105
From Math 2220 Class 38 V1 Div and Curl Stokes and Gauss Why Green’s and Gauss’ Conservative Vector Fields Systematic Method of Finding a Potential dTheta Integral Theorem Problems Surface of Revolution Case Graph Case From Math 2220 Class 38 Dr. Allen Back Nov. 24, 2014

V1 Div and Curl Gauss From Math 2220 Class 38back/m222_f14/slides/nov24_v1.pdf · From Math 2220 Class 38 V1 Div and Curl Stokes and Gauss Why Green’s and Gauss’ Conservative

  • Upload
    ngolien

  • View
    220

  • Download
    2

Embed Size (px)

Citation preview

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

From Math 2220 Class 38

Dr. Allen Back

Nov. 24, 2014

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

We will discuss the meaning of these when we get to the 3dintegral theorems (8.2 and 8.4.)For a vector field ~F (x , y , z) = (P,Q,R)

div(~F ) is a (scalar) function; i.e. a number at each point.

curl(~F ) is another vector field; i.e. a vector at each point.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

div(~F ) = Px + Qy + Rz

for ~F (x , y , z) = (P,Q,R).

(∇ · ~F ).

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

curl(~F ) =

i j k∂∂x

∂∂y

∂∂z

P Q R

for ~F (x , y , z) = (P,Q,R).

(∇× ~F ).

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

Please take a look at the table of vector analysis identities onpage 255.Many are just the 1-variable product or chain rules.

1 ∇(fg)

2 div(f ~F )

3 curl(f ~F )

4 curl(~G × ~F ) would be more complicated.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

(There is a more complicated identity

~a× (~b × ~c) = (~a · ~c)~b − (~a · ~b)~c

useful in E & M, but the related curl identity (useful in someproofs of Stokes’ theorem is tricky to get right.)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

Other very important ones are

1 div(curl~F ) = 0.

2 curl(∇f ) = 0.

(for C 2 functions and vector fields.) They all are consequencesof

fxy = fyx

for such functions.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Div and Curl

Problem: Let ~r = (x , y , z), and so r = ‖~r‖ =√

x2 + y2 + z2.Show that a vector field of the form

f (r)~r

satisfies ∇× ~F = 0.(In physics, this is called a central force field.)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Integration of a conservative vector field cartoon.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Green’s Theorem cartoon.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Stokes’ Theorem cartoon.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Both sides of Stokes involve integrals whose signs depend onthe orientation, so to have a chance at being true, there needsto be some compatibility between the choices.

The rule is that, from the “positive” side of the surface, (i.e.the side chosen by the orientation), the positive direction of thecurve has the inside of the surface to the left.

As with all orientations, this can be expressed in terms of thesign of some determinant. (Or in many cases in terms of thesign of some combination of dot and cross products.)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Problem: Let S be the portion of the unit spherex2 + y2 + z2 = 1 with z ≥ 0. Orient the hemisphere with anupward unit normal. Let ~F (x , y , z) = (y ,−x , ez2

). Calculatethe value of the surface integral∫∫

S∇× ~F · n dS .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Gauss’ Theorem field cartoon.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

The surface integral side of Gauss depends on the orientation,so there needs to be a choice making the theorem true.

The rule is that the normal to the surface should point outwardfrom the inside of the region.

(For the 2d analogue of Gauss (really an application of Green’s)∫C~F · n =

∫∫inside

(Px + Qy ) dx dy

we also use an outward normal, where here C must of course bea closed curve.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Stokes and Gauss

Problem: Let W be the solid cylinder x2 + y2 ≤ 3 with1 ≤ z ≤ 5. Let ~F (x , y , z) = (x , y , z). Find the value of thesurface integral ∫∫

∂W~F · n dS .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

Green’s theorem says that for simple closed (piecewise smooth)curve C whose inside is a region R, we have∫

CP(x , y) dx + Q(x , y) dy =

∫∫R

∂Q

∂x− ∂P

∂ydx dy

as long as the vector field ~F (x , y) = (P(x , y),Q(x , y)) is C 1

on the set R and C is given its usual “inside to the left”orientation.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

For a y -simple region∫∫R−Py dy dx =

∫C=∂R

P dx .

is fairly easily justified.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

For an x-simple region∫∫R

Qx dx dy =

∫C=∂R

Q dy .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

So for a region that is both y -simple and x-simple we haveGreen:∫

∂RP(x , y) dx + Q(x , y) dy =

∫∫R

Qy − Px dx dy .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

Intuitively, why the different signs? +Qx yet −Py .And why this combination of Qx − Py ?

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

Intuitively, why the different signs? +Qx yet −Py .And why this combination of Qx − Py ?

Think about the line integral around a small rectangle withsides ∆x and ∆y .

