35
INEEL/EXT-05-02643 Revision 1 Software Requirements Specification V eri fiable Fuel Cycle Si mulation (VISION) Model AFCI Economic Benefits and Systems Analysis Teams November 2005 Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC

Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

INEEL/EXT-05-02643Revision 1

Software Requirements Specification

Verifiable Fuel Cycle Simulation (VISION) Model

AFCI Economic Benefits and Systems Analysis Teams

November 2005

Idaho National Engineering and Environmental Laboratory Bechtel BWXT Idaho, LLC

Page 2: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

This page blank.

Page 3: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

INEEL/EXT-05-02643, Rev. 1

Software Requirements SpecificationVerifiable Fuel Cycle Simulation (VISION) Model

AFCI Economic Benefits and Systems Analysis Team

November 2005

Idaho National LaboratoryIdaho Falls, Idaho 83415

Prepared for theU.S. Department of Energy

Office of Nuclear Energy, Science, and TechnologyUnder DOE Idaho Operations OfficeContract DE-AC07-05ID14517 (INL)Contract W-31-109-ENG-38 (ANL)

Contract DE-AC04-94AL85000 (SNL)

Page 4: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

ACKNOWLEDGMENTS

The AFCI modeling team acknowledges the efforts of those who contributed to thisdocument: David E. Shropshire, INL; Kent A. Williams, ORNL; W. Brent Boore,WSRC; J. D. Smith, SNL ; Brent W. Dixon, INL; Mary-Lou Dunzik-Gougar, INL/ISU;Jake J. Jacobson, INL; William H. West, INL; Steven J. Piet, INL; Gretchen E. Matthern,INL; Robert N. Hill, ANL; Abdellatif M. Yacout, ANL; Erich Schneider, LANL; LenMalczynski, SNL; Christopher T. Lewis, ISU; Chris Juchau, ISU.

Page 5: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

Table of Contents

Acronyms............................................................................................................................ 1Introduction......................................................................................................................... 4Need, Scope, and Purpose For VISION.............................................................................. 4

Scope of VISION............................................................................................................ 4Purpose of VISION......................................................................................................... 4Users of VISION............................................................................................................. 6

High-Level Functionality.................................................................................................... 6Assumptions...................................................................................................................... 15Requirements .................................................................................................................... 15

Flow Model Variables................................................................................................... 16Economic Analysis Functionality ................................................................................. 18Analysis of Estimates or Measures ............................................................................... 20General Model Architecture Elements.......................................................................... 22Hardware/Software ....................................................................................................... 28Constraints .................................................................................................................... 29

Software Quality ............................................................................................................... 30Quality Documentation................................................................................................. 30Performance Testing ..................................................................................................... 30Verification and Validation........................................................................................... 30

Reference Documents ....................................................................................................... 30

Page 6: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 1 -

AcronymsAFC Advanced Fuel CycleAFCI Advanced Fuel Cycle InitiativeANL Argonne National LaboratoryBCC Base Construction CostCH Contact HandledCOA Code of AccountsD&D Decontamination and DecommissioningDDS Design description for softwareDOE U.S. Department of EnergyEMWG Economic Modeling Working GroupFICA Federal Insurance Contribution ActFOAK First-of-a-KindHLW High-level WasteIAEA International Atomic Energy AgencyIDC Interest During ConstructionIMF Inert Matrix FuelINL Idaho National LaboratoryISU Idaho State UniversityLANL Los Almos National LaboratoryLFR Lead-Cooled Fast ReactorLLW Low-level WasteLUEC Levelized Unit of Electricity CostLWR Light Water ReactorMOX Mixed Oxide FuelMRS Monitored Retrievable StorageMSR Molten Salt ReactorNOAK Nth-Of-A-KindNRC Nuclear Regulatory CommissionO & M Operations and MaintenanceOCRWM Office of Civilian Radioactive Waste ManagementORNL Oak Ridge National LaboratoryR&D Research and DevelopmentRD&D Research, Development, and DemonstrationRH Remote HandledRTM Requirements traceability matrixSCMP Software configuration management planSCWR Supercritical-Water-Cooled ReactorSFR Sodium-Cooled-Fast ReactorSMP Software management planSNF Spent Nuclear FuelSNL Sandia National LaboratorySQAP Software quality assurance planSRS Software Requirements SpecificationSTP Software test planSWU Separative Work UnitTCIC Total Capital Investment CostTOC Total Overnight CostTRU TransuranicTSLCC Total System Life Cycle CostUREX Uranium Extraction ProcessV&V Verification and ValidationVHTR Very-High Temperature ReactorVISION Verifiable Fuel Cycle Simulation ModelWBS Work Breakdown Structure

Page 7: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 2 -

WIT What-It-TakesWSRC Westinghouse Savannah River CompanyWU Weapons UseableYMP Yucca Mountain Project

Page 8: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 3 -

This page blank.

Page 9: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 4 -

IntroductionThe purpose of this Software Requirements Specification (SRS) is to define the top-levelrequirements for a Verifiable Fuel Cycle Simulation Model (VISION) of an AdvancedFuel Cycle (AFC). This simulation application is intended to serve as a broad systemsanalysis and study tool applicable to work conducted as part of the AFCI (including costestimates) and Generation IV reactor development studies. This is a “living document”that will be modified over the course of the execution of this work element, but withconfiguration control of the INL work package manager for AFCI Integrated ModelDevelopment, in consultation with the INL work package manager for AFCI EconomicBenefits.

Need, Scope, and Purpose For VISIONThere is a lack of validated and verified estimating models to support fuel cycle costanalysis. Previous cost studies have failed to provide a complete economic accounting ofall the relevant fuel cycle costs (e.g., omission of D&D costs, refurbishment, or wasteforms) that comprise the overall life cycle costs of a facility. Such “partial” studies canresult in misleading conclusions. The goal of the VISION model is to establish a crediblesystems basis for an AFC and to create a reference source for fuel cycle unit costs.

Scope of VISIONVISION will dynamically simulate an AFC from cradle to grave, including mining of rawmaterial to disposition of waste after electricity generation. It models the nuclear fuelcycle and accounts for, or accommodates changes in process capability, includingtransition from "design and construct to startup to equilibrium to final D&D" states aswell as material, capital, and operating costs. To accomplish this cradle to grave analysis,VISION should simulate distinct fuel cycle activities, called modules, which representthe various front-end fuel cycle, back-end fuel cycle, waste disposition, andtransportation functions.

Purpose of VISIONVISION is intended to be the AFCI system analysis simulation tool of the entire fuelcycle (including cost estimates) to assist in evaluating and improving major fuel cycleoptions against all four AFCI programmatic objectives – waste management,proliferation resistance, energy recovery, and systematic fuel management (economics,safety, at-reactor storage).

VISION is NOT intended to actually manage the fuel cycle. For example, there is nointent to track each fuel assembly from each reactor, as might be required for actual fuelmanagement.

VISION will build upon the functionality contained in the Dynamic Model of NuclearDevelopment (DYMOND) originally developed for the Generation IV Fuel Cycle CrossCut group. The VISION model will incorporate the DYMOND model and add (1)isotopic flow control and decay, (2) additional recipes from transmutation analyses suchas VHTR with recycling, (3) simplified models for fuel separation and fabrication, (4)

Page 10: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 5 -

cost calculations, (5) uranium resources model, and (6) increased flexibility in transitionsand combinations of individual fuel cycle technologies.

The VISION model will be used to:• Quickly assess and evaluate, with reasonable accuracy, relative economic

differences in fuel cycle strategies and timing.• Understand issues and opportunities for keeping nuclear power an economically

competitive option;• Create an in-depth basis for understanding fuel cycle costs, their sensitivities and

uncertainty; and• Develop economic tools to evaluate creative solutions to make the nuclear fuel

cycle cost competitive.• Estimate a levelized cost of electricity.• Compare strategies – once-thru, single-pass, multi-pass thermal, thermal/fast

symbiotic, breeder.• Compare technologies – IMF vs. MOX, separation processing, reactor type.• Improve, but not optimize, scenarios.• Simulate feedback looks, e.g., the conversion of a UOX-capable to MOX-capable

reactor could be controlled by an algorithm involving the accumulation ofavailable MOX, the cost of the conversion, the downtime for the conversion, costof new reactors, etc.

• Explore new ideas vs. established lines of thinking.• Conduct qualitative and quantitative comparisons of alternative fuel cycles with

respect to:o resource requirements,o reactor types and mix,o sequencing and timing,o interim waste storage,o energy recovery,o proliferation resistance,o safetyo waste streams, ando repository capacity and performance requirements.

Typical, but by no means all, of the questions that may be answered with VISIONinclude:

• What does it take to defer or reduce number of repositories? When? Cost?• How to reduce Pu inventory?• How to reduce transportation costs and numbers?• Should the US offer more fuel services?• How much Pu may be made or destroyed from a scenario? When? How much in

storage?

Page 11: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 6 -

Users of VISIONThere are two major groups of users anticipated for the VISION model. The user groupwill have a direct bearing on the implementation of some of the requirements described inthe requirements section of this document.

Group 1: Composed of analysts, scientists, System Engineers, and model developersinternal to the AFCI project within the Department of Energy (DOE) and affiliatedNational Laboratories or AFCI contractors. These users will be responsible fordeveloping the model, conducting theoretical “what-if” scenarios to test assumptions andfurther refine alternatives, assessing the reliability and robustness of model results, andmaking suggested changes to the model based on their studies. In general this class ofusers will have access to internal versions of the model for testing, analysis andexperimentation.

