15
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) UvA-DARE (Digital Academic Repository) B fields in OB stars (BOB): Detection of a strong magnetic field in the O9.7 V star HD 54879 Castro, N.; Fossati, L.; Hubrig, S.; Simón-Díaz, S.; Schöller, M.; Ilyin, I.; Carrol, T.A.; Langer, N.; Morel, T.; Schneider, F.R.N.; Przybilla, N.; Herrero, A.; de Koter, A.; Oskinova, L.M.; Reisenegger, A.; Sana, H. DOI 10.1051/0004-6361/201425354 Publication date 2015 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Castro, N., Fossati, L., Hubrig, S., Simón-Díaz, S., Schöller, M., Ilyin, I., Carrol, T. A., Langer, N., Morel, T., Schneider, F. R. N., Przybilla, N., Herrero, A., de Koter, A., Oskinova, L. M., Reisenegger, A., & Sana, H. (2015). B fields in OB stars (BOB): Detection of a strong magnetic field in the O9.7 V star HD 54879. Astronomy & Astrophysics, 581, [A81]. https://doi.org/10.1051/0004-6361/201425354 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date:23 Jun 2021

UvA-DARE (Digital Academic Repository) B fields in OB ... · A&A 581, A81 (2015) Table 1. Average longitudinal magnetic field values obtained from the FORS2 and HARPS observations

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

    UvA-DARE (Digital Academic Repository)

    B fields in OB stars (BOB): Detection of a strong magnetic field in the O9.7 Vstar HD 54879

    Castro, N.; Fossati, L.; Hubrig, S.; Simón-Díaz, S.; Schöller, M.; Ilyin, I.; Carrol, T.A.; Langer,N.; Morel, T.; Schneider, F.R.N.; Przybilla, N.; Herrero, A.; de Koter, A.; Oskinova, L.M.;Reisenegger, A.; Sana, H.DOI10.1051/0004-6361/201425354Publication date2015Document VersionFinal published versionPublished inAstronomy & Astrophysics

    Link to publication

    Citation for published version (APA):Castro, N., Fossati, L., Hubrig, S., Simón-Díaz, S., Schöller, M., Ilyin, I., Carrol, T. A., Langer,N., Morel, T., Schneider, F. R. N., Przybilla, N., Herrero, A., de Koter, A., Oskinova, L. M.,Reisenegger, A., & Sana, H. (2015). B fields in OB stars (BOB): Detection of a strongmagnetic field in the O9.7 V star HD 54879. Astronomy & Astrophysics, 581, [A81].https://doi.org/10.1051/0004-6361/201425354

    General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an opencontent license (like Creative Commons).

    Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, pleaselet the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the materialinaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letterto: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. Youwill be contacted as soon as possible.

    Download date:23 Jun 2021

    https://doi.org/10.1051/0004-6361/201425354https://dare.uva.nl/personal/pure/en/publications/b-fields-in-ob-stars-bob-detection-of-a-strong-magnetic-field-in-the-o97-v-star-hd-54879(ff9c5f51-4090-49a1-adf4-42c2ae780426).htmlhttps://doi.org/10.1051/0004-6361/201425354

  • A&A 581, A81 (2015)DOI: 10.1051/0004-6361/201425354c© ESO 2015

    Astronomy&

    Astrophysics

    B fields in OB stars (BOB)

    Detection of a strong magnetic field in the O9.7 V star HD 54879?,??

    N. Castro1, L. Fossati1, S. Hubrig2, S. Simón-Díaz3,4, M. Schöller5, I. Ilyin2, T. A. Carrol2, N. Langer1, T. Morel6,F. R. N. Schneider1,7, N. Przybilla8, A. Herrero3,4, A. de Koter9,10, L. M. Oskinova11, A. Reisenegger12,

    H. Sana13, and the BOB Collaboration

    1 Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germanye-mail: [email protected]

    2 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany3 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain4 Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain5 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany6 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août, Bât. B5c, 4000 Liège, Belgium7 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK8 Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria9 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

    10 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium11 Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany12 Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile13 European Space Agency, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA

    Received 17 November 2014 / Accepted 22 June 2015

    ABSTRACT

    The number of magnetic stars detected among massive stars is small; nevertheless, the role played by the magnetic field in stellarevolution cannot be disregarded. Links between line profile variability, enhancements/depletions of surface chemical abundances, andmagnetic fields have been identified for low-mass B-stars, but for the O-type domain this is almost unexplored. Based on FORS 2 andHARPS spectropolarimetric data, we present the first detection of a magnetic field in HD 54879, a single slowly rotating O9.7 V star.Using two independent and different techniques we obtained the firm detection of a surface average longitudinal magnetic field witha maximum amplitude of about 600 G, in modulus. A quantitative spectroscopic analysis of the star with the stellar atmosphere code results in an effective temperature and a surface gravity of 33 000 ± 1000 K and 4.0 ± 0.1 dex. The abundances of carbon,nitrogen, oxygen, silicon, and magnesium are found to be slightly lower than solar, but compatible within the errors. We investigateline-profile variability in HD 54879 by complementing our spectra with spectroscopic data from other recent OB-star surveys. Thephotospheric lines remain constant in shape between 2009 and 2014, although Hα shows a variable emission. The Hα emission istoo strong for a standard O9.7 V and is probably linked to the magnetic field and the presence of circumstellar material. Its normalchemical composition and the absence of photospheric line profile variations make HD 54879 the most strongly magnetic, non-variablesingle O-star detected to date.

    Key words. stars: atmospheres – stars: evolution – stars: magnetic field – stars: massive – stars: individual: HD 54879

    1. Introduction

    The nature and role of magnetic fields in massive stars is cur-rently poorly understood (Maeder & Meynet 2000; Ud-Doulaet al. 2009; Briquet et al. 2012; Langer 2012). The origin ofmagnetic fields in main-sequence stars in the upper part of theHertzsprung-Russell diagram (HRD) is being debated (Moss2001; Ferrario et al. 2009; Tutukov & Fedorova 2010; Langer2014; Wickramasinghe et al. 2014) and the role that these fieldsplay in stellar evolution is being explored (Langer 2012).

    ? Based on observations made with ESO telescopes at the La Sillaand Paranal observatories under programme ID 191.D-0255(C, F).?? Appendix A is available in electronic form athttp://www.aanda.org

    The properties of magnetic fields in intermediate mass stars(A and late-B stars) have been studied in detail (see Landstreet1992; Kochukhov & Bagnulo 2006; Hubrig et al. 2007; Donati& Landstreet 2009, and references therein), presenting linksbetween the magnetic field strength, chemical peculiarities,and age (Ap/Bp stars, Borra & Landstreet 1980; Landstreetet al. 2007, 2008; Bailey et al. 2014). However, magnetismin the upper part of the HRD is poorly understood (Donati &Landstreet 2009; Langer 2012; Martins et al. 2012a). Magneticfields have been unambiguously detected only in a few dozenmain-sequence O- and B-type stars (see e.g. Briquet et al.2013; Petit et al. 2013; Alecian et al. 2014; Fossati et al.2014, 2015; Hubrig et al. 2014b; Neiner et al. 2014, and refer-ences therein), revealing a small magnetic field incidence of 7%

    Article published by EDP Sciences A81, page 1 of 14

    http://dx.doi.org/10.1051/0004-6361/201425354http://www.aanda.orghttp://www.aanda.org/10.1051/0004-6361/201425354/olmhttp://www.edpsciences.org

  • A&A 581, A81 (2015)

    Table 1. Average longitudinal magnetic field values obtained from the FORS 2 and HARPS observations.

    FORS 2Reduction Date HJD− No. of Exp. S/N 〈Bz〉 V (G) 〈Bz〉 N (G) 〈Bz〉 V (G) 〈Bz〉 N (G)

    2 450 000 frames time (s) Hydrogen AllBonn 07-Feb.-2014 6696.7341 10 35 2359 −655 ± 109 22 ± 81 −504 ± 54 69 ± 46Potsdam −639 ± 121 −16 ± 119 −460 ± 65 76 ± 66Bonn 08-Feb.-2014 6697.7162 10 30 2398 −978 ± 88 −36 ± 76 −653 ± 47 40 ± 43Potsdam −877 ± 91 −102 ± 105 −521 ± 62 23 ± 63

    HARPSReduction Date HJD− No. of Exp. S /N 〈Bz〉 V (G) Detection FAP

    2 450 000 frames time (s)Bonn (LSD) −592 ± 7 DD

  • N. Castro et al.: First magnetic detection in the O9.7 V star HD 54879

    Table 2. Stellar parameters and chemical abundances of HD 54879 and of the O9.7 V standard star HD 36512 (Sota et al. 2011).

