24
Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze Jr. University of Washington 37 th Conference on Radar Meteorology 14 th September 2015 Embassy Suites Hotel and Conference Center, Norman, OK Funded by NSF Grant AGS-1355 and DOE Grant DE-SC0008452

Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Embed Size (px)

Citation preview

Page 1: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Validation of the Simulated Microphysical Structure within the

Midlevel Inflow Region of a Tropical, Oceanic Squall Line

Hannah C. Barnes, Robert A. Houze Jr.University of Washington

37th Conference on Radar Meteorology14th September 2015

Embassy Suites Hotel and Conference Center, Norman, OK

Funded by NSF Grant AGS-1355 and DOE Grant DE-SC0008452

Page 2: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Microphysical Structure of Squall Lines

Observation and validation difficult

Observation / Validation

Method

Aircraft Observations

Particle ID (PID) from dual-polarimetric radar

Numerical Simulations

Advantages • In situ• Large spatial coverage

• Increased temporal coverage

• Complete spatial coverage

• Complete temporal coverage

• All processes

Disadvantages

• Spatially limited

• Temporally

limited

• Difficult to validate

• Theory & observation based

• Limited by radar quality

• Dominant only

• Difficult to validate

• Theory based

• Parameterizations

• Different schemes

Objective: Is microphysical structure from PID and WRF consistent with each other and dynamics?

Page 3: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Milbrandt - Yau Morrison WDM6S-PolKa

Microphysical Structure Intercomparison

• Microphysical structure linked to dynamical structure

• Intercomparison framed around midlevel inflow

• PID Analysis (Barnes and Houze, 2014)• Midlevel inflow from radial velocity• Composite around midlevel inflow

• Numerical Simulations• Assimilate radial velocity • Composite around “forced” midlevel inflow

Distance from S-PolKa (km)

Horizontal Wind Speed

He

igh

t (k

m)

Radial Velocity

Page 4: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

PID Microphysical Analysis

• NCAR S-PolKa during DYNAMO / AMIE (Vivekanandan 1999)

– Nov 2011 – Jan 2012– Central Indian Ocean

• 9 hydrometeor types – Uses dual-polarimetric and sounding data– Thresholds based on previous studies,

theory, field experience– Dominant type only

• Frozen hydrometeors represent microphysical processes

• Spatially composited around midlevel inflow– Layered structure

Barnes and Houze, 2014

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.04

0.08

0.12

0.16

0.2

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.1

0.3

0.5

0.7

0.9

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.2

0.4

0.6

0.8

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.1

0.2

0.3

0.4

0.5

No

rma

lize

d H

eig

ht

Normalized Range

Small Ice Crystals

=

Deposition

Dry Aggregates

=

Aggregation

Graupel / Rimed Aggregates

=

Riming

Wet Aggregates

=

Melting

Midlevel Inflow Spatial Composites

Page 5: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

WRF Data Assimilation

• Group production terms by process

• All processes

• Provides rate (kg kg-1 s-1)

• Composite members containing midlevel inflow

Simulation Time 23 Dec 20111200 - 2000 UTC

Assimilation Time Every 15 mins starting at 1800 UTC

Initialization ERA-Interim

Vertical Levels 39, Top at 26 km

Domains 3 km, 1 km

Members 50

Assimilate S-PolKa radial velocity

Planetary Boundary Layer Parameterization

Bretherton and Park (UW)

Longwave Radiation Parameterization

RRTM

Shortwave Radiation Parameterization

Dudhia

Surface Layer Parameterization

Monin-Obikhov

Microphysics Parameterization

• Milbrandt – Yau• Morrison• WDM6

Penn State University EnKF / WRF

Long

itude

Latitude

0

6

-3

3

9

-668 72 76 80

Domain 1 (3 km)

Domain 2 (1 km)

S-PolKa

S-PolKa and WRF Domains

Page 6: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Squall Line1930 UTC, 23 December 2011

Page 7: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Milbrandt - Yau Morrison WDM6

PPI Maximum Reflectivity

S-PolKa

Squall Line Structure

RHI Wind Speed (along red line above)

Hei

ght (

km)

Normalized Zonal Distance

Distance from S-PolKa (km)Distance from S-PolKa (km)

Distance from S-PolKa (km)

Hei

ght (

km)

Dis

tanc

e fr

om S

-Pol

Ka

(km

)

Dis

tanc

e fr

om S

-Pol

Ka

16

14

12

10

8

6

4

2

00 25 50 75 100 125 150

100

75

50

25

0

-25 50 75 100 125 150-75

-50

-25

250

Page 8: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Microphysical Intercomparison

Only compare location

Page 9: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mean Production Rate (kg kg-1 s-1)