Group 2: Composed of analysts, scientists, System Engineers, and Department of Energyemployees external to the AFCI project. These users will use a compiled or “locked”version of the model to conduct analysis and “what-if” scenarios within the publishedfunctionality of the model. These users will have access to approved and publishedversions of the software that have been through an established quality assurance processthat verifies and validates the model.

VISION is not intended for use by people unfamiliar with advanced fuel cycles, theissues, terminology, and basic interrelationships.

High-Level FunctionalityVISION will dynamically model an AFC from cradle to grave, including mining of rawmaterial to disposition of waste after electricity generation. To accomplish this cradle tograve analysis, VISION should simulate distinct fuel cycle activities, called modules,which represent the various front-end fuel cycle, back-end fuel cycle, waste disposition,and transportation functions.

Each type of fuel cycle facility or activity is referred to as a module (see Figure 1). Amodule represents a specific fuel cycle function that is separate but dependent on otherfuel cycle activities (e.g., the enrichment module is influenced by the enrichment requiredby the fuel manufactured in the fuel fabrication module). The modules are assembled invarious ways to create different fuel cycle scenarios. The set of mass flow and economicassessment modules must be divided into the following types:

• Front-end• Reactor• SNF storage• Recycling (separation, fabrication of recycled fuel, etc.)• Back-end modules• Transportation

Page 12: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 7 -

Figure 1. AFC Classes of Modules

Front-end ModulesThe functionality of the front-end modules must include, but is not necessarily limited to,the modules sketched in Figure 2. The associated functionality does not necessarily haveto be ultimately organized in this fashion (modules A, B, C1/C2, D1).

Figure 2. Front-end Module Functionality

The front-end fuel cycle modules are generally related to commodity types of servicesprovided by commercial sources, hence “unlimited capacity” throughput.

Page 13: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 8 -

Module Module Name Allowlimited

capacity?

General Description (NOTE, in VISION, these moduleshave both non-economic and economic versions, thus

the descriptions are broader than only “cost”)

A Natural UraniumMining and Milling

No Includes the factors involving extraction of uraniumfrom the earth through production of uraniumconcentrate in the form of U3O8 commonly known as“yellowcake.” Module A needs to start with an initialstock of conventional-pessimistic resources,conventional-optimistic resources, or unconventionalresources. The values are user defined, the defaultvalues shall be large (approximately infinity) so thatgenerally the model is unconstrained when it runs.

B Conversion No Takes the mined U3O8 concentrate and further purifiesand converted to a UF6 solid in cylinders for feed to auranium enrichment plant.

C1 Enrichment(IsotopicSeparation)

No Uses the UF6 solid in cylinders to enrich the % of U-235 from 0.711% to the 3–5% typical of the enrichmentused for LWR fuel fabrication, or higher for typicalVHTR fuels. Module C1 can supply LEU to eitherunirradiated fuel (module D1) or recycled fuel (moduleD2).

C2 HEU Blend-down No U.S. and Russian government-owned highly enricheduranium (HEU) blended down as a secondary supply tomeet demand for low enriched uranium (LEU).Module C2 can supply LEU to either unirradiated fuel(module D1) or recycled fuel (module D2). Module C2needs to start with an initial stock (outside AFCI, userdefined, default=0) of existing HEU potentiallyavailable for blend-down.

D1 (and 8submodules)

Fuel Fabrication –Unirradiated(contact handled)

Yes Uses chemical, ceramic/metallurgical, and mechanicalsteps to take enriched UF6 and convert it to finishedfuel assemblies.

Reactor ModulesThe functionality of the reactor modules must include, but is not necessarily limited to,the modules sketched in Figure 3. The associated functionality does not necessarily haveto be ultimately organized in this fashion (modules R1, R2), but must be able todifferentiate between thermal and fast reactors.

Page 14: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 9 -

Figure 3. Reactor Modules

Reactors are integral to the fuel cycle. Reactor/transmutation baseline cost data areprovided in Appendix C of the 2005 Advanced Fuel Cycle Cost Basis. The SNF storage(Module E) and SNF packaging for transport and disposal (module H) are generallylocated at reactor sites.

The reactor modules are always handled in the “limited capacity” fashion.

Module Module Name Allowlimited

capacity?

General Description (NOTE, in VISION, thesemodules have both non-economic and economic

versions, thus the descriptions are broader than only“cost”)

R Reactor(Thermal/Fast)

Always Baseline data for future thermal and fastreactors are based on Generation IV Roadmapactivity.

SNF Interim Storage ModulesWhen discharged from reactors, all fuels generate so much heat that they must be activelycooled, hence “wet” interim storage. As fuels cool, they can be transferred to eitherpassively cooled (“dry”) storage or packaged for shipment elsewhere (Figure 4). (Thepackaging module is covered elsewhere.) It is to be understood that “wet” does notnecessarily mean water. For example, sodium-reactor metal fuel is actively cooled byplacement in sodium, not water.

Page 15: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 10 -

Figure 4. Spent Nuclear Fuel Interim Storage Modules

Module Module Name Allowlimited

capacity?

General Description

E1 Interim SNFstorage – reactorwet

Eventually Pool storage (at reactor) of SNF from existing commercialreactor operations. When fuel is sufficiently aged thatactive cooling is no longer required, it can be transferredto dry storage (module E2) or SNF packaging (moduleG2) for shipment elsewhere.

E2 Interim SNFstorage – reactordry

Eventually Dry storage (at reactor) of SNF coming from reactor wetstorage and includes handling costs involved with transferfrom wet to dry storage. When it is moved, it goes to SNFpackaging (module G2) for shipment elsewhere.

Recycling ModulesThe functionality of the recycling modules must include, but is not necessarily limited to,the modules sketched in Figure 5. The associated functionality does not necessarily haveto be ultimately organized in this fashion (modules G2, F1/F2, E3, D2), but must be ableto differentiate between aqueous and pyrolytic separation. The recycle-fuel module (D2)must be able to accommodate many types of input (enriched uranium, DU, BU, NpPu,Am, Cm) and produce multiple types of recycle fuel. Unless the separation plant is co-located with reactors, SNF must be packaged (module G2) before it can be shipped toseparation (or disposal).

Page 16: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 11 -

Figure 5. Recycle Modules

The recycle modules (D2, E3, F1 & F2, and G) are associated with reprocessing of thefuel and may be provided by some combination of government and private sources.

Module Module Name Allowlimited

capacity?

General Description (NOTE, in VISION, these moduleshave both non-economic and economic versions, thus

the descriptions are broader than only “cost”)

D2 Fuel Fabrication –recycled

Yes Uses chemical, ceramic/metallurgical, and mechanicalsteps to take fissile material from the back-end fuelcycle to convert to finished fuel assemblies. In somecases, all stages of fabrication require remotefabrication, e.g., MOX-NpPuAm. In other cases, allstages require glovebox but not full remote handling,e.g., single-pass MOX-NpPu. In other cases, somesteps are contact, some are glovebox, and some arefully remote, e.g., assemblies that blend UOX, IMF-NpPu, and Am targets.

Page 17: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 12 -

Module Module Name Allowlimited

capacity?

General Description (NOTE, in VISION, these moduleshave both non-economic and economic versions, thus

the descriptions are broader than only “cost”)

E3 Recycled productsstorage

Eventually Storage of the actinide by-products produced from thereprocessing of thermal reactor and fast reactor fuels.Would typically be required to support blending needs.Module E3 should start with an initial stock (outsideAFCI, user defined, default=0) of potentially availableweapons-grade Pu that could be added to the fuel cyclesystem. Blending WG-Pu into new fuel would beaccounted for in module D2.

F1 Separation

– Aqueous(ElementalSeparation)

Yes Separation of SNF elemental components usingaqueous process to support recycling of fissilematerials. Includes receipt of SNF through end-productproduction.

F2 Separation

– Pyrolytic

(ElementalSeparation)

Yes Separation of SNF elemental components using apyrolytic process to support recycling of fissilematerials. Includes receipt of SNF through end-productproduction.

G1 HLWConditioning,Storage, andPackaging

Eventually Conditions the waste, provides interim storage of thetreated waste, and packages the HLW in preparation fortransport to a repository. Module G1 is downstream ofseparation and fuel fabrication.

G2 SNF Conditioning,Storage, andPackaging

Eventually Same as G2, but for unprocessed SNF instead of HLW.Module G2 is downstream of wet storage (module E2)and dry storage (module E1).

Back-end ModulesSome of the back-end fuel cycle modules (I, L and M) are the responsibility of thegovernment as provided by the Nuclear Waste Policy (NWPA)1. Only a limited numberof these types of facilities would be built (Figure 6).

1 Information on the NWPA can be found at http://www.ocrwm.doe.gov/ymp/about/nwpa.shtml.

Page 18: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 13 -

Figure 6. Back-end Modules

Module Module Name Allowlimited

capacity?

General Description

G1 HLWConditioning,Storage, andPackaging

Eventually Conditions the waste, provides interim storage of thetreated waste, and packages the HLW in preparation fortransport to a repository. Module G1 is downstream ofseparation and fuel fabrication.

G3 LLW Conditioning,Storage, andPackaging

Eventually Mass flow e.g. for LWR with Zr clad fuels are to bedisposed as LLW instead of GTCC or HLW.

Page 19: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 14 -

Module Module Name Allowlimited

capacity?