    ID Instrument Teff log g log Q ξb He/H(K) (dex) (km s−1) (by number)

    HD 54879 FORS 2 33 000 ± 1000 3.95 ± 0.10 -a 5 ± 3 0.10 − 0.12

    HARPS 33 000 ± 1000 4.00 ± 0.10 -a 4 ± 1 0.10 − 0.12HD 36512 FIES 33 400 ± 600 4.09 ± 0.11 –13.46 10 0.10

    log �Si log �Mg log �C log �N log �O

    HD 54879 FORS 2 7.3 ± 0.3 7.4 ± 0.3 7.8 ± 0.3 7.5 ± 0.3 8.6 ± 0.2HARPS 7.4 ± 0.2 7.4 ± 0.1 8.1 ± 0.2 7.7 ± 0.2 8.6 ± 0.1

    � 7.51 7.60 8.43 7.83 8.69CAS 7.50 7.56 8.33 7.79 8.76

    Notes. (a) The parameter Q = Ṁ / (R∗v∞)1.5 (Puls et al. 1996) relies mainly on the Balmer lines, which for HD 54879 are not suitable for settingthe mass-loss rate (Sect. 4). (b) Microturbulence. The solar abundances (�) are taken from Asplund et al. (2009). The cosmic abundance standard(CAS) composition from Nieva & Przybilla (2012) is also listed, log �X = log (X /H ) + 12 (by number).

    different set of independent tools. The reduction and analysisperformed in Bonn employed IRAF2 (Tody 1993) and IDL rou-tines based on the technique and recipes presented by Bagnuloet al. (2002, 2012), while the Potsdam reduction and analysiswas based on the tools described in Hubrig et al. (2004a,b), up-dated to include a number of statistical tests (Schöller et al.,in prep.). The details of the data reduction and analysis proce-dure applied in Bonn will be given in a separate work (Fossatiet al., in prep.).

    The longitudinal magnetic field (〈Bz〉) was calculated usingeither the hydrogen lines or the full 3710−5870 Å spectral re-gion. All measurements performed on the Stokes V spectrumled to detections at 6σ or more, while we consistently got non-detections from the null profile. Furthermore, Monte Carlo boot-strapping tests (Press et al. 1992; Rivinius et al. 2010; Hubriget al. 2014c) were carried out in Potsdam. These are most oftenapplied with the purpose of deriving robust estimates of standarderrors. A total of 250 000 tests were generated with the samesize as the original dataset. The final 〈Bz〉 value was then deter-mined from all these newly generated datasets. The 〈Bz〉 valuesand their uncertainties obtained in Bonn and Potsdam are listedin Table 1. The rather large difference between the 〈Bz〉 valuesobtained using the hydrogen lines and the entire spectrum mightoccur because, in presence of a strong magnetic field, Stokes Vdoes not behave linearly with the derivative of Stokes I for themetallic lines; in other words, for the metallic lines the weak-field approximation, on which the method is based, does not holdanymore. A thorough discussion about this topic can be found inLandstreet et al. (2014).

    3.2. HARPS observations

    As was done for the FORS 2 data, the HARPS observations werereduced separately in Bonn and Potsdam, using independent rou-tines. HARPS 〈Bz〉 results are also summarised in Table 1.

    2 Image Reduction and Analysis Facility (IRAF;http://iraf.noao.edu/) is distributed by the National OpticalAstronomy Observatory, which is operated by the Association ofUniversities for Research in Astronomy (AURA) under cooperativeagreement with the National Science Foundation.

    3.2.1. Bonn reduction and analysis

    The reduction and analysis in Bonn was performed with the package (Piskunov & Valenti 2002) and the least-squares deconvolution technique (LSD; Donati et al. 1997).

    The one-dimensional spectra, obtained with , werecombined using the “ratio” method described by Bagnulo et al.(2009). The spectra were re-normalised to the intensity of thecontinuum obtaining a spectrum of the Stokes I (I/Ic) andV (V/Ic), plus a spectrum of the diagnostic null profile (N –see Bagnulo et al. 2009), with the corresponding uncertainties.We then analysed the profiles of the Stokes I, V , and N pa-rameter using LSD, which combines line profiles (assumed tobe identical) centred at the position of the individual lines andscaled according to the line strength and sensitivity to a mag-netic field (i.e. line wavelength and Landé factor). We com-puted the LSD profiles of the Stokes I, V , and of the null profileusing the methodology and the code described in Kochukhovet al. (2010). We prepared the line mask used by the LSD codeadopting the stellar parameters obtained from the spectroscopicanalysis (Table 2). We extracted the line parameters from theVienna Atomic Line Database (VALD; Piskunov et al. 1995;Kupka et al. 1999; Ryabchikova et al. 1999) and tuned the givenline strength to the observed Stokes I spectrum with the aid ofsynthetic spectra calculated with SYNTH3 (Kochukhov 2007).We used all lines stronger than 10% of the continuum, avoidinghydrogen lines, helium lines with extended wings, and lines inspectral regions affected by the presence of telluric features. Thefinal adopted line mask contained 140 lines. We defined the mag-netic field detection making use of the false alarm probability(FAP; Donati et al. 1992), considering a profile with FAP< 10−5as a definite detection (DD), 10−5 < FAP < 10−3 as a marginaldetection (MD), and FAP > 10−3 as a non-detection (ND).

    Figure 1 shows the LSD profiles we obtained for HD 54879,with a S/N of the LSD Stokes V profile of 3177. The analysis ofthe Stokes V LSD profile led to a clear definite detection with aFAP < 10−15, while the analysis of the LSD profile of the nullparameter led to a non-detection (FAP > 0.7). Integrating overa range of 44 km s−1 (i.e. ±22 km s−1 from the line centre) wederived 〈Bz〉(V) = −592 ± 7 G. This result confirms the FORS 2magnetic field detection.

    Because of the high S/N of the spectra and of the strongmagnetic field, the Stokes V profile presents an observable sig-nature at the position corresponding to magnetic sensitive lines.Figure 2 shows the Stokes I, V , and null profiles for a set of

    A81, page 3 of 14

  • A&A 581, A81 (2015)

    Fig. 1. LSD profiles of the Stokes I, V , and N parameter obtainedfor HD 54879. The error bars of the LSD profiles are shown for bothStokes V and the null parameter. The vertical dotted lines indicate thevelocity range adopted for the determination of the detection prob-ability and magnetic field value. All profiles have been shifted up-wards/downwards by arbitrary values and the Stokes V and N profileshave been expanded 5 times.

    strong lines of different elements. The same shape of the StokesV profile is found for all lines. We also measured the 〈Bz〉(V)value for some of them, obtaining results comparable to thatgiven by the LSD profile.

    3.2.2. Potsdam reduction and analysis

    The data reduction in Potsdam was performed with theESO/HARPS pipeline. A detailed description of the reductionand continuum normalisation is given in Hubrig et al. (2013).

    A total of 49, mostly unblended, metallic lines were em-ployed in the detection of a surface magnetic field using themoment technique (MT, Mathys 1991). This technique allowsus to determine the mean longitudinal field strength and demon-strate the presence of the crossover effect and quadratic mag-netic fields, and so to constrain the magnetic field topology inmore detail than can be done with the LSD and singular valuedecomposition (SVD) methods. For each line in the sample ofmetallic lines, the measured shifts between the line profiles inthe left- and right-hand circularly polarised HARPS spectra areused in a linear regression analysis in the ∆λ versus λ2geff di-agram, following the formalism discussed by Mathys (1991,1994; see also Hubrig et al. 2014a, Fig. 11). The correspond-ing linear regression is shown in Fig. 3. The Landé factors weretaken from Kurucz’s list of atomic data3. For each line measured,the mean error was calculated taking into account the signal-to-noise of the spectra and the uncertainty of the wavelength cali-bration (Mathys 1994). We obtained a mean longitudinal mag-netic field of 〈Bz〉(V) = −584 ± 15 G. In addition, we deriveda 〈Bz〉(N) = −22 ± 10 G from the spectrum of the N param-eter, calculated by combining the subexposures in such a waythat polarisation cancels out. Since no significant magnetic fieldcould be detected from the null spectrum, we concluded that

    3 http://kurucz.cfa.harvard.edu/atoms

    any noticeable spurious polarisation is absent. This is confirmedby the analysis of the LSD N profile. No crossover and meanquadratic magnetic field have been detected for this observa-tional epoch.

    In addition to the moment technique, the magnetic field wasdetected using the multi-line SVD technique for Stokes ProfileReconstruction, recently introduced by Carroll et al. (2012).The results obtained with the SVD technique, using a mask of160 lines that excludes helium and hydrogen lines, are shownin Fig. 4. As was done for the LSD analysis, the line maskwas constructed using VALD. The analysis led to a definitedetection with a FAP smaller than 10−16. From the retrievedStokes V profile we derived a mean longitudinal magnetic field〈Bz〉(V) = −583 ± 9 G.

