21
Kinetic Physics 2016 Workshop Lawrence Livermore National Laboratory, CA, USA April 5-7, 2016 Vlasov-Fokker-Planck simulation of ion-kinetic effects in ICF implosions O. Larroche a B. Canaud a , A. Inglebert a , B.-E. Peigney a , R. D. Petrasso b , H. G. Rinderknecht c , M. J. Rosenberg d , V. T. Tikhonchuk e a CEA DIF, 91297 Arpajon CEDEX, France b Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA c Lawrence Livermore National Laboratory, Livermore, CA 94550, USA d Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA e University of Bordeaux, CNRS, CEA, CELIA, 33405 Talence, France

Vlasov-Fokker-Planck simulation of ion-kinetic effects in ......Kinetic (Vlasov) formalism with Fokker-Planck ion collision modeling : VFP • FPION: hybrid formalism valid on the

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Kinetic Physics 2016 WorkshopLawrence Livermore National Laboratory, CA, USA

    April 5-7, 2016

    Vlasov-Fokker-Planck simulation of ion-kinetic effectsin ICF implosions

    O. Larrochea

    B. Canauda, A. Ingleberta, B.-E. Peigneya, R. D. Petrassob, H. G. Rinderknechtc,M. J. Rosenbergd, V. T. Tikhonchuke

    aCEA DIF, 91297 ArpajonCEDEX, FrancebPlasma Science and Fusion Center, MIT, Cambridge, MA 02139,USAcLawrence Livermore National Laboratory, Livermore, CA 94550, USA

    dLaboratory for Laser Energetics, University of Rochester,Rochester, NY 14623, USAeUniversity of Bordeaux, CNRS, CEA, CELIA, 33405 Talence, France

  • Summary

    Are time and length scales in ICF implosions sufficiently larger than collisional scales ?• Hydro simulation post-processing for collisional times, lengths, diffusion coefficients

    Kinetic (Vlasov) formalism with Fokker-Planck ion collision modeling : VFP• FPION : hybrid formalism valid on the hydro time scale : kinetic ions, thermal electrons• Faster particles are less collisional than thermal bulk : shock fronts• Dedicated experiments deviate from hydro modeling, betteragreement with VFP• Full-scale ICF kinetic and hydro simulations of hot-spot formation show discrepancies• Temperature decoupling between ion species in shock-ignition targets.

    Kinetic α-particle transport in igniting ICF targets : Knudsen number ∼ 1• FUSE : a two-scale ion-kinetic code for ignition• First results ofFUSE simulation of baseline target : indications of reduced gain

    Work to do :• Stratification and/or diffusion or mix at the fuel-pusher interface• Ability to treat ion species with large differences in charge and mass• Including pusher dynamics in ignition simulations to investigate ignition threshold• Need for more quantitative results in longer ignition target calculations

  • 3

    Collisional metrics from hydro simulations

    λcD (µm)

    0.4 0.6 0.8 1time (ns)

    0

    100

    200

    300

    400

    radi

    us (

    µm)

    10-2 1 102 104

    0.4 0.6 0.8 1time (ns)

    DD (cm2/s)10-2 1 102 104 106 108

    Implosion of D3He gas atρ = 0.4 mg/cm3 in a 430µm-radius SiO2 capsule with a 14.6kJ, 0.6 ns flat-top laser pulse : hydro simulation post-processing.Knudsen numberλc/L and diffusion coefficientD = λcvth for a thermal D ion highcompared with relevant valuesDref = L2/T whereL andT are typical length and time :L ∼ 100 µm andT ∼ 200 ps⇒ Dref ∼ 5× 105 cm/s [Larrocheet al, PoP (2016)].