General Description

G4 GTCCConditioning,Storage, andPackaging

Eventually This is analogous to G1, G2, and G3 but for waste thatis GTCC at time of separation, e.g, Cs and Sr. Cs andSr must either (a) be stored ~300 years to qualify fornear-surface disposal (module J) or (b) be disposed asGTCC. Under current NRC rules, the only dispositionpath for GTCC is geologic repository (module L)

I Long-TermMonitoredRetrievable Storage

Yes Long-term storage of SNF/HLW until shipped to ageologic repository.

J Near SurfaceDisposal (LLW)

Eventually Engineered or trench disposal of LLW including wasteand fill placement, and monitoring.

K1 UraniumConversion,Storage, andDisposition -Depleted

Lowpriority

Conversion, storage, and disposal of depleted UF6. Insome scenarios, this material is later withdrawn to usein breeder fast reactors.

K2 UraniumCondition, Storage,and Disposition -Burned

Lowpriority

Conversion, storage, and disposal of burned uranium.In some scenarios, this is only a brief holding pad forBU from separation (module F) to fuel fabrication(module D2). In other scenarios, this can be“permanent” disposal (as can be DU in module K1)with withdrawal decades later, if at all. Because of thehigh cost of TRU storage in module E3, we do not storeburned uranium there; hence the need for a new BUmodule.

L GeologicRepository

Yes Includes inception through closure for repositoryoperations. VISION will keep the following streamsseparate – SNF (which may be withdrawn later), HLW,and GTCC.

M Other DisposalConcepts

Yes Speculative SNF/HLW disposal alternatives to a deepgeologic repository, such as deep bore hole, and others.

Transportation ModulesThe functionality of the transportation modules must include, but is not necessarilylimited to, the modules sketched in Figure 7. The associated functionality does notnecessarily have to be ultimately organized in this fashion (modules O and P), but mustbe able to differentiate between low-level and high-level radioactive materials.

Figure 7. Transportation Modules

Page 20: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 15 -

The transportation modules (O and P) support the transport of new fuel, recycled fuel,and shipment of SNF, HLW and low-level waste (LLW). Transportation of raw fuel tothe reactor is provided by the reactor owner/utility. SNF transportation from the reactorto interim storage and the repository is the responsibility of the government. High-levelwaste and LLW transportation resulting from recycling could be provided by somecombination of government and private sources.

Module Module Name Allowlimited

capacity?

General Description

O Transportation forHigh-LevelRadioactiveMaterials

Notapplicable

Transportation of recycled irradiated fuel and SNF/HLWper relative unit, includes handling not already included ininterim storage. Includes required operations to conditionand package the SNF for shipment to the repository,interim storage, or to a reprocessing facility. NOTE: thenon-economic version of this module, without economics,will assemble an estimate of all flows of classes ofmaterials, e.g., GTCC, HLW, SNF, recycled fuel.

P Transportation forLow-LevelRadioactiveMaterials

Notapplicable

Transportation for new fuel, unirradiated materials, andLLW per relative unit, includes handling not alreadyincluded in interim storage. NOTE: the non-economicversion of this module will assemble an estimate of allflows of classes of materials, e.g., unirradiated fuels, BU,DU, EU, and LLW.

AssumptionsThe following assumptions are made regarding the development and use of VISION:

• Existing models that satisfy all or part of the expectations and requirementsdescribed in this document will be located and be used if possible.

• Some new development or modification of existing models will be needed tosatisfy all the requirements.

• The model needs to be developed or modified in time to help provide costcomparisons for decisions anticipated in 2007.

• The model will be distributed and used beyond the INL.• The model will be of sufficient quality to pass independent external (external to

the INL) review for compliance with requirements and for technical soundness.

RequirementsThe following section describes the team’s/customer’s requirements for VISION. Theserequirements are divided into six major subject areas. Priority for each requirement isindicated by a 1, 2, or 3 designations.

Page 21: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-16

-

Flow

Mod

elV

aria

bles

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

1.1

Trac

kM

ass

Inve

ntor

ies

Trac

kth

eto

talm

ass

(Kilo

gram

,Kg)

flow

san

din

vent

orie

sof

Fres

hFu

el,S

NF,

Rec

ycle

dm

ater

ial,

HL

W,T

RU

thro

ugh

each

phas

eof

the

nucl

earf

uelc

ycle

(fue

ldev

elop

men

t,re

acto

rs,r

ecyc

ling,

stor

age)

.1

Ver

ify

outp

utag

ains

tbas

eca

ses

run

from

DY

MO

ND

-US.

10-0

9-05

Ver

1.V

erif

ySN

FPr

oduc

ed,T

otal

Rec

ycle

dM

ater

iala

ndH

LWPr

oduc

ed.

(All

Mod

ules

)

1.2

Trac

kIs

otop

esM

ass

Inve

ntor

ies

Trac

kth

eto

talm

ass

(Kilo

gram

,Kg)

and

proc

ess

loss

esof

the

isot

opes

ofin

tere

stth

roug

hea

chph

ase

ofth

enu

clea

rfue

lcyc

le(f

uel

deve

lopm

ent,

reac

tors

,rec

yclin

g,st

orag

e).

1V

erif

you

tput

agai

nstb

ase

case

sru

nfr

omD

YM

ON

D-U

S.10

-09-

05V

er1.

Ver

ify

SNF

Prod

uced

,Tot

alR

ecyc

led

Mat

eria

land

HLW

Prod

uced

.

1.3

SNF

com

posi

tion

Fore

ach

Fuel

Rec

ipe

fed

into

are

acto

rest

imat

eth

em

ass

ofSN

F(K

ilogr

ams,

Kg)

that

exits

the

reac

tora

tthe

end

ofits

reac

torf

uel

cycl

e.Th

issh

ould

bedo

nefo

reac

his

otop

eof

inte

rest

inth

efu

el.

1V

erif

you

tput

ofse

vera

lsel

ecte

dfu

elre

cipe

sag

ains

tArg

onne

spre

adsh

eete

stim

ates

.

1.4

UN

eede

dFo

reac

hsc

enar

io,e

stim

ate

the

mas

s(K

ilogr

am,K

g)of

U,U

233

and

U23

5an

dU

233

need

edfo

rthe

fuel

supp

lyus

edin

the

reac

tors

.1

Ver

ify

base

case

sag

ains

tspr

eads

heet

calc

ulat

ions

.

1.52

Mat

eria

lA

vaila

bilit

yE

stim

ate

mat

eria

lava

ilabi

lity,

timin

gan

dvo

lum

e,of

recy

cle

mat

eria

ls.

1

Ver

ify(

1)th

atth

em

odel

isco

rrec

tlyes

timat

ing

the

quan

tity

ofav

aila

ble

mat

eria

lfor

each

time

peri

od.

The

avai

labl

em

ater

ial

incl

udes

fuel

com

pone

nts

such

asN

p,A

man

dC

s.U

sers

elec

tabl

eta

ble(

s)/c

hart

(s)t

hatt

rack

estim

ated

raw

mat

eria

lava

ilabl

e.(M

odul

esaf

fect

ed:A

,B,C

,D1,

K)

1.6

Tran

spor

tatio

nV

olum

e

Trac

kth

ekg

-mile

str

ansp

orte

dpe

ryea

rbet

wee

nsc

enar

iolo

catio

ns(s

eere

quir

emen

t4.1

3)fo

r:1.

Ura

nium

conc

entr

ates

,2.

Fabr

icat

edfu

el,

3.SN

F,4.

Rec

ycle

dfu

el,

5.W

aste

2

Ver

ify(

1)th

atth

em

odel

isco

rrec

tlyes

timat

ing

tran

spor

tatio

nvo

lum

eat

each

time

peri

odfo

reac

hof

the

iden

tifie

dsu

bmod

els.

The

mod

elin

terf

ace

will

supp

lya

user

sele

ctab

leta

ble(

s)/c

hart

(s)

that

trac

kstr

ansp

orte

dm

ater

ial.

2R

equi

rem

ents

show

nw

ithst

rike

thro

ugh

text

wer

ein

clud

edin

Rev

.0of

this

docu

men

t,bu

thav

ebe

endr

oppe

das

are

quir

emen

tin

this

revi

sion

.

Page 22: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-17

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

1.7

Num

berO

fSh

ipm

ents

Est

imat

eth

enu

mbe

rofs

hipm

ents

,bas

edon

the

tran

spor

tatio

nty

pe(s

)se

lect

edto

are

posi

tory

for:

1.SN

F,2.

HLW

3.R

ecyc

led

fuel

2V

erif

yag

ains

tspr

eads

heet

calc

ulat

ions

base

don

use

case

s.

1.8

Ene

rgy

Eff

icie

ncy

Fact

orC

alcu

late

chan

ges

inen

ergy

effi

cien

cyfa

ctor

.1

Ver

ify

agai

nsts

prea

dshe

etca

lcul

atio

nsba

sed

onus

eca

ses.

1.9

Rad

ioto

xici

tyIn

dice

sO

fSN

F/H

LW

Cal

cula

teth

elo

ng-t

erm

heat

gene

ratio

nin

are

posi

tory

(LTH

),lo

ng-

term

grou

ndw

ater

hypo

thet

ical

dose

from

the

repo

sito

ry(L

TD),

long

-te

rmra

diot

oxic

ity(L

TR),

wea

pons

-usa

ble

inve

ntor

y(W

U)

1V

erif

yag

ains

tspr

eads

heet

calc

ulat

ions

base

don

use

case

s.