If you assume (or justify) that evaluating the vector field in themiddle of each edge gives a good approximation in the lineintegral, then Qx − Py emerges quite naturally.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

If you can cut a region into two pieces where we know Green’sholds on each piece (e.g. a ring shaped region), then Greenalso holds for the entire region. (Because the line integrals overthe “cuts” show up twice with opposite signs (think “inside tothe left”) and cancel.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

So in the end, Green’s theorem holds for regions whoseboundaries include several closed curves (multiply-connectedregions) as long as we orient each boundary curve according tothe inside to the left rule.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

For what might be called a z-simple region W,

g(x , y) ≤ z ≤ h(x , y) with (x , y) ∈ D ⊂ R2

a very similar argument shows that∫∫∂W

(0, 0,R) · n dS =

∫∫∫W

Rz dz dx dy

as Gauss says about the z-part of any C 1 vector field.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

As with Green, the other components can be handled similarlyfor appropriately shaped elementary regions.If you can cut a region into two pieces where we know Gaussholds on each piece (e.g. a doughnut shaped region), thenGauss also holds for the entire region.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

While the proof of Stokes’ shares many elements with theproofs of Green’s and Gauss’, the best “classical style” proof ofStokes’ involves using a parametrization to reduce Stokes’ toGreen’s in the parameterizing (i.e. uv plane)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why Green’s and Gauss’

The differential forms point of view introduced in section 8.5makes all these theorems one theorem, usually called Stokes’,and the proof becomes a combination of more advanced linearalgebra constructions (differential forms) together with the onevariable Fundamental Theorem of Calculus.Time permitting, we’ll talk a bit about this on Monday.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

A vector field ~F (x , y , z) which can be written as

~F = ∇f

is called conservative. We already know∫C~F · d~s = 0

for any closed curve.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

The origin of the term is physics (I think) where in the case of~F a force, it does no work (and so saps/adds no energy) as aparticle traverses the closed curve.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

A vector field ~F (x , y , z) which can be written as

~F = ∇f

is called conservative. We already know∫C~F · d~s = 0

for any closed curve.In physics, the convention is to choose φ so that

~F = −∇φ

and φ is referred to as the potential energy.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

Conservation of energy (in e.g mechanics) becomes a theoremin multivariable calculus combining the definition of a flow linewith the computation of a line integral.Newton’s 2nd law (~F = m~a and other versions) is also key . . . .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

The concept of voltage arises here too; it is just a potentialenergy per unit charge.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

The theorem (vector identity) curl(∇f ) = 0 means the

curl(~F ) = 0

is a necessary condition for the existence of a function fsatisfying

∇f = ~F .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

It turns out that for vector fields defined on e.g. all of R2 orR3, the converse of the theorem curl(∇f ) = 0 is true. (For R2,we’re thinking of the scalar curl.)In other words, in such a case, if curl(~F ) = 0, (for a C 1 vectorfield), there is guaranteed to be a function f (x , y , z) such that

∇f = ~F .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

While this hold for vector fields with domains R2, R3, or moregenerally any “simply connected” region, the example dθ belowshows this converse does not hold in general.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Conservative Vector Fields

Time permitting, we’ll talk about simple connectivity nextweek.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Systematic Method of Finding a Potential

Finding a potential by inspection is fine when you can, but it isnot systematic.I often ask on a final exams for this.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Systematic Method of Finding a Potential

Problem: Use a systematic method to find a function f (x , y , z)for which

∇f = (2xy , x2 + z2, 2yz + 1).

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Systematic Method of Finding a Potential

Problem: Use a systematic method to find a function f (x , y , z)for which

∇f = (y2zexyz +1

y, (1 + xyz)exyz − x

y2,

−(cos2 (xyz))ez + xy2exyx − ez sin2 (xyz)).

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

∫C−y dx + x dy

for C the unit circle traversed counterclockwise.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

∫C

x dx + y dy

for C the unit circle traversed counterclockwise.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

∫C

−y dx + x dy

x2 + y2

is still nonzero for C a circle of radius R centered at the origintraversed counterclockwise.

This is remarkable since

∇ tan−1 y

x=

1

x2 + y2(−y , x)) .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Why does this not contradict∫C ∇f · d~s = 0 for a closed curve

(i.e. start=end) C ?

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Integral Theorem Problems

12

∫C x dy − y dx for C the boundary of the ellipse

x2

32+

y2

42= 1

oriented counterclockwise.Problem: Find ∫∫

S~F · n dS

for ~F (x , y , z) = (0, yz , z2) and S the portion of the cylindery2 + z2 = 1 with 0 ≤ x ≤ 1, z ≥ 0, and the positiveorientation chosen to be a radial outward (from the axis of thecylinder) normal.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Integral Theorem Problems

Let~F =

1

x2 + y2(−y , x).