  • 4

    The ion Vlasov-Fokker-Planck codeFPION

    Ion Vlasov-Fokker-Planck equation in spherical geometry (in reduced units) :

    ∂fi∂t

    + vr∂fi∂r

    +v⊥r

    (

    v⊥∂fi∂vr

    − vr∂fi∂v⊥

    )

    +EiAi

    ∂fi∂vr

    =

    n∑

    j=1

    (

    ∂fi∂t

    )

    ij

    +1

    2τei

    ∂vα

    [

    (vα − uiα)fi(v) +TeAi

    ∂fi∂vα

    (v)

    ]

    Coulomb collisions⇒ advection-diffusion in velocity space :(

    ∂fi∂t

    )

    ij

    =4πZ2i Z

    2

    j LogΛij

    A2i

    ∂vα

    [

    AiAj

    ∂Sj∂vα

    fi −∂2Tj

    ∂vα∂vβ

    ∂fi∂vβ

    ]

    with “Rosenbluth potentials” : ∆vSj = fj , ∆vTj = SjCoulomb collisions⇒ τc ∼ v3/n, several scales, localized metastable states inv spaceFluid electrons (τ ≫ τee), quasineutrality (L ≫ λD), ion/hydro timescale (τ ≫ ω−1pe )⇒ energy equation left to solveNumerical implementation : seeLarroche, PFB (1993) – EPJ-D (2003)Other kinetic simulation tools : LSP (hybrid PIC/fluid) usedby Bellei et al, PoP (2013,2014), VFP code under development :Taitanoet al, JCP (2015)

  • 5

    Shock simulations show intrinsically kinetic features

    0

    200

    400

    -10 0 10 20

    0 0.05 0.1 0.15 0.2 0.25

    dist

    ance

    (µm

    )

    velocity vr (107 cm/s)

    D

    F//(r,vr) (reduced units)

    -10 0 10 20

    0 0.1 0.2 0.3F//(r,vr) (reduced units)

    3He

    velocity vr (107 cm/s)

    Asymptotic strong (M = 5) shock front in an equimolar D-3He mixture.Maps in phase space(r, vr) of the longitudinal velocity distribution functions for both ionspecies [Larroche, PoP (2012)] : notice upstream kinetic features.

  • 6

    FPION modeling of dedicated gas-filled target implosions

    Simulations of high- and low-density cases (ρ = 3.3 and 0.4 mg/cm3).

    Initial condition : Maxwellian distributions for D and3He att = 350 ps.

    Boundary condition on the gas/pusher interface as given by the hydro calculation.

    In the low-density case, the ion temperatureTi for D and3He is taken from slightly insidethe pusher to take into account the (possibly unphysical) large Ti gradient across theinterface found in the hydro simulation.

    Numerical grid : 200 cells inr, the spatial grid shrinks or expands to follow the fuel/pusherboundary.

    128 × 64 cells in (vr, v⊥) space respectively,δvr = δv⊥ adjusts as a function of thethermal velocity found in each spatial cell.

    Flux-limited electron thermal conduction withf = 0.07 .

    Distribution moments, nuclear reactivities and DD-n and D3He-p reactivity-averaged iontemperatures are computed as a post-processing treatment,using cross-section data fromBosch & Hale, Nucl. Fusion (1992).

  • 7

    A summary of experimental data and simulation results

    ××××

    ××××

    ××××

    ××××

    FromRosenberget al (PRL 2014). ×× D3He –FPION ×× DD – FPIONOther observables better rendered as well : reactivity profiles [Larrocheet al (PoP 2016)]

  • 8

    Hot spot formation in full-scale ICF targets

    FromLarroche, EPJ-D (2003)Baseline ICF target near stagnation (17 ns< t < 17.9 ns), single speciesFPION simu-lation of DT (usingA = 2.5) :• Timing modification• LowerTi but≈ sameρr profile• No direct effect on reactivity, but lower

    Ti → 30% lower reaction rate, althoughφ = ρr/(ρr + 6) unchanged ?

    Two-species results similar in this stageLonger simulations ?