1.10

Rad

ioac

tive

Dec

ay

Est

imat

em

ass

(Kilo

gram

,Kg)

lost

thro

ugh

radi

oact

ive

deca

yfo

reac

his

otop

eof

inte

rest

fora

nyst

ocks

with

aho

ldin

gtim

egr

eate

rtha

non

e-

year

fore

ach:

1.M

odel

mod

ule

2.In

vent

ory

atea

chge

nera

tion

ofre

cycl

e3.

Loca

tion

scen

ario

sele

cted

byth

eus

er.

2V

erif

yag

ains

tspr

eads

heet

calc

ulat

ions

base

don

use

case

s.

1.11

Hea

tLoa

dE

stim

ate

the

heat

load

from

mat

eria

lpla

ced

inth

ege

olog

ical

repo

sito

ry.

1V

erif

yag

ains

tspr

eads

heet

calc

ulat

ions

base

don

use

case

s.

Page 23: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-18

-

Eco

nom

icA

naly

sis

Func

tiona

lity

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

2.1

Faci

lity

Ow

ners

hip

Cos

t

Est

imat

eco

stfo

rrec

ycle

faci

lity

owne

rshi

pop

tions

incl

udin

g:1.

gove

rnm

ent,

2.pr

ivat

e,3.

hybr

id(g

over

nmen

tand

priv

ate)

.R

ecog

nize

that

diff

eren

tfac

ilitie

sha

vedi

ffer

ent"

owne

r"sh

ip.

2V

erif

yag

ains

tspr

eads

heet

calc

ulat

ions

base

don

use

case

s.

2.2

AFC

ICos

tM

odul

es

Inco

rpor

ate

cost

mod

ule

vari

able

sth

atar

eco

nsis

tent

with

the

AFC

IC

ostB

asis

repo

rt.A

bilit

yto

use

mas

sflo

ws,

volu

mes

,was

tefo

rm,

reac

tors

data

,and

spec

ified

mod

elin

gin

puts

toca

lcul

ate

repr

esen

tativ

efu

elcy

cle

cost

sfo

reac

hm

odul

e.

1V

erif

ym

odul

esag

ains

tcur

rent

Func

tiona

l&O

pera

tiona

lR

equi

rem

ents

and

inte

rfac

ere

latio

nshi

psde

fined

inA

FCIC

ost

Bas

is.

2.3

Tota

lCos

tsE

stim

ate

tota

lfue

lcyc

lean

dsy

stem

cost

sin

clud

ing

the

LUE

C,t

hat

incl

udes

fuel

cycl

ean

dre

acto

rsco

sta

perk

Wh

basi

s.1

Ver

ify

agai

nstc

ostd

ata

from

acce

pted

repo

rts

orfr

omE

MW

Gsp

read

shee

tcal

cula

tions

.($

/kW

h)

2.4

Sepa

ratio

nC

ost

Est

imat

eth

ese

para

tion

cost

asa

func

tion

ofdi

ffer

ents

epar

atio

npr

oduc

tcom

bina

tions

.3

Ver

ify

agai

nstc

ostd

ata

from

acce

pted

repo

rts

orfr

omsp

read

shee

tca

lcul

atio

ns.

2.5

Fuel

Fabr

icat

ion

Cos

t

Est

imat

ere

cycl

efu

elfa

bric

atio

nco

st($

/kg)

asa

func

tion

ofke

ypr

oces

sing

para

met

ers

that

can

driv

eco

sts

(e.g

.,fu

elty

pe,

gam

ma

field

,neu

tron

emis

sion

rate

,hea

trat

ean

dfa

cilit

ysi

ze).

3V

erif

yag

ains

tcos

tdat

afr

omac

cept

edre

port

sor

from

spre

adsh

eet

calc

ulat

ions

.

2.6

Fron

t-en

dFu

elC

ycle

supp

lyan

dde

man

d

Inco

rpor

ate

Ura

nium

fron

t-en

dsu

pply

/dem

and

vari

able

san

dre

latio

nshi

psto

enab

lepr

icin

gfu

elco

sts

base

don

sele

cted

mar

ket

cond

ition

s.3

Com

pare

resu

ltsto

sepa

rate

spre

adsh

eeto

rcal

cula

tions

perf

orm

edth

roug

hse

para

teU

rani

umm

odel

.

2.7

Bac

k-en

dFu

elC

ycle

Inco

rpor

ate

vari

able

san

dal

gori

thm

sto

mim

icsi

mpl

ified

func

tiona

lity

ofth

eR

W-T

otal

Syst

emM

odel

(TSM

).3

Com

pare

mod

elin

gre

sults

forp

acka

ging

,tra

nspo

rtat

ion,

and

disp

osal

agai

nstR

W-c

ases

run

with

the

TSM

.

2.8

Faci

lity

Con

vers

ion

Cos

tsE

stim

ate

the

tota

lcos

t($)

toch

ange

the

capa

bilit

ies

ofa

faci

lity,

e.g.

,ch

ange

UO

X-c

apab

lere

acto

rto

aM

OX

and

UO

Xca

pabl

ere

acto

r.3

Tobe

dete

rmin

ed

2.9

Man

ualC

ost

Ove

rrid

esA

llow

the

user

toov

erri

dem

odul

eco

sts

incl

udin

gse

tting

reac

torc

osts

toze

roto

obta

infu

elcy

cle

cost

estim

ates

only

.2

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

over

ride

pres

etm

odul

eco

stal

gori

thm

s.

2.10

Cos

tUnc

erta

inty

Prov

ide

func

tiona

lity

tope

rfor

m(D

PLlik

e)co

stun

cert

aint

yan

alys

isan

dpr

ovid

eTo

rnad

oan

dR

ainb

owdi

agra

ms

ofco

stva

riab

les

that

have

sign

ifica

ntim

pact

son

the

cost

s.2

Ver

ify

that

mod

elpr

ovid

esun

certa

inty

anal

ysis

cons

iste

ntw

ithin

depe

nden

tDPL

calc

ulat

ions

.

Page 24: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-19

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

2.11

Cas

eC

ost

Com

para

bilit

y

Prov

ide

func

tiona

lity

toco

mpa

rein

divi

dual

mod

ules

,tot

alm

odul

es,

and

LUE

Cco

sts

betw

een

mul

tiple

case

san

dpr

ovid

em

eans

toid

entif

ydi

ffer

ence

sin

case

assu

mpt

ions

.1

Eva

luat

ese

para

teca

ses

indi

vidu

ally

.

2.12

Fuel

Cyc

leE

cono

mic

Ana

lysi

s

Prov

ide

capa

bilit

yto

perf

orm

the

was

teflo

wan

alys

isin

depe

nden

tfr

omth

eec

onom

ican

alys

is,w

ithth

eab

ility

totu

rnec

onom

icca

pabi

lity

on/o

ffw

ithou

tinf

luen

cing

the

bala

nce

ofth

em

odel

.1

Ver

ify

func

tiona

lity

totu

rnof

fthe

econ

omic

s.

Page 25: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-20

-

Ana

lysi

sof

Est

imat

esor

Mea

sure

s

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

3.1

Alte

rnat

ive

Com

pari

son

Dis

play

alte

rnat

ive

stra

tegy

/sce

nari

oin

asi

mpl

eto

com

pare

form

atsu

chas

char

tand

/ort

able

with

diff

eren

ces

calc

ulat

edfo

rall

mod

elva

riab

les.

1

Con

firm

that

the

mod

elin

terf

ace

incl

udes

the

func

tiona

lity

toru

nco

mpa

rativ

esc

enar

ios

and

has

the

abili

tyto

disp

lay

char

tsan

dta

bles

that

listt

here

sults

toal

low

easy

com

pari

son

ofsc

enar

ioou

tcom

es.(

Use

rint

erfa

ce)

3.2

Sens

itivi

tyPe

rfor

mse

nsiti

vity

anal

ysis

ofou

tcom

eva

lues

base

don

sele

cted

/key

inpu

tpar

amet

ers.

Dis

play

the

resu

ltsin

ach

arta

nd/o

rtab

le.

3C

onfir

mth

atth

em

odel

inte

rfac

ein

clud

esth

efu

nctio

nalit

yto

run

sens

itivi

tyan

alys

is.

3.3

Opt

imiz

ea

Scen

ario

Opt

imiz

ese

lect

edou

tput

vari

able

sba

sed

ona

seto

fsel

ecte

din

put

para

met

ers

that

use

aus

ersu

pplie

dob

ject

ive

func

tion(

s).

3C

onfir

mth

atth

em

odel

inte

rfac

ein

clud

esth

efu

nctio

nalit

yto

run

optim

izat

ions

with

user

defin

edob

ject

ive

func

tions

.

3.4

Rea

ctor

Con

stru

ctio

n

Est

imat

ew

hen

reac

tors

are

cons

truc

ted

(fle

etsi

ze)b

ased

onun

satis

fied

elec

tric

ity/H

2/ot

herd

eman

d,re

tirem

enta

geof

exis

ting

reac

tors

,fir

stav

aila

ble

date

forn

ewde

sign

,and

mix

forU

and

TRU

man

agem

ent,

1R

eact

orfle

etsi

zede

term

ined

dyna

mic

ally

base

don

abov

ecr

iteri

a.V

erif

you

tput

agai

nstb

ase

case

sru

nfr

omD

YM

ON

D-U

S.10

-09-

05V

er1.