Adj

uste

d H

eigh

tA

djus

ted

Hei

ght

Normalized Zonal Distance

S-PolKa PID

Nor

mal

ized

He

igh

t

Deposition

3.1e-6

4.4e-8

3.7e-7

5.2e-9

Normalized Range

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.1

0.2

0.3

0.4

0.5

Small Ice Crystals = Deposition

-20°C

0°C

-20°C

0°C

-20°C

0°C

Page 10: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mean Production Rate (kg kg-1 s-1)

Adj

uste

d H

eigh

tA

djus

ted

Hei

ght

Normalized Zonal Distance

1.3e-5

1.3e-16

4.2e-11

4.3e-22

AggregationFrozen Collecting Frozen

S-PolKa PID

Nor

mal

ized

Hei

ght

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.1

0.3

0.5

0.7

0.9

Normalized Range

Dry Aggregates = Aggregation

-20°C

0°C

-20°C

0°C

-20°C

0°C

Page 11: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mean Production Rate (kg kg-1 s-1)

Adj

uste

d H

eigh

tA

djus

ted

Hei

ght

Normalized Zonal Distance

S-PolKa PID

Nor

mal

ized

Hei

ght

1e-4

3.4e-10

1.8e-7

6.3e-13

RimingFrozen Collecting Liquid

Normalized Range

0

-2

-1

1

3

2

4

0 10.750.25 0.5

0.04

0.08

0.12

0.16

0.2

Graupel/Rimed Aggregates = Riming

-20°C

0°C

-20°C

0°C

-20°C

0°C

Page 12: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mean Production Rate (kg kg-1 s-1)

Adj

uste

d H

eigh

t A

djus

ted

Hei

ght

Normalized Zonal Distance

S-PolKa PID

Nor

mal

ized

Hei

ght

Melting

Normalized Range

0

-2

--1

1

3

2

4

0 10.750.25 0.5

0.2

0.4

0.6

0.8

Wet Aggregates = Melting

9.6e-5

2.8e-8

1.6e-6

4.9e-10

-20°C

0°C

-20°C

0°C

-20°C

0°C

Page 13: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Conclusions

• PID and WRF provide good spatial and temporal coverage of microphysical structure

– Both difficult to validate– Do they provide complementary data?

• Is microphysical structure consistent with dynamical structure and other method?

– Framed around midlevel inflow – General structure consistent

• Layered – Details differ

• Aggregation and riming - WRF deeper• Melting – Consistent except Milbrandt-Yau• Deposition – WRF extends lower

Page 14: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Back UpSlides

Page 15: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

1900 UTC 23 Dec 2011

Z Scale FactorX Scale Factor

1.) Map kinematics and hydrometeors using radial velocity and PID

2.) Composite around layer lifting model

Methodology: Compositing

16

14

12

10

8

6

4

2

00 20 40 60 80 100

0

5

10

15

20

-5

-10

-15

-20

m/sRadial Velocity

Distance from S-Polka (km)

He

igh

t (k

m)

Generic Midlevel InflowParticle ID

SIC

HIC

WA

DA

G/R

G/RA

LR

MR

HR

H/R

H

Page 16: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Wet Aggregates

Nor

mal

ized

Hei

ght

Normalized Range

Methodology: Composite Results

-1

-0.5

0

0.5

1

1.5

2

-0.25 0 0.25 0.5 0.75 1 1.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Page 17: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

20

15

10

5

00

2

4

6

8

10

12

14

16

73 73.5 74.574Longitude

Hei

ght (

kn)

Shading: Horz. SpeedWhite Contours: Reflectivity

m/s

Midlevel Inflow Member Selection

Shading: Horz. SpeedWhite Contours: ReflectivityBlack Contours: Horz. Speed > 18 m/s

Shading: Horz. SpeedWhite Contours: ReflectivityBlack Contours: Horz. Speed > 18 m/sDots: Max Speed at level

Milbrandt - Yau: Member 17 1930 UTC 23 Dec 2011

Shading: Horz. SpeedWhite Contours: ReflectivityBlack Contours: Horz. Speed > 18 m/sDots: Max Speed at level post tests

Page 18: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Midlevel Inflow Compositing

Milbrandt - Yau: Member 17 1930 UTC 23 Dec 2011

Hei

ght (

km)

Shading: ReflectivityBlack Contours: Horz. Speed > 18 m/sDots: Max speed at level post testRed Lines: Analysis boundaries

073 73.5 74.574

Longitude

2

4

6

8

10

12

14

16 50

45

40

35

30

25

20

15

10

5

0

dBZ

Shading: ReflectivityBlack Contours: Horz. Speed > 18 m/s

Scaled

Hei

ght (

km)