    0

    0.5

    1

    1.5

    2

    0 20 40radius (µm)

    ρr (

    g/cm

    2 )

    0 20 40radius (µm)

    fluid kinetic

    0.5

    1

    1.5

    2

    2.5

    dens

    ity (

    1026

    cm

    -3)

    -3

    -2

    -1

    0

    velo

    city

    (10

    7 cm

    /s)

    Ti

    Te

    10 20 30 40

    0

    radius (µm)

    int.

    reac

    tivity

    (10

    26 s

    -1)

    0

    2

    4

    6

    Te

    Ti

    tem

    pera

    ture

    (ke

    V)

    0

    2

    4

    6

    0 10 20 30 40radius (µm)

    reac

    tivity

    (10

    33 c

    m-3

    s-1 )

    0

    0

    0.5

    1

    1.5int.

    int.

    n

    u

    n

    u

    fluid kinetic

  • 9

    Temperature decoupling between ion species in ignition-scale targets

    From Inglebertet al, EPL (2014):very CPU-consuming calculation !

    Shock-ignition target, kinetic ef-fects show up near stagnation.

    Tritium is appreciably hotterthan Deuterium in hot spot atstagnation.Interpretation :miv

    2

    impl → 3kB∆Ti beforeinter-species temperature relaxa-tion.

    Average Ti at stagnation inmulti-species calculation lar-ger than Ti in single-speciesaverage-ion calculation→ re-visit previous results (Larroche,EPJ-D (2003)).

  • 10

    Kinetic modeling of ignition with fast α-particle treatment

    A new hybrid Fokker-Planck treatment of fast particles has been developed : distributionsin the form of the sum of a “cold” component and a “hot” component : fa = fa,c + fa,hBy construction, the hot componentfa,h varies slowly everywhere in velocity space ; itcan thus be discretized on acoarse grid. From the diffusion (≈ transverse) point of view,fa,h is close to equilibrium, because the source term from nuclear reactions is isotropic.

    fα(v)

    vfα,h

    fα,cα-

    parti

    cle

    inje

    ctio

    n

    from

    fusi

    on re

    actio

    ns

    collisionalconvectionat constant

    rate

    ther

    mal

    isat

    ion

    into

    cold

    com

    pone

    nt

    v⊥

    vr

    hot grid

    cold grid

    Hot → hot collisions can be neglected with respect to hot→ cold ones. Collisions withelectrons are treated as usual.Implementation : code «FUSE » (Peigneyet al, JCP (2014)).

  • 11

    Reduced gain in kinetic simulation of baseline target

    First simulations :Peigneyet al, PoP (2014)NIF/LMJ-like target withcodeFUSE.

    Pusher modeled by a mo-ving piston with adjus-table mass. Interface tra-jectory :

    : optimal kinetic: mass× 0.5: mass× 2: fluid calculation

    α-particle heating morespread out in space andtime, total energy yield∼2× lower than in hydro +multigroup diffusion cal-culation.

  • 12

    Conclusion and work to do

    Dedicated gas-filled target implosions with moderate to large Knudsen number• ModerateKN : satisfactory agreement between experiments and VFP simulations• High KN : encouraging results, but possible problems at the gas/pusher interface• To do :kinetic treatment of diffusion across fuel/pusher boundary

    collisional interaction with heavier elements : Si, O

    Hot spot formation in ignition-scale ICF targets• Kinetic simulations shows effects on hot-spotTi and some species decoupling, possibly

    detrimental to ignition• To do :longer simulations including main shock propagation in cold gas

    more satisfactory treatment of other physics is needed

    Kinetic effects on ignition and burn• New kinetic code treatsα-particle transport and thermalization• First proof-of-principle simulation results show lower gain• To do :extensive quantitative simulations of ignition (threshold ?) and burn

    same improvements as above are needed

  • 13

    References

    C. Belleiet al, Phys. Plasmas20, 012701 (2013).C. Belleiet al, Phys. Plasmas21, 056310 (2014).H.-S. Bosch, G. M. Hale, Nucl. Fusion32, 611 (1992).A. Inglebert, B. Canaud, O. Larroche, Europhys. Lett.107, 65003 (2014).O. Larroche, Phys. Fluids B5, 2816 (1993).O. Larroche, Eur. Phys. J. D27, 131 (2003).O. Larroche, Phys. Plasmas19, 122706 (2012).O. Larrocheet al, Phys. Plasmas23, 012701 (2016).B. Peigney, O. Larroche, V. T. Tikhonchuk, J. Comput. Phys.278, 416 (2014).B. Peigney, O. Larroche, V. T. Tikhonchuk, Phys. Plasmas21, 122709 (2014).M. J. Rosenberget al, Phys. Rev. Lett.112, 185001 (2014).M. J. Rosenberget al, Phys. Plasmas22, 062702 (2015).W. T. Taitanoet al, J. Comput. Phys.297, 357 (2015).