3.5

Rea

ctor

Num

ber

And

Mix

Est

imat

eth

ere

acto

rnum

bera

ndm

ixba

sed

onto

talu

nsat

isfie

del

ectr

ican

d/or

H2/

othe

rdem

and,

retir

emen

tage

ofex

istin

gre

acto

rs,

first

avai

labl

eda

tefo

rnew

desi

gn,m

ixfo

rUan

dTR

Um

anag

emen

t,1

Ver

ify

reac

torn

umbe

rand

mix

dete

rmin

eddy

nam

ical

lyba

sed

onel

ectr

icde

man

dag

ains

tspr

eads

heet

calc

ulat

ions

.

3.6

Sepa

ratio

nan

dFu

elFa

bric

atio

nC

apac

ity

The

mod

elm

ustb

eab

leto

beru

nw

ithei

ther

unlim

ited

sepa

ratio

nan

dfu

elfa

bric

atio

nca

paci

ty-o

r-w

ithus

er-d

efin

edca

paci

tyin

crem

ents

.1

Ver

ify

repr

oces

sing

capa

city

isde

term

ined

dyna

mic

ally

base

don

need

,uni

tsiz

ean

dtim

eto

cons

truct

agai

nsts

prea

dshe

etca

lcul

atio

ns.

3.7

Dat

aC

onfid

ence

Inte

rval

sPr

ovid

eco

nfid

ence

inte

rval

sfo

rsel

ecte

dou

tput

vari

able

s.2

Ver

ify

mod

elin

gso

ftwar

eha

sca

pabi

lity

toca

lcul

ate

conf

iden

cein

terv

als.

3.8

Rea

ctor

Con

stru

ctio

nba

sed

onB

urn

up

Rea

ctor

fleet

size

dete

rmin

eddy

nam

ical

ly.

Bas

edon

econ

omic

s.(s

uch

asm

ill/k

W-h

rifa

func

tion

ofbu

rnup

,am

ount

tobe

sent

tore

posi

tory

,CO

2cr

edits

,gov

ernm

ente

cono

mic

fact

ors,

anyw

here

inth

esy

stem

,etc

.)co

nsid

erbo

thH

2an

del

ectr

icity

OR

-lin

kw

ithot

her

mod

els

e.g.

NE

RA

C

1R

eact

orfle

etsi

zede

term

ined

dyna

mic

ally

base

don

abov

ecr

iteri

a.V

erif

you

tput

agai

nstb

ase

case

sru

nfr

omD

YM

ON

D-U

S.10

-09-

05V

ersi

on1.

3.9

Rea

ctor

Num

ber

And

Mix

base

don

Bur

nup

Rea

ctor

num

bera

ndm

ixde

term

ined

dyna

mic

ally

base

don

elec

tric

dem

and.

Bas

edon

econ

omic

s..(

(suc

has

mill

/kW

-hri

fafu

nctio

nof

burn

up,a

mou

ntto

bese

ntto

repo

sito

ry,C

O2

cred

its,g

over

nmen

tec

onom

icfa

ctor

s,an

ywhe

rein

the

syst

em,e

tc.)

cons

ider

both

H2

and

elec

tric

ityO

R-l

ink

with

othe

rmod

els

e.g.

NE

RA

C

1V

erif

yre

acto

rnum

bera

ndm

ixde

term

ined

dyna

mic

ally

base

don

elec

tric

dem

and

agai

nsts

prea

dshe

etca

lcul

atio

ns.

Page 26: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-21

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

3.10

Dyn

amic

ally

Cre

ate

Rep

roce

ssin

gC

apac

ity

The

mod

elsh

ould

dyna

mic

ally

crea

tere

proc

essi

ngca

paci

tyba

sed

onne

ed,u

nits

ize,

time

toco

nstr

uct(

forw

ard

proj

ectio

n)an

dal

low

user

defin

edre

proc

essi

ngca

paci

ty.

2V

erif

yre

proc

essi

ngca

paci

tyis

dete

rmin

eddy

nam

ical

lyba

sed

onne

ed,u

nits

ize

and

time

toco

nstru

ctag

ains

tspr

eads

heet

calc

ulat

ions

.V

erify

user

defin

edre

proc

essi

ngca

paci

tyis

avai

labl

e.

Page 27: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-22

-

Gen

eral

Mod

elA

rchi

tect

ure

Ele

men

ts

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

4.1

Gra

phic

alU

ser

Inte

rfac

eD

evel

opa

Gra

phic

alU

serI

nter

face

(GU

I)fo

rsel

ectio

nof

valu

esof

inpu

tvar

iabl

esan

dus

erse

lect

edop

tions

.3

Con

firm

that

the

mod

elha

sa

user

inte

rfac

eav

aila

ble

that

allo

ws

the

user

tosp

ecif

yin

putp

aram

eter

san

dru

nsc

enar

ios.

4.2

Def

ault

Val

ues

Prov

ide

defa

ultv

alue

sfo

rall

inpu

tvar

iabl

es.

1C

onfir

mth

atin

itial

lyth

atm

odel

inte

rfac

ein

putp

aram

eter

sar

ein

itial

ized

with

defa

ultv

alue

s.

4.3

Mul

ti-di

men

sion

alA

rray

sPr

ovid

eth

eca

pabi

lity

tow

ork

with

upto

asi

x-di

men

sion

alar

ray,

with

am

inim

umof

thre

edi

men

sion

s.1

Ver

ify

that

the

inte

rfac

eha

sac

cept

able

defa

ultv

alue

sat

star

tup

time.

4.4

Inpu

tint

erfa

ce

Mod

elco

uld

beru

n:(a

)thr

ough

GU

I,(b

)inp

utde

ck,

(c)a

tthe

prog

ram

min

g/m

odel

ing

leve

l

1V

erif

yth

atth

eG

UIh

asa

sele

ctab

lein

terf

ace

base

don

tech

nica

lex

pert

ise

orpa

ssw

ord

prof

ile

4.5

Sele

ctIn

appr

opri

ate

Inpu

tW

arni

ngs

Allo

wus

erto

sele

ctth

ele

velo

fwar

ning

fori

napp

ropr

iate

inpu

t.M

odel

can

beru

nw

ith(a

)pre

vent

inap

prop

riat

ein

putv

alue

s,(b

)allo

wbu

twar

n,(c

)war

ning

turn

edof

f.

Ifru

nnin

gin

GU

Imod

e,au

tom

atic

ally

prev

enti

napp

ropr

iate

inpu

tva

lues

.If

runn

ing

in"i

nput

deck

"or

"pro

gram

min

g/m

odel

ing"

leve

l,th

enpr

even

t,w

arn,

no-w

arn

are

allo

ptio

ns.

2V

erif

yth

atth

em

odel

has

sele

ctab

lew

arni

ngfl

ags

onin

put

para

met

ers.

4.6

Rea

ctor

Mix

esA

llow

the

user

tode

fine

the

mix

ofre

acto

rsan

dad

just

the

mix

thro

ugh

time.

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tosp

ecify

the

reac

torm

ix.

4.7

Rea

ctor

Cos

tA

llow

the

user

toin

putr

eact

orco

stor

sett

heco

stto

zero

forf

uelc

ost

estim

ates

only

.2

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

spec

ifyre

acto

rcos

t

4.8

Fuel

"Typ

es"

and

burn

-up

Allo

wth

eus

erto

defin

efu

el"t

ypes

"in

term

sof

reac

tort

ype,

achi

evab

lebu

rnup

,etc

.1

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

spec

ifyfu

elty

pes

inte

rms

ofre

acto

rtyp

e,ac

hiev

able

burn

up.

4.9

Bur

nU

pR

ates

Allo

wth

eus

erto

sele

ctam

ong

disc

rete

valu

esas

soci

ated

with

inpu

t/dis

char

geda

taco

mpo

sitio

nse

ts,e

ach

labe

led

asto

itsbu

rnup

.2

Con

firm

that

the

inte

rfac

eal

low

sth

eus

erto

sele

ctdi

scre

tebu

rnup

rate

sba

sed

onre

acto

r/fu

elty

pes.

Page 28: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-23

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

4.10

Rep

roce

ssin

gTh

roug

hput

Allo

wus

ers

toad

just

inpu

tto

repr

oces

sing

faci

lity

asfu

nctio

nof

fuel

age

(min

imum

).A

llow

asst

rate

gies

(a)o

ldes

tfue

lfir

st.

Inei

ther

case

,als

oal

low

user

tode

term

ine/

inpu

tmin

imum

fuel

age

attim

eof

repr

oces

sing

.(d

efau

ltva

lue

is5

year

s)

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

toad

just

repr

oces

sing

thro

ughp

utas

afu

nctio

nof

fuel

age.

4.11

The

Size

/Thr

ough

put

Rat

es

Allo

wth

eus

erto

adju

stth

esi

ze/th

roug

hput

rate

sof

spec

ific

clas

ses

offa

cilit

ies

(mod

ules

).2

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

adju

stth

esi

ze/th

roug

hput

rate

s.

4.12

Mod

esof

Ope

ratio

n

Allo

wth

ree

mod

esof

mod

elop

erat

ion:

(a)U

seri

nput

cont

rols

disc

rete

proc

essi

ngpl

antc

apac

itygr

owth

+di

scre

tere

posi

tory

capa

city

grow

th.

Then

inte

rim

stor

age

isth

efr

eeva

riab

lean

dbo

thpr

oces

sing

plan

tand

repo

sito

ryun

itsi

zes

mus

tbe

inpu

t/def

ault.