If C1 and C2 are two simple closed curves enclosing the origin(and oriented with the usual inside to the left), can you saywhether one of

∫C1

~F · d~s and∫C2

~F · d~s is bigger than theother?

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface of Revolution Case

This is not worth memorizing!If one rotates about the z-axis the path (curve) z = f (x) in thexz-plane for 0 ≤ a ≤ x ≤ b, one obtains a surface of revolutionwith a parametrization

Φ(u, v) = (u cos v , u sin v , f (u))

and dS =?

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface of Revolution Case

dS = u√

1 + (f ′(u))2 du dv .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Graph Case

This is not worth memorizing!For the graph parametrization of z = f (x , y),

Φ(u, v) = (u, v , f (u, v))

and dS =?

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Graph Case

dS =√

1 + f 2u + f 2

v du dv .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Graph Case

For such a graph, the normal to the surface at a point(x , y , f (x , y)) (this is the level set z − f (x , y) = 0) is

(−fx ,−fy , 1)

so we can see that

cos γ =1√

1 + f 2x + f 2

y

determines the angle γ of the normal with the z-axis.And so at the point (u, v , f (u, v)) on a graph,

dS =1

cos γdu dv .

(Note that du dv is essentially the same as dx dy here.)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Picture of ~Tu, ~Tv for a Lat/Long Param. of the Sphere.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Basic Parametrization Picture

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Parametrization Φ(u, v) = (x(u, v), y(u, v), z(u, v))

Tangents Tu = (xu, yu, zu) Tv = (xv , yv , zv )

Area Element dS = ‖~Tu × ~Tv‖ du dv

Normal ~N = ~Tu × ~Tv

Unit normal n = ±~Tu × ~Tv |‖~Tu × ~Tv‖

(Choosing the ± sign corresponds to an orientation of thesurface.)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Two Kinds of Surface Integrals

Surface Integral of a scalar function f (x , y , z) :∫∫S

f (x , y , z) dS

Surface Integral of a vector field ~F (x , y , z) :∫∫S~F (x , y , z) · n dS .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Surface Integral of a scalar function f (x , y , z) calculated by∫∫S

f (x , y , z) dS =

∫∫D

f (Φ(u, v)) ‖~Tu × ~Tv‖ du dv

where D is the domain of the parametrization Φ.Surface Integral of a vector field ~F (x , y , z) calculated by∫∫

S~F (x , y , z) · n dS

= ±∫∫D~F (Φ(u, v)) ·

(~Tu × ~Tv |‖~Tu × ~Tv‖

)‖~Tu × ~Tv‖ du dv

where D is the domain of the parametrization Φ.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

3d Flux Picture

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

The preceding picture can be used to argue that if ~F (x , y , z) isthe velocity vector field, e.g. of a fluid of density ρ(x , y , z),then the surface integral∫∫

Sρ~F · n dS

(with associated Riemann Sum∑ρ(x∗i , y

∗j , z∗k )~F (x∗i , y

∗j , z∗k ) · n(x∗i , y

∗j , z∗k ) ∆Sijk)

represents the rate at which material (e.g. grams per second)crosses the surface.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

From this point of view the orientation of a surface simple tellsus which side is accumulatiing mass, in the case where thevalue of the integral is positive.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

2d Flux Picture

There’s an analagous 2d Riemann sum and interp of∫C~F · n ds.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Problem: Calculate ∫∫S~F (x , y , z) · n dS

for the vector field ~F (x , y , z) = (x , y , z) and S the part of theparaboloid z = 1− x2 − y2 above the xy -plane. Choose thepositive orientation of the paraboloid to be the one with normalpointing downward.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Surface Integrals

Problem: Calculate the surface area of the above paraboloid.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

Φ(u, v) =< u, v ,F (u, v) > .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

Φ(u, v) =< u, v ,F (u, v) > .

Parameters u and v just different names for x and y resp.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

Φ(u, v) =< u, v ,F (u, v) > .

Use this idea if you can’t think of something better.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

Φ(u, v) =< u, v ,F (u, v) > .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

Φ(u, v) =< u, v ,F (u, v) > .

Note the curves where u and v are constant are visible in thewireframe.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Φ(u, v) =< 2u cos v , u sin v , 4u2 > .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Φ(u, v) =< 2u cos v , u sin v , 4u2 > .

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Φ(u, v) =< 2u cos v , u sin v , 4u2 > .

Algebraically, we are rescaling the algebra behind polarcoordinates where

x = r cos θ

y = r sin θ

leads to r2 = x2 + y2.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Φ(u, v) =< 2u cos v , u sin v , 4u2 > .