  • 14

    Backup : Ion temperature in hydro simulations of gas-filled targets

    0.4 0.6 0.8 1

    0 5 10 15 20

    time (ns)

    0

    100

    200

    300

    400ra

    dius

    (µm

    )ρ = 3.3 mg/cm3

    ion temperature (keV)

    0.4 0.6 0.8 1

    0 10 20 30 40 50ion temperature (keV)

    time (ns)

    ρ = 0.4 mg/cm3

    LargeTi jump across the pusher/fuel interface in the low-density case [Rosenberget al,PoP (2015)- Larrocheet al, PoP (2016)]

  • 15

    Backup : The ion Vlasov-Fokker-Planck codeFPION (1)

    VFP equation in spherical geometry, to lowest order inme/mi, for speciesi :

    ∂fi∂t

    + vr∂fi∂r

    +v2⊥

    r

    ∂fi∂vr

    − v⊥vrr

    ∂fi∂v⊥

    +EiAi

    ∂fi∂vr

    =

    n∑

    j=1

    (

    ∂fi∂t

    )

    ij

    +

    (

    ∂fi∂t

    )

    ie

    Ai mass number of species-i ions ; electron-ion collision term :(

    ∂fi∂t

    )

    ie

    =1

    2τei

    ∂vα

    [

    (vα − uiα)fi(~v) +TeAi

    ∂fi∂vα

    (~v)

    ]

    with electron-ion collision time

    τei =3√πAiT

    3/2e

    2ǫ√2Z2i neLogΛie

    ǫ =√

    me/mp (me, mp : electron and proton masses),Zi charge number of species-i ions,na, ~ua, Ta : density, velocity and temperature of speciesa, LogΛab Coulomb logarithm forcollisions between species-a and -b particles, effective electric field :

    Ei = −Zine

    ∂Pe∂r

  • 16

    Backup : The ion Vlasov-Fokker-Planck codeFPION (2)

    Pe : electron pressure. Units used are :

    time : τ0 =(kBT0)

    3/2m1/2p

    4πe4n0, space : λ0 =

    (

    kBT0mp

    ) 1

    2

    τ0

    kBT0 andn0 are given reference values of the thermal energy per particle and number den-sity, e is the elementary charge.

    ne =

    n∑

    j=1

    Zjnj , ue =1

    ne

    n∑

    j=1

    Zjnjuj , Z̃ =

    ∑nj=1 Z

    2

    j njLogΛejneLogΛee

    LogΛab = LogλD

    max(λbar, ρ⊥)where λD =

    λD0λ0

    neTe

    +

    n∑

    j=1

    njZ2

    j

    Tj

    −1/2

    λD0 =

    (

    kBT04πn0e2

    )1/2

    = reference Debye length ;ρ⊥ =

    (

    λD0λ0

    )2 ZaZbAabu2

    λbar =~

    τ0kBT0

    1

    Aabuwhere Aab =

    AaAbAa +Ab

    and u =√3

    (

    TaAa

    +TbAb

    )1/2

  • 17

    Backup : The ion Vlasov-Fokker-Planck codeFPION (3)

    Collision term between ions of speciesi andj :

    (

    ∂fi∂t

    )

    ij

    =4πZ2i Z

    2

    j

    A2iLogΛij

    ∂vα

    [

    AiAj

    ∂Sj∂vα

    fi −∂2Tj

    ∂vα∂vβ

    ∂fi∂vβ

    ]

    Rosenbluth potentialsSj andTj :

    Sj = −1

    fj(~v′)

    |~v − ~v′|d3v′ and Tj = −

    1

    |~v − ~v′|fj(~v′)d3v′

    → Poisson equations in velocity space :∆vSj = fj and∆vTj = Sj with appropriateboundary conditions.Electron temperatureTe from conservation of electron thermal energy densityWe :