(b)U

seri

nput

cont

rols

disc

rete

proc

essi

ngpl

anta

ndin

teri

mst

orag

eca

paci

tylim

it.Th

enre

posi

tory

inve

ntor

yis

the

free

vari

able

.(c

)Use

rinp

utco

ntro

lsin

teri

mst

orag

ean

ddi

scre

tere

posi

tory

.Th

enpr

oces

sing

plan

treq

uire

dis

the

free

vari

able

.

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

toru

nth

em

odel

via

the

3m

odes

ofop

erat

ion.

4.13

Loca

tion

Scen

ario

sA

llow

the

user

tose

lect

diff

eren

tloc

atio

nsc

enar

ios

(e.g

.on-

site

proc

essi

ng,r

egio

nal,

natio

nal,

glob

al,o

rfix

ed(e

.g.1

500

mile

s)).

2V

erif

yth

atth

ein

terf

ace

that

allo

ws

the

user

tose

lect

diff

eren

tlo

catio

nsc

enar

ios

(nat

iona

l,re

gion

alor

fixed

).

4.14

Mod

esO

fTr

ansp

orta

tion

Allo

wth

eus

erto

sele

ctdi

ffer

entm

odes

oftr

ansp

orta

tion

fore

ach

mat

eria

lstr

eam

and

the

volu

me

perl

oad

fora

spec

ific

tran

spor

tatio

nm

ode

(i.e

.roa

d,ra

il).

2V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tose

lect

diff

eren

ttr

ansp

orta

tion

mod

esan

dvo

lum

esfo

rmat

eria

lstr

eam

s.

4.15

Ene

rgy

Out

look

Allo

wus

erto

eith

er:

(a)d

efin

egr

owth

rate

,(b

)use

defa

ultp

roje

ctio

nsu

chas

EIA

,(c

)inp

utda

tafr

omot

herm

odel

s,(d

)dyn

amic

link

with

othe

rmod

els

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tosp

ecify

the

ener

gyde

man

dfr

omei

ther

ade

fined

grow

thra

tefr

oma

vari

ety

ofin

tern

alan

dex

tern

also

urce

s(e

.g.N

EM

S).

4.16

Tim

ing

And

Sequ

enci

ngA

llow

the

user

tode

fine

cert

ain

timin

gan

dse

quen

cing

para

met

ers,

such

as,i

nter

imst

orag

etim

e,re

proc

essi

ngtim

e,et

c.1

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

adju

stth

etim

ing

and

sequ

enci

ngfo

rsys

tem

para

met

ers.

4.17

Sele

ctIn

put

Mat

eria

lsSt

ream

sA

llow

the

user

tose

lect

ford

iffer

enti

nput

mat

eria

lsst

ream

s(e

.g.

fuel

).1

Ver

ify

that

the

inte

rfac

eth

atal

low

sth

eus

erto

spec

ify

diff

eren

tin

putm

ater

ials

trea

ms.

Page 29: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-24

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

4.18

Sele

ctFo

rR

ecyc

led

Stre

ams

Allo

wth

eus

erto

sele

ctfo

rdiff

eren

trec

ycle

dpr

oduc

tstr

eam

sco

min

gou

tofr

ecyc

ling

(MO

X/I

MF/

FR).

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tosp

ecify

diff

eren

trec

ycle

dpr

oduc

tstr

eam

sco

min

gou

tofr

ecyc

ling.

4.19

Load

ing

And

Fuel

Man

agem

ent

Sche

me

Allo

wth

eus

erto

inpu

tthe

load

ing

and

fuel

man

agem

ents

chem

e(h

owm

uch

ofea

chfu

elty

peto

star

tup,

how

muc

hco

re/ta

rget

/bla

nket

repl

aced

each

refu

elin

g,et

c.)f

orea

chre

acto

rtyp

e.1

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

inpu

tloa

ding

and

fuel

man

agem

ents

chem

es(h

owm

uch

ofea

chfu

elty

peto

star

tup,

how

muc

hco

re/ta

rget

/bla

nket

repl

aced

each

refu

elin

g,et

c)fo

reac

hre

acto

rtyp

e.

4.20

Esc

alat

ion

Sche

mes

Allo

wth

eus

erto

inpu

tdiff

eren

tesc

alat

ion

sche

mes

(e.g

.Use

U.S

.D

epar

tmen

tofL

abor

stat

istic

sfo

resc

alat

ion

ofop

erat

ions

cost

s.).

2V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tosp

ecify

whi

ches

cala

tion

sche

me

tous

e(e

.g.U

SD

epar

tmen

tofL

abor

stat

istic

sfo

resc

alat

ion

ofop

erat

ions

cost

s).

4.21

Inte

rest

Rat

e

Allo

wth

eus

erto

inpu

tdiff

eren

tint

eres

trat

es(e

.g.U

seU

.S.

Dep

artm

ento

fTre

asur

yst

atis

tics

fori

nter

estr

ates

).Se

lect

able

asdi

ffer

entf

ordi

ffer

entc

apita

lpro

ject

s(a

tthe

mod

ule

leve

l)in

fuel

cycl

e,es

p.if

owne

rvar

ies.

2V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tosp

ecify

whi

ches

cala

tion

sche

me

tous

e(e

.g.U

SD

epar

tmen

tofL

abor

stat

istic

sfo

resc

alat

ion

ofop

erat

ions

cost

s).

4.22

Obj

ectiv

eFu

nctio

nA

llow

the

user

tode

fine

anob

ject

ive

func

tion

that

will

optim

ize

asp

ecifi

cse

tofo

utco

me

para

met

ers

base

don

sele

cted

mod

elpa

ram

eter

s.(s

eeop

timiz

atio

nre

quir

emen

t3.3

).2

Ver

ify

that

the

soft

war

eal

low

sth

eus

erto

defin

ean

dru

nan

obje

ctiv

efu

nctio

nfo

ropt

imiz

atio

n.

4.23

Save

and

retr

ieve

Inpu

tFile

s

Allo

wth

eus

erto

save

and

retr

ieve

inpu

tfile

sto

afil

ena

me

and

loca

tion

ofth

eirc

hoic

ean

dto

reus

eth

esa

ved

file

forl

ater

runs

.O

rcr

eate

inpu

tfile

sfr

omot

hers

ourc

esou

tsid

eof

this

mod

el.

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tosa

ve/r

etri

eve

inpu

tfile

s.

4.24

Gra

phic

alO

utpu

tH

ave

the

abili

tyto

prod

uce

grap

hica

lout

puto

fall

mod

elva

riab

les,

orre

port

s/va

riab

les

from

anav

aila

ble

list(

see

requ

irem

ent4

.25)

asth

eych

ange

thro

ugh

time.

1V

erif

yth

atth

ein

terf

ace

has

the

func

tiona

lity

topr

oduc

ech

arts

/tabl

esof

allm

odel

vari

able

sse

lect

edby

the

user

.

4.25

Sele

ctO

utpu

tsA

llow

the

user

tose

lect

the

num

bera

ndty

peof

outp

utdi

spla

yor

char

tsfr

oman

avai

labl

elis

t.1

Ver

ify

that

the

inte

rfac

eal

low

sth

eus

erto

spec

ifyth

ety

peof

outp

ut(c

hart

s/ta

bles

)for

each

syst

emva

riab

le.

4.26

Flag

Ext

rem

eC

ondi

tions

Flag

outp

utva

riab

les

that

exce

edre

ason

able

cond

ition

s.3

Ver

ify

that

extr

eme

cond

ition

war

ning

mes

sage

sfla

gw

hen

the

mod

elha

sex

ceed

edre

ason

able

cond

ition

s.

4.27

Dri

llD

own

Cap

abili

tyPr

ovid

ehi

gh-l

evel

visu

aldi

spla

ysof

the

mod

elou

tput

that

user

sca

n“d

rill

dow

n”th

roug

hto

incr

easi

ngle

vels

ofde

tail

forc

ausa

ltra

cing

.2

Ver

ify

that

the

inte

rfac

eal

low

sla

yere

dsu

mm

ary

repo

rts

that

allo

wpr

ogre

ssiv

ely

mor

ede

taile

dsu

bre

port

s.

4.28

Tim

eSt

epC

apab

ility

Prov

ide

the

user

the

capa

bilit

yto

adju

stth

etim

elim

itsan

dtim

ein

crem

ents

soth

atus

ers

can

step

thro

ugh

time

toin

terp

rets

yste

mbe

havi

or.

2V

erif

yth

atth

ein

terf

ace

that

allo

ws

the

user

toad

just

time

para

met

ers

and

step

thro

ugh

time

and

view

the

sele

cted

outp

uts.

Page 30: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-25

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

4.29

Save

Out

putF

iles

Allo

wth

eus

erto

save

outp

utfil

esto

afil

ena

me

and

loca

tion

ofth

eir

choi

ce.

2V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

tose

lect

and

stor

esc

enar

ioou

tput

data

.

4.30

Inte

rnal

Con

sist

ency

Che

cks

Prov

ide

mod

elin

tern

alco

nsis

tenc

ych

ecks

topr

even

trun

ning

sim

ulat

ion

case

sth

atar

eno

tphy

sica

llyre

aliz

able

.2

Ver

ify

that

the

mod

elha

sbu

ilt-in

cons

iste

ncy

chec

ksto

prev

ent

unre

alis

ticco

nditi

ons.

4.31

Non

-Lin

ear

Cha

nges

InC

ost

Var

iabl

e

Prov

ide

forn

on-li

near

chan

ges

inco

stva

riab

lesu

chas

mat

eria

lssu

pply

.2

Ver

ify

that

the

mod

elha

sth

efu

nctio

nalit

yto

use

non-

linea

rfu

nctio

nsin

cost

vari

able

s.

4.32

Fuel

Ble

ndin

gPr

ovid

efo

rabi

lity

toac

com

mod

ate

fuel

blen

ding

requ

irem

ents

rela

tive

tosu

pply

and

prod

uctc

onst

rain

tass

umpt

ions

incl

udin

gre

late

din

vent

ory

requ

irem

ents

.3

Ver

ify

that

the

mod

elha

sth

efu

nctio

nalit

yto

blen

dfu

elba

sed

onsu

pply

and

prod

uctc

onst

rain

ts.

4.33

Inte

rfac

ew

ithD

PLso

ftw

are

Prov

ide

anou

tput

file

atth

een

dof

asi

mul

atio

nfr

oma

user

spec

ifie

dtim

est

epth

atca

nbe

used

bya

DPL

softw

are

prog

ram

.1

Ver

ify

that

the

mod

elpr

oduc

esan

outp

utfi

lean

dth

atth

eou

tput

file

can

bere

adby

aD

PLso

ftwar

epa

ckag

e.

4.34

Num

bero

fiso

tope

s

Mod

elm

ustb

eab

leto

trac

kup

to10

0is

otop

es.

Inea

chca

se,t

hech

emic

alel

emen

tand

the

atom

icnu

mbe

r(an

dm

eta-

stab

lest

ate

ifre

leva

nt)m

ustb

edi

ffer

entia

ted.

The

mod

elm

usta

lso

inco

rpor

ate

the

half-

life

ofea

chis

otop

eto

faci

litat

esh

iftin

gbe

twee

nm

ass

units

and

activ

ityun

its.

1V

erif

yth

em

odel

can

hand

lem

ulti-

dim

ensi

onal

arra

ysw

ithup

to10

0el

emen

tsin

adi

men

sion

4.35

On/

Off

Prov

ide

the

user

the

optio

nto

turn

on/o

ffth

eec

onom

ics

calc

ulat

ions

fora

sim

ulat

ion.

1V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

totu

rnth

eec

onom

ican

alys

ison

and

offf

ora

sim

ulat

ion.

4.36

Mis

sing

econ

omic

data

aler

tA

lert

user

sw

hen

econ

omic

orco

stda

tais

nota

vaila

ble

due

toth

esi

mul

atio

nco

nfig

urat

ion

spec

ified

byth

eus

er.

2V

erif

yth

atth

ein

terf

ace

aler

tsth

eus

erw

hen

econ

omic

data

isno

tav

aila

ble

fora

sim

ulat

ion

conf

igur

atio

n.

4.37

Mod

elC

onfig

urat

ion

Prov

ide

high

-lev

elvi

sual

disp

lays

ofth

em

odel

stru

ctur

e(m

odul

elin

ksan

dflo

wse

quen

ces)

that

user

sca

n“d

rill

dow

n”th

roug

hto

incr

easi

ngle

vels

ofde

tail.

2V

erif

yth

atth

em

odel

has

the

func

tiona

lity

todi

spla

yva

riou

sla

yers

ofde

tail

orpo

rtio

nsof

the

mod

el.

4.38

Min

imum

isot

opes

Mod

elm

ustb

eab

leto

hand

le,a

tmin

imum

,the

follo

win

gis

otop

es:

U23

5,U

238,

Np2

37,P

u238

,Pu2

39,P

u24

0,Pu

241,

Am

241.

1V

erif

yth

atth

em

odel

incl

udes

the

follo

win

gis

otop

es:U

235,

U23

8,N

p237

,Pu2

38,P

u239

,Pu

240,

Pu24

1,A

m24

1.

Page 31: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-26

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

4.39

Rep

roce

ssin

gTh

roug

hput

Allo

wus

ers

toad

just

inpu

tto

repr

oces

sing

faci

lity

asfu

nctio

nof

fuel

age

(min

imum

).A

llow

asst

rate

gies

(a)y

oung

estf

uelf

irst

.

Inei

ther

case

,als

oal

low

user

tode

term

ine/

inpu

tmin

imum

fuel

age

attim

eof

repr

oces

sing

.(d

efau

ltva

lue

is5

year

s)

2V

erif

yth

atth

ein

terf

ace

allo

ws

the

user

toad

just

repr

oces

sing

thro

ughp

utas

afu

nctio

nof

fuel

age.

4.40

Fuel

Rec

ipes

The

follo

win

gfu

elty

pes

mus

tbe

incl

uded

inth

em

odel

:

oU

OX

(33,

51,a

nd10

0bu

rnup

)o

MO

X-N

pPu,

one-

pass

oM

OX

-NpP

uAm

,mul

ti-pa

sso

MO

X-N

pPuA

mC

mo

IMF-

NpA

m,o

ne-p

ass

oIM

F-N

pPuA

m,m

ulti-

pass

oIM

F-N

pPu-

Am

targ

ets,

mul

ti-pa

sso

UO

Xto

Con

vert

erFa

stR

eact

oro

MO

X-N

pAm

,one

-pas

sto

Con

vert

erFa

stR

eact

oro

IMF-

NpA

m,o

ne-p

ass

toC

onve

rter

Fast

Rea

ctor

oU

OX

toB

reed

erFa

stR

eact

oro

MO

X-N

pAm

,one

-pas

sto

Bre

eder

Fast

Rea

ctor

oIM

F-N

pAm

,one

-pas

sto

Bre

eder

Fast

Rea

ctor

1V

erif

yth

atth

esp

ecifi

edfu

elty

pes

are

incl

uded

inth

em

odel

.

4.41

Rea

ctor

type

s

The

follo

win

gre

acto

rtyp

esm

ustb

ein

clud

edin

the

mod

el:

oTh

erm

alR

eact

or-l

ight

wat

ero

Fast

Rea

ctor

–co

nver

tera

ndbr

eede

ro

Ther

mal

Rea

ctor

–ve

ryhi

ghte

mpe

ratu

re

1V

erif

yth

atth

esp

ecifi

edre

acto

rtyp

esar

ein

clud

edin

the

mod

el.

4.42

Def

ined

Ene

rgy

Out

look

s

The

follo

win

gen

ergy

dem

and

scen

ario

sfo

rthe

U.S

.sha

llbe

incl

uded

:-0

%an

nual

grow

thra

tein

nucl

eare

nerg

yde

man

d-1

.8%

annu

algr

owth

rate

innu

clea

rene

rgy

dem

and

-3.2

%an

nual

grow

thra

tein

nucl

eare

nerg

yde

man

d

1V

erif

yth

atth

ede

fined

ener

gyou

tlook

sar

eav

aila

ble

fort

heus

erto

sele

ct.

Page 32: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-27

-

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

4.43

Unl

imite

dC

apac

ity

Exc

eptf

orth

ere

acto

rmod

ules

,all

mod

ules

mus

tbe

able

toru

nw

ith"u

nlim

ited

capa

city

"th

roug

hput

,tha

tis,

subj

ecto

nly

toth

ede

man

dfr

omth

enu

mbe

rofr

eact

ors,

allo

ther

part

sof

the

syst

emar

eun

cons

trai

ned.

Suff

icie

ntur

aniu

mis

min

ed,s

uffic

ient

fuel

isre

cycl

ed,s

uffic

ient

fuel

isfa

bric

ated

,etc

.to

keep

the

spec

ified

num

ber

ofre

acto

rsop

erat

ing.

"Unl

imite

d"flo

wca

nim

ply

com

mod

ityco

stin

g,i.e

.,an

impl

icit

assu

mpt

ion

that

wha

teve

ris

need

edw

illbe

able

tobe

purc

hase

d.

1

Ver

ify

mod

ules

inm

odel

can

beru

nin

anun

cons

trai

ned

(sub

ject

only

toth

ede

man

dfr

omth

enu

mbe

rofr

eact

ors,

i.e.s

uffic

ient

uran

ium

ism

ined

,suf

ficie

ntfu

elis

recy

cled

,suf

ficie

ntfu

elis

fabr

icat

ed,e

tc.)

thro

ughp

utm

ode.

4.44

Lim

ited

Cap

acity

Mus

tals

obe

poss

ible

toru

nm

any

ofth

em

odul

esw

ith“l

imite

dca

paci

ty”

thro

ughp

ut,t

hati

s,th

eth

roug

hput

isco

ntro

lled

byth

eex

iste

nce

(orl

ack

ther

eof)

ofa

disc

rete

num

bero

ffac

ilitie

spr

ovid

ing

agi

ven

func

tion.

“Lim

ited

capa

city

”flo

ww

illge

nera

llyim

ply

cost

ing

onth

eba

sis

ofdi

scre

tepl

ants

.R

eact

orm

odul

esar

eal

way

sru

nin

“lim

ited

capa

city

”m

ode.

Atm

inim

um,f

uelf

abri

catio

nan

dfu

else

para

tion

mus

tbe

able

tobe

run

in“l

imite

dca

paci

ty”

mod

e;ot

hers

will

bede

fined

late

r.Th

elim

ited

capa

city

fora

give

nm

odul

eca

nbe

spec

ified

inon

eof

two

way

s–

user

orau

tom

ated

ora

mix

ture

ther

eof.

•Use

r-de

fined

limite

dca

paci

tym

eans

the

user

mus

tdef

ine

the

num

bero

fpla

nts

with

spec

ified

capa

city

,fac

ility

lifet

ime,

and

faci

lity

capa

city

fact

or.