    4. Stellar parameters and abundances

    The observations presented in Sect. 2 provided us with data atlow and high spectral resolution, both datasets having a highS/N (>300). We present the quantitative analysis of the datasets,aiming at 1) characterising HD 54879 through the spectra of twodifferent instruments (i.e. FORS 2 and HARPS) and 2) explor-ing the impact of spectral resolution on the stellar parametersand chemical abundances.

    We measured the v sin i value of nearly 130 metal transi-tions from the HARPS spectrum using the tool -developed by Simón-Díaz & Herrero (2014). We obtained anaverage v sin i value of 7 ± 2 km s−1 and a macroturbulence of8 ± 3 km s−1, in agreement with Simón-Díaz & Herrero (2014).We adopted these values for our analyses.

    The quantitative atmosphere analysis was performed usingthe stellar atmosphere code FASTWIND (Santolaya-Rey et al.1997; Puls et al. 2005). The code enables non-LTE calculationsand assumes a spherical symmetry. The velocity structure of thestellar wind is modelled with a β velocity law. Following thetechnique described by Castro et al. (2012; see also Urbanejaet al. 2005; Lefever 2007), the stellar parameters and chemicalabundances were derived through automatic algorithms search-ing for the set of parameters that best reproduce the main tran-sitions in the range ∼4000−4900 Å. The automatic tools werebased on a large collection of stellar grids (Castroet al. 2012; Simón-Díaz et al. 2011b). The chemical analysisprocedure has been updated since Castro et al. (2012) by im-plementing an optimised genetic algorithm.

    The best fitting parameters obtained from the analysis of theFORS 2 and HARPS spectra are listed in Table 2, where for com-parison we added the stellar parameters of the O9.7 V standardHD 36512 (Sota et al. 2011), obtained by S. Simón-Díaz usingthe - code (Simón-Díaz et al. 2011b). The observedFORS 2 and HARPS spectra and the best-fit models are plottedin Figs. 6 and 7, see also Figs. A.1 for a detailed display of theHARPS data. The lines used in the analyses are marked. Table 2shows the good agreement between the stellar parameters de-rived from the analysis of the high- and low-resolution spectra.In addition, the HD 54879 temperature and gravity values agreewith those obtained for the standard star HD 36512. The analy-sis of the FORS 2 and HARPS spectra yield He/H ∼ 0.10−0.12.The low sensitivity of the He lines to abundance variations pre-vents us from obtaining a more accurate value. Nevertheless, weexclude a substantial helium enhancement/depletion for this star.

    A81, page 4 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=1http://kurucz.cfa.harvard.edu/atoms

  • N. Castro et al.: First magnetic detection in the O9.7 V star HD 54879

    Fig. 2. The Stokes I (black bottom line), V (red middle line), and null (blue top line) profiles for a set of strong and magnetic sensitive lines. TheStokes V and null profiles have been amplified by a factor of 2.5 and shifted by an arbitrary amount.

    Fig. 3. Linear regression between the displacement of each line centreof gravity in the right and left circularly polarised spectra against 9.34×10−13λ2geff used in the moment technique (Mathys 1991).

    The wind-strength Q-parameter4 estimated in HD 54879,mainly based on the Balmer lines, is substantially higher(log Q = −11.0) than expected for a late-O dwarf (i.e. log Q =−13.46 in HD 36512). To further investigate this difference,Fig. 8 compares high-resolution spectra of HD 54879 andHD 36512. Both spectra were taken with the same instrumentas part of the IACOB project (see Sect. 5.3). Convolving the

    4 The Q-parameter (Puls et al. 1996; Kudritzki & Puls 2000) is a mea-surement of the stellar wind strength defined as Q = Ṁ/ (R∗v∞)1.5,where Ṁ is the mass-loss rate, R∗ the stellar radius, and v∞ the terminalwind velocity.

    Fig. 4. SVD profile of Stokes I, V , and of the Null profile N. For displaypurposes the SVD profiles have been corrected for the radial velocitydetermined from the Stokes I profile. Like the LSD profiles, the SVDStokes V and the N profiles have been shifted by an arbitrary amountand expanded by a factor of 5.

    spectrum of HD 54879 to match the rotation and macroturbu-lence velocities of HD 36512 reveals a remarkable similaritybetween the spectra of the two stars. However, the transitionsformed in the outer parts of the atmosphere show noticeabledifferences, especially Hα. It is unlikely that an exceptionallystrong stellar wind is at the origin of the Hα emission, whichinstead most probably originates from circumstellar material inthe magnetosphere (see Sect. 5.1), as already reported in otherstars (e.g. Walborn 1980; Grunhut et al. 2009). We therefore re-calculated the stellar parameters without considering the linesmost sensitive to the external atmospheric layers. The new pa-rameters obtained in this way are identical to the original values.

    A81, page 5 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=2http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=3http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=4

  • A&A 581, A81 (2015)

    Fig. 5. Comparison between (full black line) synthetic fluxand TD1 (green triangles), Johnson (red pluses), 2MASS (blue dia-monds), and WISE (purple squares) photometry converted into physicalunits. The UV and optical spectral regions are shown in the left paneland the IR band in the right panel.

    Table 3. HD 54879 theoretical (BONNSAI) and spectroscopic (Spec.)stellar parameters.

    HD 54879 Spec.

    log L/L� 4.7+0.2−0.2 4.7+0.3−0.2

    R/R� 6.7+1.0−0.9 6.8+2.3−1.6

    M/M� 18.6+2.0−1.6 16.9+1.1−1.0

    Age (Myr) 4.0+0.8−1.2

    We used BONNSAI5 (Schneider et al. 2014) to determinethe current mass, radius, and age of HD 54879. BONNSAI com-putes the full posterior probability distributions of stellar param-eters using Bayes’ theorem. The code simultaneously matchesthe derived effective temperature, surface gravity, and projectedrotational velocity of HD 54879 to the Milky Way single-starmodels of Brott et al. (2011). We assumed a Salpeter initial massfunction (Salpeter 1955) as initial mass prior and uniform priorsfor the age and initial rotational velocity. The stellar rotation axesare randomly oriented in space.

    The fundamental parameters derived by are listedin Table 3 together with the spectroscopic values. The spectro-scopic luminosity (L), current mass (M), and radius (R) werecalculated taking a distance of 1.32 kpc (Humphreys 1978), thespectral energy distribution provided by , the extinc-tion laws of Fitzpatrick & Massa (2007), and HD 54879 opti-cal and 2MASS photometry. Figure 5 shows the comparison ofthe synthetic fluxes, calculated by adopting the fun-damental parameters derived for HD 54879 with the availableultraviolet (UV, Thompson et al. 1978), optical (Mermilliod &Mermilliod 1994), and infrared (IR, Cutri et al. 2003, 2012) pho-tometry. The discrepancy between the synthetic flux and WISEphotometry is a known issue (Fossati et al. 2014). WISE mag-nitudes were not used in the spectroscopic parameters reportedin Table 3. The match between and the spectroscopicvalues highlights the consistency between the stellar tracks pre-diction, distance, and photometry of HD 54879. The fractionalmain-sequence age derived from the Brott et al. (2011) evo-lutionary tracks is 0.46. The age derived with (seeTable 3) agrees with that of the CMa OB1 association of whichthe star is a probable member (3 Myr, Clariá 1974).

    5 The BONNSAI web-service is available at http://www.astro.uni-bonn.de/stars/bonnsai

    The obtained non-LTE chemical abundances are listed inTable 2, together with the solar abundances by Asplund et al.(2009) and the present-day massive star abundances in the solarneighbourhood by Nieva & Przybilla (2012). The abundance val-ues derived from the HARPS and FORS 2 spectra agree withinthe errors. The low resolution hampers a precise abundance de-termination of some chemical elements. For instance, the mea-surement of the nitrogen abundance is based on weak lines (e.g.N λ ∼ 3995 Å) that are clearly visible in the HARPS spectrum(Fig. 7), but blurred in the continuum at the low resolution ofFORS 2 (Fig. 6). Oxygen presents strong lines that are clearlyvisible, hence measurable, even at low resolution.

    5. Discussion

    5.1. General considerations about the detected magneticfield

    The |〈Bz〉| values independently obtained in Bonn and Potsdamagree within the uncertainties. The FORS 2 results from Bonnindicate slightly larger fields than those from Potsdam. The mag-netic fields derived from HARPS data in Bonn and Potsdam arepractically identical. The LSD, SVD, and MT, on average, pro-vide 〈Bz〉(V) = −586 ± 5 G.

    With the few available magnetic field measurements it isnot possible to perform a meaningful modelling of the magneticfield topology and strength, particularly with measurements con-ducted with completely different instruments and techniques(Landstreet et al. 2014). Nevertheless, from the maximumrecorded |〈Bz〉| value it is possible to derive the expected min-imum dipolar magnetic field strength (Bd; e.g. Eq. (7) of Aurièreet al. 2007). From both FORS 2 and HARPS measurementswe derived a maximum |〈Bz〉| of the order of 600 G, implyingBd >∼ 2.0 kG. Despite the strong magnetic field, we have foundno sign of photospheric line profile variations (Sect. 5.3).

    The dipolar field strength of HD 54879 places this star atthe same magnetic strength level as the fast-rotating secondaryof Plaskett’s star (Grunhut et al. 2013) and ALS 15218 (Nazéet al. 2012). Radial velocity variations have been reported forALS 15218 (Combi et al. 2011), so it may also be part of a bi-nary system. In contrast, HD 54879 is apparently a slowly rotat-ing single star, though we cannot rule out a pole-on view, and isprobably the strongest magnetic non-peculiar and single O-typestar detected so far.

    In the context of the classification of magnetospheres of mas-sive stars presented by Petit et al. (2013) and assuming a mini-mum dipolar magnetic field strength of 2.0 kG and an equator-on view, we obtained a lower limit on the Alfvén radius ofabout 5 stellar radii and an upper limit on the Keplerian coro-tation radius of about 20 stellar radii. For the calculation ofthe Alfvén and Keplerian corotation radius we adopted the stel-lar parameters obtained from BONNSAI, a terminal velocity of1700 km s−1 (Kudritzki & Puls 2000) and the mass-loss rate ob-tained from the relation given by Vink et al. (2000). The de-rived values indicate that the star has a dynamical magneto-sphere, but one has to keep in mind that the Alfvén radius isa lower limit and the Keplerian corotation radius is an upperlimit, hence the star could have a centrifugal magnetosphere(Townsend & Owocki 2005; Maheswaran & Cassinelli 2009;Petit et al. 2013). Moreover, HD 54879 is in the weak windregime of late-O dwarfs as discussed by Martins et al. (2005). Inthis regime, the mass-loss rates might be up to a factor of hun-dred lower than expected from theory (Puls et al. 2008), whereas

    A81, page 6 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=5http://www.astro.uni-bonn.de/stars/bonnsaihttp://www.astro.uni-bonn.de/stars/bonnsai

  • N. Castro et al.: First magnetic detection in the O9.7 V star HD 54879

    Fig. 6. Normalised FORS 2 optical spectrum (grey) and the best-fit stellar model (black). The lines included in the analysis are marked.

    the hydrodynamically measured rate of the O9.5 dwarf ζ Oph(Gvaramadze et al. 2012) is found to be only a factor of six belowthat predicted by Vink et al. (2000; see also Huenemoerder et al.2012). A smaller mass-loss rate would lead to a larger Alfvénradius, placing the star closer to the region covered by stars witha centrifugal magnetosphere; this region could then be reachedwith a slightly shorter rotational period (i.e., a non-orthogonalinclination angle).

    The mass-loss rate obtained for HD 54879, assuming a line-driven stellar wind as the unique cause of Hα emission, is toolarge according to its spectral type and previous studies of lateO-type dwarfs (Fig. 8, see also Simón-Díaz et al. 2006; Najarroet al. 2011; Martins et al. 2012b). HD 54879 fits in the Oe-starcategory, as defined by Conti & Leep (1974; see also Negueruelaet al. 2004). The classical Be scenario suggests a circumstel-lar disk produced by a rapidly rotating star (Porter & Rivinius2003). In the case of HD 54879, a centrifugal magnetospheresupported by the strong magnetic field could be responsible forthe circumstellar Hα emission.

    The low v sin i observed in HD 54879 could also be a con-sequence of the strong magnetic field (Deutsch 1958; Sundqvistet al. 2013). Magnetic braking can remove angular momentumwhen the stellar outflow remains coupled to the magnetic fieldas it leaves the star (e.g. Mestel & Spruit 1987; Ud-Doula et al.2009; Petit et al. 2013).

    5.2. General considerations about the stellar atmosphereanalysis

    The analysis of the stellar parameters places HD 54879 on themain-sequence phase with an age of 4.0+0.8−1.2 Myr, according tothe Brott et al. (2011) evolutionary tracks. The chemical abun-dances, inferred from the HARPS data, are slightly lower thanthe solar values (Asplund et al. 2009) and the cosmic abundancestandard obtained by Nieva & Przybilla (2012), though still com-patible within the uncertainties. Neither helium nor the otherchemical elements analysed show any noteworthy peculiarity.

    The differences between spectroscopic and evolutionarymasses have been a source of conflict (Herrero et al. 1992), al-though improvements in both fields have reduced the discrepan-cies (Mokiem et al. 2007; Rivero González et al. 2012; Bouretet al. 2013). HD 54879 shows a difference in log Mspec/Mevol =−0.04 ± 0.05 dex. Although this is only one star, the result sup-ports the reliability of our routines, analysis techniques, and stel-lar models. Nevertheless, a large sample of stars is required todetermine whether the systematic log Mspec/Mevol = −0.06 dexoffset reported by U et al. (2009; see also Fig. 9 in Castroet al. 2012) still persists when taking into account the lateststate-of-the-art developments in the stellar theory and analysistechniques (see also Markova & Puls 2015).

    A81, page 7 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=6

  • A&A 581, A81 (2015)

    Fig. 7. Same as Fig. 6 but for the HARPS normalised spectrum. Only the main transitions for the spectral and chemical analysis have been modelled(Castro et al. 2012).

    Fig. 8. Top panels: optical spectra of HD 54879 taken on Jan. 15, 2011 (black), and the O9.7 V standard HD 36512 (grey). Bottom panels: differencebetween the two stars, after convolving HD 54879 to match the broadening of HD 36512. The lines showing the most substantial differences arehighlighted. The mismatch at 4428 Å is the result of a diffuse interstellar band.

    A81, page 8 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=7http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=8

  • N. Castro et al.: First magnetic detection in the O9.7 V star HD 54879

    Fig. 9. Left panels: difference for four lines between the average profile and all the observations presented in Table 4. The colour code is indicatedin the right panel. The average profiles are overplotted (black dotted line). Right panel: time series of Hα profile between 2009 and 2014. Thenarrow absorption transitions correspond to telluric features.

    We would like to note the good agreement between the highand low spectral resolution stellar atmosphere analyses. This testprovides additional confidence in previous studies carried outusing low spectral resolution data (e.g. Evans et al. 2007; U et al.2009; Castro et al. 2012), with a note of caution concerning thechemical analysis described in Sect. 4.

    5.3. Radial velocities and line profile variations

    The strong magnetic field detected in HD 54879 could lead toline profile variations (see e.g. Piskunov & Kochukhov 2002;Kochukhov & Sudnik 2013). To check for spectral variabilitywe have complemented our HARPS observations with high-resolution (R ∼ 50 000) spectra from the IACOB (Simón-Díaz et al. 2011a, 2015; Simón-Díaz & Herrero 2014) andOWN (Barbá et al. 2010) surveys. This resulted in eight addi-tional spectra (three obtained with NOT2.5/FIES and five withESO2.2/FEROS). All the collected high-resolution spectra wereobtained between 2009 and 2014. The observing dates and radialvelocity measurements, derived from the average of the individ-ual lines marked in Fig. 7, are summarised in Table 4. Boyajianet al. (2007) calculated for HD 54879 a constant radial velocityof 35.4±1.4 km s−1. The authors also mentioned a previous radialvelocity measurement by Neubauer (1943) of 15.6 ± 1.4 km s−1.These results might suggest that the star is a member of a long-period (i.e. tens of years) binary, although no companion wasfound in interferometry studies by Mason et al. (1998) and Sanaet al. (2014). Given the negligible radial velocity variation mea-sured from the spectra listed in Table 4, and a lack of compan-ions in high angular resolution studies, we assume the single-starscenario for HD 54879.

    By combining the stellar radius (Table 3) and the v sin i valueobtained for HD 54879, we derived a maximum rotation periodof 43 days. Given the short period and time sampling of our high-resolution spectra, line profile variations due to spots should beclearly detectable. The left panel of Fig. 9 reveals instead thatthe shape of the photospheric lines does not vary with time. Apole-on view of HD 54879 could explain the lack of line profilevariations, but the magnetic field variations discard this hypoth-esis. In contrast, the Hα line (right panel of Fig. 9) presents evi-dent variations. The line profiles shown in Fig. 9 hint to a stableHα emission with two outbursts detected on Feb. 13, 2011, andApr. 23, 2014. The FEROS spectrum obtained on Feb. 13, 2011,

    Table 4. HD 54879 radial velocities between 2009 and 2014 obtainedwith three different spectrographs (see Sect. 5.3).

    ID Date HJD- Vrad.2 450 000 (km s−1)

    HARPS 23-Apr.-2014 6770.4652 29.5 ± 1.0FIES 16-Feb.-2013 6339.5189 29.0 ± 3.0FIES 26-Dec.-2012 6287.6420 29.0 ± 1.0FEROS 19-May-2012 6067.4686 29.0 ± 2.0FEROS 17-May-2011 5699.4522 29.0 ± 2.0FEROS 22-Mar.-2011 5642.5125 30.0 ± 2.0FEROS 13-Feb.-2011 5605.6578 30.5 ± 3.0FIES 15-Jan.-2011 5576.5463 28.5 ± 2.0FEROS 01-May-2009 4953.4889 29.0 ± 2.0

    shows some line variations, but these are most likely due to prob-lems in the continuum normalisation. Despite this last issue, weretained the Feb. 13, 2011, spectrum in this study because of itsrelevance for the Hα line profile variations.

    5.4. Magnetic field–peculiarities links

    Figure 10 shows the position of the known magnetic chemicallypeculiar B-type stars (Bp stars) in the HRD. Chemical peculiari-ties in these objects are closely linked to the magnetic field (e.g.Berger 1956; Pedersen & Thomsen 1977; Borra & Landstreet1979; Kochukhov et al. 2011; Bailey et al. 2014) and arise asa result of diffusion processes (i.e. that depend on the balancebetween gravitational settling and radiative levitation; Michaud1970). The magnetic B-type stars falling in the same region ofthe HRD as the Bp stars are also expected to present chem-ical peculiarities (see e.g. Alecian et al. 2014), but a detailedabundance analysis has not been performed yet for all of them.The stellar wind sets the upper limit in temperature and mass atwhich a B-type star may develop surface chemical peculiaritiesas a result of diffusion and, in theory, a plot such as Fig. 10 wouldallow these important boundaries to be determined. In practice,this is complicated by the fact that the wind is line-driven andtherefore the surface abundances (Krtička 2014), as well as themagnetic field, control the wind strength. As stars may have

    A81, page 9 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=9

  • A&A 581, A81 (2015)

    Fig. 10. Position in the Hertzsprung–Russell diagram of OB-stars witha confirmed magnetic field detection (Briquet et al. 2013; Petit et al.2013; Alecian et al. 2014; Fossati et al. 2014, 2015; Neiner et al. 2014)and Brott et al. (2011) evolutionary tracks. Stars with an Of?p spectralclassification are highlighted with black dots. Other peculiar O-stars areindicated by green squares. HD 54879 is labelled and shown with an ad-ditional red cross. Blue triangles indicate B stars classified as peculiarin the works cited. An isochrone close to the age of HD 54879, 4.0 Myr,is plotted (purple dashed line). The averaged uncertainties in effectivetemperature and luminosity are illustrated by the black cross in the bot-tom part of the plot. The magnetic star in the Trifid nebula detectedby Hubrig et al. (2014b) is not included here because of the difficultiesin establishing its properties. τSco has also been labelled and marked(blue cross).

    different magnetic field (strengths and topologies) and surfaceabundances (still to be determined in several cases), it is notyet possible to firmly constrain the upper temperature and massboundary of diffusion in magnetic stars. Still, Fig. 10 suggests aboundary at about 10 M� and 25 000 K.

    HD 54879 seems to show remarkable differences comparedto the other known magnetic O-type stars. The star does notpresent the spectral features typical of Of?p stars and, in addi-tion, it does not present the peculiarity and variability displayedby HD 37022 (θ1 Ori C) (Stahl et al. 1993; Walborn & Nichols1994). The other magnetic O-type stars also present peculiari-ties of some sort and spectral variability: Plaskett’s star appearsto be the mass gainer in the HD 47129 binary system (Grunhutet al. 2013), and HD 37742 (ζ Ori Aa) is an evolved rapidly ro-tating O-type star with a very weak magnetic field (anomalousfor magnetic massive stars; Bouret et al. 2008). A wide varietyof spectral variability for the apparently normal stars ALS 15128(Nazé et al. 2012; Combi et al. 2011) and HD 57682 (Grunhutet al. 2009, 2012) has also been reported. HD 54879 instead doesnot show any spectral peculiarity or line profile variability in thephotospheric lines and appears to be the only known magneticsingle O dwarf to date with an apparently normal and stablephotospheric spectrum. Walborn et al. (2010; see also Walborn1972) classified the Of?p stars mainly according to the presenceof C λλ4647 − 4650−4652 Å emission lines. It could be thatHD 54879 is simply not hot and luminous enough to display themorphological features of the stars belonging to the Of?p class.

    5.5. Similarities with τSco

    The optical spectrum of HD 54879 resembles that of τSco.Both stars have a low v sin i and a similar effective temperature

    and surface gravity (Nieva & Przybilla 2012), see Fig. 10.However, HD 54879 does not share other peculiarities reportedfor τSco, particularly the relatively high nitrogen-to-carbon ratiopresented by τSco is not found in HD 54879. Nieva & Przybilla(2014) claim that τSco is a blue straggler that has been rejuve-nated either by a merger or by mass accretion in a binary system.The agreement between the age derived from BONNSAI andthat of the CMa OB1 association suggests that HD 54879 is nota blue straggler (i.e. it has not been rejuvenated). There mightalso be a difference in the magnetic field topology, but more po-larimetric observations of HD 54879 are required to concludeanything on this.

    Petit et al. (2011) presented two stars that appear to be ana-logues to τSco based on their Teff and log g values, the detectionof magnetic fields, and UV spectral characteristics. There are noUV data available for HD 54879.

    6. Conclusions

    We report the first measurement of a magnetic field in HD 54879,a presumably single O9.7 V star with a low projected rota-tional velocity, observed in the context of the BOB collabora-tion. Based on HARPS and FORS 2 spectropolarimetric datawe characterised the stellar atmosphere of HD 54879 and un-ambiguously detected a strong magnetic field using independenttechniques. The magnetic field measurements were carried outin two independent ways, and reached consistent values. We de-rived a lower limit on the polar magnetic field of ∼2.0 kG.

    We analysed the optical spectra of HD 54879 using - grids and automatic routines. Both FORS 2 and HARPSdatasets yield almost identical effective temperature and sur-face gravity. The same is true for the chemical abundances. Thechemical composition is systematically lower than the solar one(Asplund et al. 2009) and lower than the cosmic abundance stan-dard from Nieva & Przybilla (2012), but compatible with bothwithin the uncertainties; neither obvious enhancements nor de-pletions were found. The match between low and high spectralresolution analyses supports the robustness of our results andlends confidence to previous quantitative analyses based on lowspectral resolution data.

    The mass-loss rate derived based on the Hα emission is un-expectedly large for an O9.7 V star. A comparison with a stan-dard star of a similar spectral type (HD 36512), and with pre-vious works on O9-B0 dwarfs confirmed this, rejecting Hα asa reliable mass-loss rate indicator for HD 54879. Our analysissuggests that circumstellar material is a more plausible expla-nation for the Hα emission. The measurable differences in theBalmer lines and He λ4686 Å are also ascribed to circumstel-lar material.

    We explored line profile variability using high spectral res-olution data from the IACOB and OWN surveys. We checkedfor changes in nine spectra covering six years. The optical pho-tospheric transitions remain unchanged. The Hα emission dis-plays a fairly stable shape with an enhanced emission in the linecore in 2011 and 2014. This could be an indication for periodicaloutburst events, but more data are needed to establish this.

    The optical spectrum resembles that of τSco, but unlikeτSco itself, HD 54879 presents surface abundances compatiblewith the solar and the standard cosmic abundances. In addi-tion, the age of HD 54879 matches the age of the CMa OB1association, to which this star probably belongs. These consid-erations make the blue straggler hypothesis unlikely and suggestthat the magnetic field was not generated by a merger of twomain-sequence stars.

    A81, page 10 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=10

  • N. Castro et al.: First magnetic detection in the O9.7 V star HD 54879

    HD 54879 is, so far, the strongest magnetic single O-typestar detected with a stable and normal optical spectrum, withthe exception of the lines partly formed in the magnetosphere.We have not detected any distinctive spectral feature observed inother magnetic O-type stars (i.e. Of?p objects). Nonetheless, itmay be a consequence of the star’s lower temperature and lumi-nosity compared to the known Of?p stars.

    HD 54879 is certainly an interesting object to follow up. Thestrong magnetic field makes this star a good candidate for explor-ing the apparent ordered magnetic geometry and Hα variability.The apparent link between Hα emission, not expected accordingto its spectral type, and a magnetosphere offers a criterion forselecting magnetic candidates.

    Acknowledgements. The authors thank the referee for useful comments andhelpful suggestions that improved this manuscript. L.F. acknowledges finan-cial support from the Alexander von Humboldt Foundation. S.S.-D. andA.H. thank funding from the Spanish Government Ministerio de Economia yCompetitividad (MINECO) through grants AYA2010-21697-C05-04, AYA2012-39364-C02-01 and Severo Ochoa SEV-2011-0187, and the Canary IslandsGovernment under grant PID2010119. T.M. acknowledges financial supportfrom Belspo for contract PRODEX GAIA-DPAC. FRNS acknowledges thefellowship awarded by the Bonn–Cologne Graduate School of Physics andAstronomy. N.L. and A.R. thank the DFG (Germany) and CONICYT (Chile)for the International Collaboration Grant DFG-06. The authors thank AndreasIrrgang for helping in the FEROS data reduction.

    ReferencesAlecian, E., Kochukhov, O., Petit, V., et al. 2014, A&A, 567, A28Appenzeller, I., & Rupprecht, G. 1992, The Messenger, 67, 18Appenzeller, I., Fricke, K., Fürtig, W., et al. 1998, The Messenger, 94, 1Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481Aurière, M., Wade, G. A., Silvester, J., et al. 2007, A&A, 475, 1053Bagnulo, S., Szeifert, T., Wade, G. A., Landstreet, J. D., & Mathys, G. 2002,

    A&A, 389, 191Bagnulo, S., Landolfi, M., Landstreet, J. D., et al. 2009, PASP, 121, 993Bagnulo, S., Landstreet, J. D., Fossati, L., & Kochukhov, O. 2012, A&A, 538,

    A129Bailey, J. D., Landstreet, J. D., & Bagnulo, S. 2014, A&A, 561, A147Barbá, R. H., Gamen, R., Arias, J. I., et al. 2010, Rev. Mex. Astron. Astrofis.

    Conf. Ser., 38, 30Berger, J. 1956, Contr. Inst. Ap. Paris, Ser. A, 217Borra, E. F., & Landstreet, J. D. 1979, ApJ, 228, 809Borra, E. F., & Landstreet, J. D. 1980, ApJS, 42, 421Bouret, J.-C., Donati, J.-F., Martins, F., et al. 2008, MNRAS, 389, 75Bouret, J.-C., Lanz, T., Martins, F., et al. 2013, A&A, 555, A1Boyajian, T. S., Gies, D. R., Baines, E. K., et al. 2007, PASP, 119, 742Briquet, M., Neiner, C., Aerts, C., et al. 2012, MNRAS, 427, 483Briquet, M., Neiner, C., Leroy, B., & Pápics, P. I. 2013, A&A, 557, L16Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A, 530, A115Carroll, T. A., Strassmeier, K. G., Rice, J. B., & Künstler, A. 2012, A&A, 548,

    A95Castro, N., Urbaneja, M. A., Herrero, A., et al. 2012, A&A, 542, A79Clariá, J. J. 1974, A&A, 37, 229Combi, J. A., Albacete-Colombo, J. F., Luque Escamilla, P. L., et al. 2011, Bull.

    Soc. Roy. Sci. Liège, 80, 644Conti, P. S., & Leep, E. M. 1974, ApJ, 193, 113Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data

    Catalog: II/246Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2012, VizieR Online Data

    Catalog: II/311Deutsch, A. J. 1958, Handbuch der Physik, 51, 689Donati, J.-F., & Landstreet, J. D. 2009, ARA&A, 47, 333Donati, J.-F., Semel, M., & Rees, D. E. 1992, A&A, 265, 669Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997,

    MNRAS, 291, 658Donati, J.-F., Babel, J., Harries, T. J., et al. 2002, MNRAS, 333, 55Donati, J.-F., Howarth, I. D., Bouret, J.-C., et al. 2006, MNRAS, 365, L6Evans, C. J., Bresolin, F., Urbaneja, M. A., et al. 2007, ApJ, 659, 1198Ferrario, L., Pringle, J. E., Tout, C. A., & Wickramasinghe, D. T. 2009, MNRAS,

    400, L71

    Fitzpatrick, E. L., & Massa, D. 2007, ApJ, 663, 320Fossati, L., Zwintz, K., Castro, N., et al. 2014, A&A, 562, A143Fossati, L., Castro, N., Morel, T., et al. 2015, A&A, 574, A20Grunhut, J. H., Wade, G. A., Marcolino, W. L. F., et al. 2009, MNRAS, 400,

    L94Grunhut, J. H., Wade, G. A., Sundqvist, J. O., et al. 2012, MNRAS, 426, 2208Grunhut, J. H., Wade, G. A., Leutenegger, M., et al. 2013, MNRAS, 428, 1686Gvaramadze, V. V., Langer, N., & Mackey, J. 2012, MNRAS, 427, L50Herrero, A., Kudritzki, R. P., Vilchez, J. M., et al. 1992, A&A, 261, 209Hubrig, S., Kurtz, D. W., Bagnulo, S., et al. 2004a, A&A, 415, 661Hubrig, S., Szeifert, T., Schöller, M., Mathys, G., & Kurtz, D. W. 2004b, A&A,

    415, 685Hubrig, S., North, P., & Schöller, M. 2007, Astron. Nachr., 328, 475Hubrig, S., Schöller, M., Schnerr, R. S., et al. 2008, A&A, 490, 793Hubrig, S., Schöller, M., Kharchenko, N. V., et al. 2011, A&A, 528, A151Hubrig, S., Ilyin, I., Schöller, M., & Lo Curto, G. 2013, Astron. Nachr., 334,

    1093Hubrig, S., Castelli, F., González, J. F., et al. 2014a, MNRAS, 442, 3604Hubrig, S., Fossati, L., Carroll, T. A., et al. 2014b, A&A, 564, L10Hubrig, S., Schöller, M., & Kholtygin, A. F. 2014c, MNRAS, 440, 1779Hubrig, S., Schöller, M., Fossati, L., et al. 2015, A&A, 578, L3Huenemoerder, D. P., Oskinova, L. M., Ignace, R., et al. 2012, ApJ, 756, L34Humphreys, R. M. 1978, ApJS, 38, 309Kochukhov, O. P. 2007, in Physics of Magnetic Stars, eds. I. I. Romanyuk, D. O.

    Kudryavtsev, O. M. Neizvestnaya, & V. M. Shapoval, 109Kochukhov, O., & Bagnulo, S. 2006, A&A, 450, 763Kochukhov, O., & Sudnik, N. 2013, A&A, 554, A93Kochukhov, O., Makaganiuk, V., & Piskunov, N. 2010, A&A, 524, A5Kochukhov, O., Lundin, A., Romanyuk, I., & Kudryavtsev, D. 2011, ApJ, 726,

    24Krtička, J. 2014, A&A, 564, A70Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., & Weiss, W. W.

    1999, A&AS, 138, 119Landstreet, J. D. 1992, A&ARv, 4, 35Landstreet, J. D., Bagnulo, S., Andretta, V., et al. 2007, A&A, 470, 685Landstreet, J. D., Silaj, J., Andretta, V., et al. 2008, A&A, 481, 465Landstreet, J. D., Bagnulo, S., & Fossati, L. 2014, A&A, 572, A113Langer, N. 2012, ARA&A, 50, 107Langer, N. 2014, in IAU Symp., 302, 1Lefever, K. 2007, Ph.D. Thesis, K. U. LeuvenMaeder, A., & Meynet, G. 2000, ARA&A, 38, 143Maheswaran, M., & Cassinelli, J. P. 2009, MNRAS, 394, 415Markova, N., & Puls, J. 2015, in IAU Symp., 307, 117Martins, F., Schaerer, D., Hillier, D. J., et al. 2005, A&A, 441, 735Martins, F., Donati, J.-F., Marcolino, W. L. F., et al. 2010, MNRAS, 407, 1423Martins, F., Escolano, C., Wade, G. A., et al. 2012a, A&A, 538, A29Martins, F., Mahy, L., Hillier, D. J., & Rauw, G. 2012b, A&A, 538, A39Mason, B. D., Gies, D. R., Hartkopf, W. I., et al. 1998, AJ, 115, 821Mathys, G. 1991, A&AS, 89, 121Mathys, G. 1994, A&AS, 108, 547Mayor, M., Pepe, F., Queloz, D., et al. 2003, The Messenger, 114, 20Mermilliod, J.-C., & Mermilliod, M. 1994, Catalogue of Mean UBV Data on

    Stars (Springer)Mestel, L., & Spruit, H. C. 1987, MNRAS, 226, 57Michaud, G. 1970, ApJ, 160, 641Mokiem, M. R., de Koter, A., Evans, C. J., et al. 2007, A&A, 465, 1003Morel, T., Castro, N., Fossati, L., et al. 2014, The Messenger, 157, 27Morel, T., Castro, N., Fossati, L., et al. 2015, in IAU Symp., 307, 342Moss, D. 2001, in Magnetic Fields Across the Hertzsprung-Russell Diagram,

    eds. G. Mathys, S. K. Solanki, & D. T. Wickramasinghe, ASP Conf. Ser.,248, 305

    Najarro, F., Hanson, M. M., & Puls, J. 2011, A&A, 535, A32Nazé, Y., Bagnulo, S., Petit, V., et al. 2012, MNRAS, 423, 3413Negueruela, I., Steele, I. A., & Bernabeu, G. 2004, Astron. Nachr., 325, 749Neiner, C., Tkachenko, A., & MiMeS Collaboration. 2014, A&A, 563, L7Neubauer, F. J. 1943, ApJ, 97, 300Nieva, M.-F., & Przybilla, N. 2012, A&A, 539, A143Nieva, M.-F., & Przybilla, N. 2014, A&A, 566, A7Pedersen, H., & Thomsen, B. 1977, A&AS, 30, 11Petit, V., Massa, D. L., Marcolino, W. L. F., et al. 2011, MNRAS, 412, L45Petit, V., Owocki, S. P., Wade, G. A., et al. 2013, MNRAS, 429, 398Piskunov, N., & Kochukhov, O. 2002, A&A, 381, 736Piskunov, N. E., & Valenti, J. A. 2002, A&A, 385, 1095Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W., & Jeffery, C. S.

    1995, A&AS, 112, 525Piskunov, N., Snik, F., Dolgopolov, A., et al. 2011, The Messenger, 143, 7Porter, J. M., & Rivinius, T. 2003, PASP, 115, 1153

    A81, page 11 of 14

    http://linker.aanda.org/10.1051/0004-6361/201425354/1http://linker.aanda.org/10.1051/0004-6361/201425354/2http://linker.aanda.org/10.1051/0004-6361/201425354/3http://linker.aanda.org/10.1051/0004-6361/201425354/4http://linker.aanda.org/10.1051/0004-6361/201425354/5http://linker.aanda.org/10.1051/0004-6361/201425354/6http://linker.aanda.org/10.1051/0004-6361/201425354/7http://linker.aanda.org/10.1051/0004-6361/201425354/8http://linker.aanda.org/10.1051/0004-6361/201425354/8http://linker.aanda.org/10.1051/0004-6361/201425354/9http://linker.aanda.org/10.1051/0004-6361/201425354/10http://linker.aanda.org/10.1051/0004-6361/201425354/10http://linker.aanda.org/10.1051/0004-6361/201425354/12http://linker.aanda.org/10.1051/0004-6361/201425354/13http://linker.aanda.org/10.1051/0004-6361/201425354/14http://linker.aanda.org/10.1051/0004-6361/201425354/15http://linker.aanda.org/10.1051/0004-6361/201425354/16http://linker.aanda.org/10.1051/0004-6361/201425354/17http://linker.aanda.org/10.1051/0004-6361/201425354/18http://linker.aanda.org/10.1051/0004-6361/201425354/19http://linker.aanda.org/10.1051/0004-6361/201425354/20http://linker.aanda.org/10.1051/0004-6361/201425354/20http://linker.aanda.org/10.1051/0004-6361/201425354/21http://linker.aanda.org/10.1051/0004-6361/201425354/22http://linker.aanda.org/10.1051/0004-6361/201425354/23http://linker.aanda.org/10.1051/0004-6361/201425354/23http://linker.aanda.org/10.1051/0004-6361/201425354/24http://linker.aanda.org/10.1051/0004-6361/201425354/25http://linker.aanda.org/10.1051/0004-6361/201425354/25http://linker.aanda.org/10.1051/0004-6361/201425354/26http://linker.aanda.org/10.1051/0004-6361/201425354/26http://linker.aanda.org/10.1051/0004-6361/201425354/27http://linker.aanda.org/10.1051/0004-6361/201425354/28http://linker.aanda.org/10.1051/0004-6361/201425354/29http://linker.aanda.org/10.1051/0004-6361/201425354/30http://linker.aanda.org/10.1051/0004-6361/201425354/31http://linker.aanda.org/10.1051/0004-6361/201425354/32http://linker.aanda.org/10.1051/0004-6361/201425354/33http://linker.aanda.org/10.1051/0004-6361/201425354/34http://linker.aanda.org/10.1051/0004-6361/201425354/34http://linker.aanda.org/10.1051/0004-6361/201425354/35http://linker.aanda.org/10.1051/0004-6361/201425354/36http://linker.aanda.org/10.1051/0004-6361/201425354/37http://linker.aanda.org/10.1051/0004-6361/201425354/38http://linker.aanda.org/10.1051/0004-6361/201425354/38http://linker.aanda.org/10.1051/0004-6361/201425354/39http://linker.aanda.org/10.1051/0004-6361/201425354/40http://linker.aanda.org/10.1051/0004-6361/201425354/41http://linker.aanda.org/10.1051/0004-6361/201425354/42http://linker.aanda.org/10.1051/0004-6361/201425354/43http://linker.aanda.org/10.1051/0004-6361/201425354/44http://linker.aanda.org/10.1051/0004-6361/201425354/44http://linker.aanda.org/10.1051/0004-6361/201425354/45http://linker.aanda.org/10.1051/0004-6361/201425354/46http://linker.aanda.org/10.1051/0004-6361/201425354/47http://linker.aanda.org/10.1051/0004-6361/201425354/48http://linker.aanda.org/10.1051/0004-6361/201425354/48http://linker.aanda.org/10.1051/0004-6361/201425354/49http://linker.aanda.org/10.1051/0004-6361/201425354/50http://linker.aanda.org/10.1051/0004-6361/201425354/51http://linker.aanda.org/10.1051/0004-6361/201425354/52http://linker.aanda.org/10.1051/0004-6361/201425354/53http://linker.aanda.org/10.1051/0004-6361/201425354/54http://linker.aanda.org/10.1051/0004-6361/201425354/56http://linker.aanda.org/10.1051/0004-6361/201425354/57http://linker.aanda.org/10.1051/0004-6361/201425354/58http://linker.aanda.org/10.1051/0004-6361/201425354/59http://linker.aanda.org/10.1051/0004-6361/201425354/59http://linker.aanda.org/10.1051/0004-6361/201425354/60http://linker.aanda.org/10.1051/0004-6361/201425354/61http://linker.aanda.org/10.1051/0004-6361/201425354/62http://linker.aanda.org/10.1051/0004-6361/201425354/63http://linker.aanda.org/10.1051/0004-6361/201425354/64http://linker.aanda.org/10.1051/0004-6361/201425354/65http://linker.aanda.org/10.1051/0004-6361/201425354/66http://linker.aanda.org/10.1051/0004-6361/201425354/67http://linker.aanda.org/10.1051/0004-6361/201425354/70http://linker.aanda.org/10.1051/0004-6361/201425354/71http://linker.aanda.org/10.1051/0004-6361/201425354/72http://linker.aanda.org/10.1051/0004-6361/201425354/73http://linker.aanda.org/10.1051/0004-6361/201425354/74http://linker.aanda.org/10.1051/0004-6361/201425354/75http://linker.aanda.org/10.1051/0004-6361/201425354/76http://linker.aanda.org/10.1051/0004-6361/201425354/77http://linker.aanda.org/10.1051/0004-6361/201425354/78http://linker.aanda.org/10.1051/0004-6361/201425354/79http://linker.aanda.org/10.1051/0004-6361/201425354/80http://linker.aanda.org/10.1051/0004-6361/201425354/82http://linker.aanda.org/10.1051/0004-6361/201425354/83http://linker.aanda.org/10.1051/0004-6361/201425354/84http://linker.aanda.org/10.1051/0004-6361/201425354/85http://linker.aanda.org/10.1051/0004-6361/201425354/86http://linker.aanda.org/10.1051/0004-6361/201425354/87http://linker.aanda.org/10.1051/0004-6361/201425354/87http://linker.aanda.org/10.1051/0004-6361/201425354/88http://linker.aanda.org/10.1051/0004-6361/201425354/89http://linker.aanda.org/10.1051/0004-6361/201425354/90http://linker.aanda.org/10.1051/0004-6361/201425354/91http://linker.aanda.org/10.1051/0004-6361/201425354/92http://linker.aanda.org/10.1051/0004-6361/201425354/93http://linker.aanda.org/10.1051/0004-6361/201425354/94http://linker.aanda.org/10.1051/0004-6361/201425354/95http://linker.aanda.org/10.1051/0004-6361/201425354/96http://linker.aanda.org/10.1051/0004-6361/201425354/97http://linker.aanda.org/10.1051/0004-6361/201425354/98http://linker.aanda.org/10.1051/0004-6361/201425354/99http://linker.aanda.org/10.1051/0004-6361/201425354/100http://linker.aanda.org/10.1051/0004-6361/201425354/101http://linker.aanda.org/10.1051/0004-6361/201425354/102

  • A&A 581, A81 (2015)

    Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,Numerical recipes in FORTRAN. The art of scientific computing (CUP)

    Puls, J., Kudritzki, R., Herrero, A., et al. 1996, A&A, 305, 171Puls, J., Urbaneja, M. A., Venero, R., et al. 2005, A&A, 435, 669Puls, J., Vink, J. S., & Najarro, F. 2008, A&ARv, 16, 209Reed, B. C. 2003, AJ, 125, 2531Rivero González, J. G., Puls, J., Massey, P., & Najarro, F. 2012, A&A, 543, A95Rivinius, T., Szeifert, T., Barrera, L., et al. 2010, MNRAS, 405, L46Ryabchikova, T. A., Piskunov, N. E., Stempels, H. C., Kupka, F., & Weiss, W. W.

    1999, Phys. Scr. Vol. T, 83, 162Salpeter, E. E. 1955, ApJ, 121, 161Sana, H., Le Bouquin, J.-B., Lacour, S., et al. 2014, ApJS, 215, 15Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A, 323, 488Schneider, F. R. N., Langer, N., de Koter, A., et al. 2014, A&A, 570, A66Simón-Díaz, S., & Herrero, A. 2014, A&A, 562, A135Simón-Díaz, S., Herrero, A., Esteban, C., & Najarro, F. 2006, A&A, 448, 351Simón-Díaz, S., Castro, N., Garcia, M., & Herrero, A. 2011a, in IAU Symp. 272,

    eds. C. Neiner, G. Wade, G. Meynet, & G. Peters, 310Simón-Díaz, S., Castro, N., Herrero, A., et al. 2011b, J. Phys. Conf. Ser., 328,

    012021Simón-Díaz, S., Negueruela, I., Maíz Apellániz, J., et al. 2015, in Highlights of

    Spanish Astrophysics VIII, Proc. XI Sci. Meet. of the Spanish AstronomicalSociety held on September 8–12 2014, in Teruel, Spain, eds. A. J. Cenarro,F. Figueras, C. Hernández-Monteagudo, J. Trujillo Bueno, & L. Valdivielso,576

    Snik, F., Kochukhov, O., Piskunov, N., et al. 2011, in Solar Polarization 6, eds.J. R. Kuhn, D. M. Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno,S. L. Keil, & T. Rimmele, ASP Conf. Ser., 437, 237

    Sota, A., Maíz Apellániz, J., Walborn, N. R., et al. 2011, ApJS, 193, 24Stahl, O., Wolf, B., Gang, T., et al. 1993, A&A, 274, L29Sundqvist, J. O., Petit, V., Owocki, S. P., et al. 2013, MNRAS, 433,

    2497Thompson, G. I., Nandy, K., Jamar, C., et al. 1978, Catalogue of stellar ultra-

    violet fluxes. A compilation of absolute stellar fluxes measured by the SkySurvey Telescope (S2/68) aboard the ESRO satellite TD-1

    Tody, D. 1993, in Astronomical Data Analysis Software and Systems II, eds.R. J. Hanisch, R. J. V. Brissenden, & J. Barnes, ASP Conf. Ser., 52, 173

    Townsend, R. H. D., & Owocki, S. P. 2005, MNRAS, 357, 251Tutukov, A. V., & Fedorova, A. V. 2010, Astron. Rep., 54, 156U, V., Urbaneja, M. A., Kudritzki, R., et al. 2009, ApJ, 704, 1120Ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2009, MNRAS, 392,

    1022Urbaneja, M. A., Herrero, A., Bresolin, F., et al. 2005, ApJ, 622, 862Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295Wade, G. A., Grunhut, J., Gräfener, G., et al. 2012a, MNRAS, 419, 2459Wade, G. A., Maíz Apellániz, J., Martins, F., et al. 2012b, MNRAS, 425,

    1278Wade, G. A., Grunhut, J., Alecian, E., et al. 2014, in IAU Symp., 302, 265Walborn, N. R. 1972, AJ, 77, 312Walborn, N. R. 1980, ApJS, 44, 535Walborn, N. R., & Fitzpatrick, E. L. 1990, PASP, 102, 379Walborn, N. R., & Fitzpatrick, E. L. 2000, PASP, 112, 50Walborn, N. R., & Nichols, J. S. 1994, ApJ, 425, L29Walborn, N. R., Sota, A., Maíz Apellániz, J., et al. 2010, ApJ, 711, L143Wickramasinghe, D. T., Tout, C. A., & Ferrario, L. 2014, MNRAS, 437,

    675

    Pages 13 to 14 are available in the electronic edition of the journal at http://www.aanda.org

    A81, page 12 of 14

    http://linker.aanda.org/10.1051/0004-6361/201425354/104http://linker.aanda.org/10.1051/0004-6361/201425354/105http://linker.aanda.org/10.1051/0004-6361/201425354/106http://linker.aanda.org/10.1051/0004-6361/201425354/107http://linker.aanda.org/10.1051/0004-6361/201425354/108http://linker.aanda.org/10.1051/0004-6361/201425354/109http://linker.aanda.org/10.1051/0004-6361/201425354/110http://linker.aanda.org/10.1051/0004-6361/201425354/111http://linker.aanda.org/10.1051/0004-6361/201425354/112http://linker.aanda.org/10.1051/0004-6361/201425354/113http://linker.aanda.org/10.1051/0004-6361/201425354/114http://linker.aanda.org/10.1051/0004-6361/201425354/115http://linker.aanda.org/10.1051/0004-6361/201425354/116http://linker.aanda.org/10.1051/0004-6361/201425354/118http://linker.aanda.org/10.1051/0004-6361/201425354/118http://linker.aanda.org/10.1051/0004-6361/201425354/120http://linker.aanda.org/10.1051/0004-6361/201425354/121http://linker.aanda.org/10.1051/0004-6361/201425354/122http://linker.aanda.org/10.1051/0004-6361/201425354/123http://linker.aanda.org/10.1051/0004-6361/201425354/123http://linker.aanda.org/10.1051/0004-6361/201425354/125http://linker.aanda.org/10.1051/0004-6361/201425354/126http://linker.aanda.org/10.1051/0004-6361/201425354/127http://linker.aanda.org/10.1051/0004-6361/201425354/128http://linker.aanda.org/10.1051/0004-6361/201425354/129http://linker.aanda.org/10.1051/0004-6361/201425354/129http://linker.aanda.org/10.1051/0004-6361/201425354/130http://linker.aanda.org/10.1051/0004-6361/201425354/131http://linker.aanda.org/10.1051/0004-6361/201425354/132http://linker.aanda.org/10.1051/0004-6361/201425354/133http://linker.aanda.org/10.1051/0004-6361/201425354/133http://linker.aanda.org/10.1051/0004-6361/201425354/135http://linker.aanda.org/10.1051/0004-6361/201425354/136http://linker.aanda.org/10.1051/0004-6361/201425354/137http://linker.aanda.org/10.1051/0004-6361/201425354/138http://linker.aanda.org/10.1051/0004-6361/201425354/139http://linker.aanda.org/10.1051/0004-6361/201425354/140http://linker.aanda.org/10.1051/0004-6361/201425354/141http://linker.aanda.org/10.1051/0004-6361/201425354/141http://www.aanda.org

  • N. Castro et al.: First magnetic detection in the O9.7 V star HD 54879

    Appendix A: HARPS best-fit modelling

    Fig. A.1. Normalised optical spectrum (grey) and the best-fit stellar model (black), see Fig. 7.

    A81, page 13 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=11

  • A&A 581, A81 (2015)

    Fig. A.1. continued.

    Fig. A.1. continued.

    A81, page 14 of 14

    http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=12http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425354&pdf_id=13

    IntroductionObservationsMagnetic field detectionFORS2 observationsHARPS observationsBonn reduction and analysisPotsdam reduction and analysis

    Stellar parameters and abundancesDiscussionGeneral considerations about the detected magnetic fieldGeneral considerations about the stellar atmosphere analysisRadial velocities and line profile variationsMagnetic field--peculiarities linksSimilarities with Sco

    ConclusionsReferencesHARPS best-fit modelling