    ∂We∂t

    +1

    r2∂

    ∂r

    (

    r2ueWe)

    +1

    r2∂

    ∂r(r2ue)Pe −

    1

    r2∂

    ∂r

    (

    r2κe∂Te∂r

    )

    =

    =

    n∑

    j=1

    3nj2τej

    (Tj − Te) +(

    ∂We∂t

    )

    rad

  • 18

    Backup : The ion Vlasov-Fokker-Planck codeFPION (4)

    κe : Spitzer-Härm electron thermal conduction in multi-ion-species case :

    κe ≈64√2δT (Z̃)√π

    T5/2e

    ǫZ̃LogΛee

    We andPe from electron fluid equation of state, with low-density limit :

    We(ne, Te) −−−→ne→0

    3

    2neTe ; Pe(ne, Te) −−−→

    ne→0neTe

    Electron EOS takes Fermi degeneracy into account through :

    ne = 4π

    (

    2mekBTeh2

    )3/2

    I1/2(z) ; We =3

    2Pe = 4π

    (

    2mekBTeh2

    )3/2

    kBTeI3/2(z)

    “Fermi integrals” In/2(z) =∫

    0

    yn/2

    z−1ey + 1dy

    Bremsstrahlung losses :(

    ∂We∂t

    )

    rad

    = −Prad = −4.14× 10−4T0(keV )neT 1/2e∑

    i

    niZ2

    i

  • 19

    Backup : Space-time domain for the kinetic simulation of ICFcapsules

    Green: DT/pusherinterfaceRed: initial interfacesolid DT/DT gasBlue : kinetic treatmentregion

    0 5 10 15

    time (ns)

    2

    1.5

    1

    0.5

    0

    radi

    us (

    mm

    )

  • 20

    Backup : Fusion emissivities in exploding-pusher gas-filled targets

    Reaction rate :Rij(r, t)

    Emissivity :Eij(r) =

    −∞Rij(r, t)dt

    Yield :Yij =

    0Eij(r)4πr

    2dr

    Median Radius :0.50 × Yij =

    ∫ R500

    Eij(r)4πr2dr

    0 50 100 150

    104

    reac

    ./µm

    3

    radius (µm)

    D3He-p

    DD-p

    ρ = 0.4 mg/cm3

    0 50 100 150 200

    radius (µm)

    ρ = 3.3 mg/cm3

    0 50 100 150

    radius (µm)

    ρ = 0.4 mg/cm3

    0 50 100 150 200

    radius (µm)

    ρ = 3.3 mg/cm3

    0

    5

    10

    15

    104

    reac

    ./µm

    3

    0

    0.2

    0.4

    0.6

    0.8

    104

    reac

    ./µm

    30

    2

    4

    104

    reac

    ./µm

    3

    0

    0.5

    1

    1.5

    2

    R50R50

    R50 R50

    2.5

    × 7

    × 20

    : FPION calculation of D3He gas-filled target implosions[Larrocheet al, PoP (2016)]

    — — — : Measured profiles [Rosenberget al, PoP (2015)]

  • 21

    Backup : Fusion surface brightness in exploding-pusher targets

    Surf. brightness :Bij(r) =

    −∞Eij(

    √r2 + s2)ds

    r

    s

    0

    5

    10

    15

    0 50 100 150

    106

    reac

    ./µm

    2

    radius (µm)

    D3He-p

    DD-p

    0

    0.5

    1

    1.5

    2

    0 50 100 150 200

    radius (µm)

    106

    reac

    ./µm

    2

    0

    1

    2

    3

    4

    0 50 100 150

    radius (µm)

    106

    reac

    ./µm

    20

    0.5

    1

    0 50 100 150 200

    radius (µm)

    106

    reac

    ./µm

    2

    ρ = 3.3 mg/cm3

    ρ = 3.3 mg/cm3

    ρ = 0.4 mg/cm3

    ρ = 0.4 mg/cm3

    × 20

    × 10

    : FPION calculation of D3He gas-filled target implosions[Larrocheet al, PoP (2016)]

    — — — : Measured profiles [Rosenberget al, PoP (2015)]