•Aut

omat

edlim

ited

capa

city

mea

nsth

atth

em

odel

will

defin

eth

ere

leva

ntpa

ram

eter

s.

1

Ver

ify

mod

ules

inm

odel

can

beru

nin

aco

nstr

aine

d(s

ubje

ctto

defin

edca

paci

tyof

disc

rete

faci

litie

ssu

chas

repr

oces

sing

orm

inin

g)th

roug

hput

mod

e.V

erif

yth

eco

nstr

aint

sca

nbe

user

defin

edor

setb

ym

odel

defa

ults

ettin

gs.

Page 33: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-28

-

Har

dwar

e/S

oftw

are

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

5.1

Com

pute

rTh

em

odel

shou

ldru

non

ast

anda

lone

desk

top

PCor

lapt

opco

mpu

ter

usin

gcu

rren

ttec

hnol

ogy

and

runn

ing

the

MS

Win

dow

sX

Pop

erat

ing

syst

em.

1V

erif

yth

atth

em

odel

runs

onde

skto

psy

stem

s/la

ptop

sus

ing

Win

dow

sop

erat

ing

syst

ems.

5.2

Softw

are

The

mod

elsh

ould

bede

velo

ped

usin

gof

f-th

esh

elfc

omm

erci

also

ftw

are.

1V

erif

yth

atth

eso

ftwar

eus

edto

build

the

mod

elis

com

mer

cial

lyav

aila

ble.

5.3

Tran

spar

ent

Arc

hite

ctur

e

The

mod

elsh

ould

bein

open

sour

ceso

that

anal

ysts

,Sys

tem

sE

ngin

eers

and

proj

ectm

odel

ers

can

mod

ify

the

stru

ctur

ean

dca

lcul

atio

nsw

ithin

the

mod

el.

This

feat

ure

isav

aila

ble

foro

nly

mem

bers

ofth

eA

FCIp

rogr

am.

1V

erif

yth

atth

em

odel

can

bepr

ovid

edto

othe

ruse

rsin

two

mod

es:

one

whe

reth

em

odel

equa

tions

are

acce

ssib

lean

da

seco

ndw

here

the

mod

eleq

uatio

nsca

nbe

view

edbu

tnot

edite

d.

5.4

Non

-Pro

prie

tary

The

mod

elsh

ould

beno

n-pr

opri

etar

y.1

Ver

ify

that

the

soft

war

eha

sno

prop

riet

ary

requ

irem

ents

.

5.5

Dis

trib

utio

nTh

em

odel

shou

ldbe

dist

ribu

ted

ata

min

imal

char

geto

user

s.3

Ver

ify

that

the

softw

are

has

am

inim

alor

noch

arge

ford

istr

ibut

ion.

5.6

Num

bero

fch

arac

ters

No

limit

onnu

mbe

rofc

hara

cter

sin

equa

tion

edito

r.1

Ver

ify

the

mod

elha

sno

limit

onnu

mbe

rofc

hara

cter

sin

equa

tion

edito

r.

5.7

Num

bero

farr

ayel

emen

tsPr

ovid

eca

pabi

lity

foru

pto

500,

000

elem

ents

inan

arra

yw

ithat

leas

t3

dim

ensi

ons

inan

arra

y.1

Ver

ify

the

mod

elha

sca

pabi

lity

foru

pto

500,

000

elem

ents

inan

arra

yw

ithat

leas

t4di

men

sion

sin

anar

ray

5.8

Num

bero

fmod

elel

emen

tsA

ble

toac

com

mod

ate

upto

64,0

00el

emen

tsin

the

mod

el.

1V

erif

yth

em

odel

isba

sed

ona

64bi

torl

arge

rpla

tform

5.9

Lock

edve

rsio

nPr

ovid

ea

lock

ed(e

xecu

tabl

eon

ly)v

ersi

onof

the

mod

elfo

rany

indi

vidu

als

outs

ide

Use

rGro

up1.

1V

erif

yth

ata

lock

edve

rsio

nof

the

mod

elca

nbe

dist

ribut

edan

dth

ata

user

can

notu

nloc

kth

em

odel

orac

cess

the

sour

ceco

de.

5.10

Con

figur

atio

nC

ontro

lD

evel

opan

dim

plem

enta

Soft

war

eM

anag

emen

tPla

nth

atin

clud

esa

conf

igur

atio

nco

ntro

lpro

cess

foro

ffic

ialm

odel

rele

ases

.1

Prep

are

aSo

ftwar

eM

anag

emen

tPla

nan

da

Con

figur

atio

nC

ontro

lPl

anbe

fore

mod

elin

gw

ork

begi

ns.

Page 34: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

-29

-

Con

stra

ints

No.

Nam

e D

escr

ipti

on:

Pri

orit

yA

ccep

tanc

e C

rite

ria:

6.1

Con

stra

ints

from

Adv

ance

dF

uel

Cyc

leC

ostB

asis

The

mod

el's

defa

ulta

ndun

cert

aint

yra

nges

will

beco

nsis

tent

with

the

curr

enta

ssum

ptio

nsan

dfo

rmul

as(e

.g.,

unit

cons

iste

ncy,

code

ofac

coun

ts,U

.S.D

olla

ras

the

mon

etar

yst

anda

rd,b

ase

year

fora

llca

lcul

atio

ns,e

tc.)

asde

fined

inth

ecu

rren

tAFC

Cos

tBas

is.

Mod

elco

nstr

aint

sw

illbe

upda

ted

asth

eA

dvan

ced

Fuel

Cyc

leC

ostB

asis

isup

date

d.

1V

erif

yth

atde

faul

tsfo

rinp

uts

and

unce

rtai

nty

rang

esar

eba

sed

ongo

odas

sum

ptio

ns,f

orm

ulas

and

refe

renc

eda

ta.

6.2

Cos

tDat

aU

sese

lect

edco

stda

ta(e

.g.t

hesu

nk,o

pera

tions

and

build

upco

sts

ofre

posi

tory

)dev

elop

edby

RW

.2

Con

firm

that

the

mod

elha

sth

eca

pabi

lity

tose

lect

RW

’sC

ostd

ata.

6.3

YM

PC

onsi

sten

cyPr

esen

tout

putu

nits

cons

iste

ntw

ithth

eY

MP

econ

omic

anal

ysis

soth

enu

mbe

rsca

nbe

com

pare

d.2

Con

firm

that

the

outp

utun

itsar

eco

nsis

tent

with

YM

Pec

onom

ican

alys

isso

that

cros

sco

mpa

riso

nsca

nbe

mad

eea

sily

.

6.4

Tim

eSt

epH

ave

am

inim

umtim

eun

itof

one

mon

than

da

max

imum

time

unit

ofon

eye

ar.

1C

onfir

mth

atth

em

odel

runs

with

atim

est

epof

am

inim

umof

one

mon

than

da

max

imum

ofon

eye

ar.

6.5

Stoc

hast

icPr

ovid

efo

rsto

chas

ticin

puts

fors

elec

ted

vari

able

s.2

Con

firm

that

the

mod

elin

terf

ace

has

the

func

tiona

lity

toal

low

the

mod

elto

use

stoc

hast

icin

puts

fors

elec

ted

vari

able

s.

6.6

Uni

tsA

llun

itsre

port

byth

em

odel

atth

een

dof

asi

mul

atio

nw

illbe

inK

ilogr

ams

(Kg)

.1

Ver

ify

the

mod

elw

illpr

ovid

em

ass

outp

utin

Kilo

gram

s(K

g).

Page 35: Verifiable Fuel Cycle Simulation (VISION) Model/67531/metadc... · VISION should simulate distinct fuel cycle activities, called modules, which represent the various front-end fuel

- 30 -

Software QualityThe model identified in this SRS has been evaluated in accordance with the SoftwareManagement procedures of the INL (MCP-550). Based on that evaluation the VISION isclassified as a “Level D” or “Deferrable” software application. The application does notmeet the criteria specified for a higher classification level. Data in the deferrable class, iflost, can affect individual performance, but would not affect INL mission success.Applications in this class have no requirement to be back on-line within a specifiedperiod of time.

Quality DocumentationSoftware classified at a level D requires a minimal Software Management Plan (SMP) becompleted. The following documents will be prepared for this model:

A. Software Management Plan (SMP), which will include:• Software Quality Assurance Plan (SQAP)• Software Configuration Management Plan (SCMP)

B. Software Requirements Specification (SRS)C. Software Platform EvaluationD. Planning and Design Basis (sometimes called a Design description for software or

DDS)E. User documentation

Optional software application documentation that may include a requirements traceabilitymatrix (RTM).

Performance TestingPerformance testing will be in accordance with the software quality assurance plan andthe software test plan. Presentations and publications for external communication usingdata or results from VISION will require peer review before submittal.

Verification and ValidationVerification and validation refers to the process of determining whether the requirementsfor a system or component are complete and correct, the products of each developmentphase fulfill the requirements or conditions imposed by the previous phase, and the finalsystem or component complies with specified requirements. Verification evaluates thesystem or component to determine if it satisfies specified requirements. Validationevaluates the system or component for proof of correctness.

Reference DocumentsShropshire, D.E., K.A. Williams, W.B. Boore, J.D. Smith, B.W. Dixon, M. Dunzik-Gougar, R.D. Adams. 2005. 2005 Advanced Fuel Cycle Cost Basis. Idaho NationalEngineering and Environmental Laboratory, Idaho Falls, Idaho 83415. INEEL/EXT-04-02282 Draft Rev A.