31
Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Embed Size (px)

Citation preview

Page 1: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Utilizing experimental and genomic tools todevelop Toxoplasma gondii drugs

Stacey Gilk

Coxiella Pathogenesis SectionRocky Mountain Laboratories

LICP/NIAID/NIH

Page 2: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Outline

I. Background on Toxoplasma and host cell invasion

II. Small molecule screen for invasion inhibitors

III. Mining genomic databases for potential drug targets

Page 3: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

• widespread protozoan pathogen

• severe disease in humans

• member of Phylum Apicomplexa

• obligate intracellular parasite

Toxoplasma gondii

Page 4: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Ultrastructure of Toxoplasma

1 m

Microneme

Dense Granule

Rhoptry

Conoid

Apical complex

PelliclePlasma

membrane

Inner membranecomplex

Page 5: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Apicomplexan parasites

Li et al Genome Research 2003

Malaria

Page 6: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Related but different…

Toxoplasma: • 80 Mb genome; codon bias similar to mammals• Random insertion common; homologous recombination more difficult• Can live in any nucleated cell; broad host range• Sexual cycle only in the cat

Plasmodium falciparum: • 28 Mb genome; A/T rich• Genetic variation to evade immune system• Homologous recombination common; random insertion more difficul• Merozoite stage only in red blood cells; specific host range• Sexual cycle only in the mosquito

Page 7: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Toxoplasma lytic cycle

Page 8: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Toxoplasma invasion

QuickTime™ and aVideo decompressor

are needed to see this picture.

K. Carey/G. Ward, U. of Vermonthttp://www.uvm.edu/~mmg1/videos_ward.php?id=23

QuickTime™ and aVideo decompressor

are needed to see this picture.

QuickTime™ and aVideo decompressor

are needed to see this picture.

Page 9: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Studying Toxoplasma host cell invasion

Challenges: • Grows only inside a host cell• Haploid: Can’t disrupt an essential gene• Often biased approaches (choose one protein, follow up)

Benefits: • Haploid: can knockout gene by homologous recombination• Assays to test for all stages of invasion• Easy to grow in the lab• Developed genetic tools (e.g., regulatable promoter; forward genetic system)• Generally translates to Plasmodium

Page 10: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

The small molecule approach

1. Synthesize/obtain compound library

2. Develop high-throughput screen

3. Do it!

4. 2o screens to prioritize hits

5. Target identification

N

N

O

O

N

S

N

ClCl

Cl

O

ON

N

N

N

O

O

Br

Br

N

N

F

N

N

NOO

Page 11: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

High-throughput Invasion Assay

Host cells, 384-well plate

Pre-incubate(15 min, 23oC)

Wash

Invade (60 min, 37oC)

Label extracellular parasites with -SAG1Automated

data analysis

Wash, fix

Capture fluorescent images from each well

Compounds

YFP parasites

All Extracellular Merged

G. Ward, U. of Vermont

Page 12: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Control (DMSO)

mergedmerged

Inhibitor

The Dual Fluorescence Invasion Assay

Page 13: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Control (DMSO)

mergedmerged

Enhancer

merged

Inhibitor

The Dual Fluorescence Invasion Assay

Page 14: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Total screened

Inhibitors

Enhancers

12,160

24

6

Screen results: Chembridge collection

Page 15: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Invasion

Motility

Microneme secretion

EEEEEE

Inhibitors

Enhancers

Conoid extension

II

I

IIII

EIIII

E

II

III

I

I

EEEEEE

RIGOR

RIGORODD?

RIGORODD

RIGORODD?RIGORRIGORRIGORRIGORRIGORODDODD?

RIGORRIGOR

ODDRIGOR

RIGORRIGORRIGOR

ENH-A (3)ENH-B (3)ENH-C (3)

ENH-E (3)ENH-F (3)

INH-A (3)INH-B (6)INH-C (6)

INH-E (12)INH-F (12)INH-G (12)INH-H (12)INH-I (12)INH-J (25)INH-K (25)INH-L (25)INH-M (25)

INH-D (6)

INH-N (25)INH-O (25)INH-P (25)

INH-R (50)

INH-T (50)INH-S (50)

INH-U (50)INH-V (50)INH-W (50)

INH-Q (25)

INH-X (100)

ENH-D (3)

Page 16: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

= inhibited

= enhanced

= no effect

= ??

= odd motility

Page 17: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

= inhibited

= enhanced

= no effect

= ??

= odd motility

None of the compounds inhibit Salmonella invasion…

Page 18: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

= inhibited

= enhanced

= no effect

= ??

= odd motility

Some are Toxoplasma-specific…

Page 19: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

= inhibited

= enhanced

= no effect

= ??

= odd motility

Others affect all apicomplexan species tested

Targeting conserved components of the apicomplexan invasion machinery?

Page 20: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Identifying targets of inhibitors: complementation cloning

modified from Grubbels et al PLoS Pathogens 2007

Select in presence of inhibitor

Most parasites parasites resistantto inhibitor

Step 1: Generate parasite resistant to inhibitor

Step 2: Generate cosmid library from mutant parasite

Step 4: Rescue and identify complementing locus

Step 3: Put library into wildtype (inhibitor sensitive) parasites and select for parasites now resistant to inhibitor

Page 21: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Apicomplexan Genomic Databases: What’s Available

• Genomic sequence for Toxoplasma and Plasmodium

• EST (expressed sequence tags)

• Yeast two-hybrid data (protein-protein interactions)

• Transcriptome/microarray data

• KEGG metabolic pathway maps

Page 22: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Abundantly expressed genes varies by intracellular niche

Li et al Genome Research 2003

Page 23: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Apicomplexan specific gene families

Li et al Genome Research 2003

Page 24: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Reconstructing Metabolic Pathways using Genomic Info

• Many enzymes have homology to mammalian enzymes

• Reconstruct pathways

• Identify differences between mammalians/other apicomplexans

• Verify at the bench

• Often discover unique properties of parasite enzymes/pathways

Page 25: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Example: Steroid Biosynthesis

Page 26: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Example: Cholesterol uptake from the host cell

• