729e Hybrid CELP 10 ms/5 ms 11.8 kbps High

quality/complexity;Recommended forcable

G.723.1(6.3) MPC-MLQ 30 ms/7.5 ms 6.3 kbps Videoconferencingorigin

G.723.1(5.3) ACELP 30 ms/7.5 ms 5.3 kbps Videoconferencingorigin

IS-127 RCELP 20 ms/5ms Var. 4.2 kbpsaverage

AMR ACELP 20 ms Var. 4.75-12.2kbps

WCDMA,CDMA2000

Page 114: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

114

9.5 Frequency bands

Frequency Europe USA Americas excl.US

Asia Comment

700 MHz Used for otherpurposes

608-746 MHz(lower)746-794 MHz(upper)

Used for otherpurposes

Used for otherpurposes

Thebroadcastingindustry is intransition fromanalogue todigital systems

850 MHz Used for otherpurposes

824-894 MHz 824-894 MHz 824-894 MHz “Cellularband” used forTDMA,CDMA, GSMand WCDMA

900 MHz 890-960 MHz(GSM)880-960 MHz(ExtendedGSM)

Used for otherpurposes

890-960 MHzused in someLatin Americancountries e.g. inBrazil and Chile.

890-960 MHz(GSM)880-960 MHZ(GSM)

“GSM 900band”

1800MHz

1710-1880 MHz 1710-1755MHz pairedwith 2110-2155MHz

1710-1770 MHzpaired with 2110-2170 MHz1710-1880 MHze.g. Brazil

1710-1880MHz in mostAsiancountries.

“GSM 1800band”

1900MHz

Other spectrumarrangements

1850-1990MHz

1850-1990 MHz Otherspectrumarrangements

“PCS band”used forTDMA,CDMA, GSMand WCDMA

2 GHz 1920-1980 MHzpaired with2110-2170MHz;1900-1920MHz, 2010-2025 MHzunpaired

Otherspectrumarrangements

Other spectrumarrangements1920-1980 MHzpaired with 2110-2170 in Brazil

1920-1980MHz pairedwith 2110-2170MHz2010-2025MHz unpaired

“Core band”/IMT-2000Partly possible“WiMAXband” (TDD-version)

2.3 GHz Used foraeronautical andmilitary services

2300-2400MHzDRS and WCS

2300-2400 MHZUsed for otherpurposes

2300-2400MHzWiBro inKorea, ChinaTD-SCDMA

WiBro, similarto WiMAXPossible futureWiMAX band

2.45 GHz 2400-2483.5MHz

2400-2483.5MHz

2400-2493.5MHz

2400-2483.5MHz

Bluetooth andWLAN etc.

2.5 GHz 2500-2690 MHzIMT-2000 /UMTSextension

2500-2690MHz AWSincluding IMT-2000

2500-2690 MHzIMT-2000Used mainly forMMDS

2500-2690MHzIMT-2000extension

“IMT-2000expansionband” 2500-2690

Page 115: Voice over IP in Mobile Networks - LTHfileadmin.cs.lth.se/serg/old-serg-dok/docs-masterthesis/83_Ludd... · 4.3 Voice over IP and WCDMA ... 9.1 Link budget ... Ericsson Research

115

WiMAX band(USA)

3.5 GHz 3410-3600 MHzPartly allocatedfor FWA.Nomadic use

2400-2650MHz Partlymilitary, partlyFWA

3400-3650 MHzallocated forFWA

Unclear, nohomogenoususage in region

FWA andBWA band“WiMAXband” (FDDversion)

5 GHz 5150-5350 MHz5470-5725 MHz

5150-5350MHz5470-5725MHz

5150-5350 MHz5470-5725 MHz

5150-5350MHz5470-5725MHz

WLAN etc.coexisting withradar.PossibleWiMAX

5.8 GHz Used formilitarypurposes

5725-5825MHz

5725-5825 MHz Used for otherpurposes

WLAN etc.PossibleWiMAX

Source: Northstream