073 73.5 74.574

Longitude

2

4

6

8

10

12

14

16 50

45

40

35

30

25

20

15

10

5

0

dBZ

Original

Page 19: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Definition

Ice Nucleation Aggregation Riming Melting Deposition Sublimation

Raindrop Collection

Condensation Evaporation

New frozen hydrometeors

forming

Frozen hydrometeors

collecting other frozen

hydrometeors

Frozen hydrometeors

collecting liquid hydrometeors

Frozen hydrometeors melting into

liquid hydrometeors

Frozen hydrometeors

collecting water vapor

Frozen hydrometeors losing mass

to water vapor

Liquid hydrometeors

collecting liquid or frozen

hydrometeors

Liquid hydrometeors

collecting water vapor

Liquid hydrometeors losing mass

to water vapor

Milbrandt - Yau - Yau

QFZci, QNUvi, QFZrh

QCLis, QCLig, QCLsh, QCNis, QCNsg,

QCNgh, QCLih

QCLcs, QCLcg, QCLch,

QCLrg, QCLrs, QCLri, QCLrh

QMLir, QMLsr, QMLgr, QMLhr

QVDvi, QVDvs, QVDvh, QVDvg

QVDvi, QVDvs, QVDvh, QVDvg

RCAUTR, RCACCR,

QCLsr, QCLgr

  QREVP

Morrisonmnuccd, mnuccr, mnuccc

prai, prci

psacws, pgracs, psacwi, psacwg,

pgsacw, psacr, pracg, pracis, praci, piacrs

psmlt, pgmlt prd, prdg, prds eprdg, eprds, eprd

piacr, pra, prcpre, pcc,

evpmg, evpms

pre, pcc, evpmg, evpms

WDM6 PigenPsaci, Pgaci, Psaut, Pgacs,

Pgaut

Psacw, Pgacw, Paacw, Piacr, Psacr, Pgacr,

Pracs

Psmlt, PgmltPidep, Psdep,

PgdepPidep, Psdep,

Pgdep

Praut, Pracw, Praci, Pseml,

PgemlPcond

Prevp, Psevp, Pgevp

Microphysical Process Definitions

Page 20: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Radial Velocity Preparation1. Radar Quality Control

• Locations were PID present only

• PID used to remove

• Biological

• 2nd trip

• Saturation

• Remove pixels with:

• Low signal-to-noise ratio

• Clutter

• High spectral Width

2. Super-Observations

• Bins: 2° x 1 km

• Quality control: < |45 ms-1|

• Rules:

• < 2 obs in each bin

• Remove all Obs

• std(bin) > std(all)

• Remove all obs

• (obs – bin mean) > 2*std(bin)

• Remove obs at fault

• Median value

Distance from S-PolKa (km)

Dis

tanc

e fr

om S

-Pol

Ka

(km

) 100

-100

150

-150

50

-50

0

100-100 15050-50 0

Raw Radial Velocity

100

-100

150

-150

50

-50

0

100-100 15050-50 0

QCed Radial Velocity

100

-100

150

-150

50

-50

0

100-100 15050-50 0

SuperObs Radial Velocity

21

-21

-15

15

-9

9

3

-3

00 UTC 24 Dec 2011: 5°

Page 21: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Large Scale EnvironmentalMilbrandt - Yau Morrison WDM6

Mean Temperature Map at 1000 hPa

Dis

tan

ce f

rom

S

-Plo

Ka

(km

)

Normalized Zonal Distance

Composite Relative Humidity Cross Section with Temperature Contours

He

igh

t (k

m)

Composite Vertical Velocity Cross Section with Temperature Contours

He

igh

t (k

m)

Normalized Zonal Distance

0°C-5°C

-20°C

-40°C

0°C-5°C

-20°C

-40°C

0°C-5°C

-20°C

-40°C

0°C-5°C

-20°C

-40°C

0°C-5°C

-20°C

-40°C

0°C-5°C-20°C

-40°C

°

Page 22: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Graupel

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mixing Ratio (kg kg-1 )

He

igh

t (k

m)

He

igh

t (k

m)

Normalized Zonal Distance

5e-3

5.9e-6

1e-6

2e-7

Page 23: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Ice

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mixing Ratio (kg kg-1)

He

igh

t (k

m)

He

igh

t (k

m)

Normalized Zonal Distance

9e-4

2.2e-6

4.6e-5

1e-7

Page 24: Validation of the Simulated Microphysical Structure within the Midlevel Inflow Region of a Tropical, Oceanic Squall Line Hannah C. Barnes, Robert A. Houze

Snow

Milbrandt - Yau Morrison WDM6

Occurrence Frequency

Mixing Ratio (kg kg-1)

He

igh

t (k

m)

He

igh

t (k

m)

Normalized Zonal Distance

1e-3

3.2e-6

8e-5

1.3e-7