Here we want x2 + 4y2 to be simple. So

x = 2r cos θ

y = r sin θ

will do better.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Φ(u, v) =< 2u cos v , u sin v , 4u2 > .

Here we want x2 + 4y2 to be simple. So

x = 2r cos θ

y = r sin θ

will do better.Plug x and y into z = x2 + 4y2 to get the z-component.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Parabolic Cylinder z = x2

Graph parametrizations are often optimal for paraboliccylinders.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Parabolic Cylinder z = x2

Φ(u, v) =< u, v , u2 >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Parabolic Cylinder z = x2

Φ(u, v) =< u, v , u2 >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Parabolic Cylinder z = x2

Φ(u, v) =< u, v , u2 >

One of the parameters (v) is giving us the “extrusion”direction. The parameter u is just being used to describe thecurve z = x2 in the zx plane.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

The trigonometric trick is often good for elliptic cylinders

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

Φ(u, v) =<√

3·√

2 cos v , u,√

3 sin v >=<√

6 cos v , u,√

3 sin v >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

Φ(u, v) =<√

6 cos v , u,√

3 sin v >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

Φ(u, v) =<√

6 cos v , u,√

3 sin v >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

Φ(u, v) =<√

6 cos v , u,√

3 sin v >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

Φ(u, v) =<√

6 cos v , u,√

3 sin v >

What happened here is we started with the polar coordinateidea

x = r cos θ

z = r sin θ

but noted that the algebra wasn’t right for x2 + 2z2 so shiftedto

x =√

2r cos θ

z = r sin θ

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Elliptic Cylinder x2 + 2z2 = 6

Φ(u, v) =<√

6 cos v , u,√

3 sin v >

x =√

2r cos θ

z = r sin θ

makes the left hand side work out to 2r2 which will be 6 whenr =√

3.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Ellipsoid x2 + 2y 2 + 3z2 = 4

A similar trick occurs for using spherical coordinate ideas inparameterizing ellipsoids.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Ellipsoid x2 + 2y 2 + 3z2 = 4

A similar trick occurs for using spherical coordinate ideas inparameterizing ellipsoids.

Φ(u, v) =< 2 sin u cos v ,√

2 sin u sin v ,

√4

3cos u >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Ellipsoid x2 + 2y 2 + 3z2 = 4

Φ(u, v) =< 2 sin u cos v ,√

2 sin u sin v ,

√4

3cos u >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperbolic Cylinder x2 − z2 = −4

You may have run into the hyperbolic functions

cosh x =ex + e−x

2

sinh x =ex − e−x

2

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperbolic Cylinder x2 − z2 = −4

You may have run into the hyperbolic functions

cosh x =ex + e−x

2

sinh x =ex − e−x

2

Just as cos2 θ + sin2 θ = 1 helps with ellipses, the hyperbolicversion cosh2 θ − sinh2 θ = 1 leads to the nicest hyperbolaparameterizations.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperbolic Cylinder x2 − z2 = −4

Just as cos2 θ + sin2 θ = 1 helps with ellipses, the hyperbolicversion cosh2 θ − sinh2 θ = 1 leads to the nicest hyperbolaparameterizations.

Φ(u, v) =< 2 sinh v , u, 2 cosh v >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperbolic Cylinder x2 − z2 = −4

Φ(u, v) =< 2 sinh v , u, 2 cosh v >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Saddle z = x2 − y 2

The hyperbolic trick also works with saddles

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Saddle z = x2 − y 2

Φ(u, v) =< u cosh v , u sinh v , u2 >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Saddle z = x2 − y 2

Φ(u, v) =< u cosh v , u sinh v , u2 >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

The spherical coordinate idea for ellipsoids with sinφ replacedby cosh u works well here.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

Φ(u, v) =< cosh u cos v , cosh u sin v , sinh u >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

Φ(u, v) =< sinh u cos v , sinh u sin v , cosh u >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.The polar coordinate idea leads to

Φ(u, v) =< u cos v , u sin v , u >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.The polar coordinate idea leads to

Φ(u, v) =< u cos v , u sin v , u >

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

Mercator Parametrization of the Sphere

For 0 ≤ v ≤ ∞, 0 ≤ u ≤ 2π

Φ(u, v) = (sech(v) cos u, sech(v) sin u, tanh(v)).

(Note tanh2(v) + sech2(v) = 1)

From Math2220 Class 38

V1

Div and Curl

Stokes andGauss

Why Green’sand Gauss’

ConservativeVector Fields

SystematicMethod ofFinding aPotential

dTheta

IntegralTheoremProblems

Surface ofRevolutionCase

Graph Case

SurfaceIntegrals

SurfaceParametriza-tion

ctionN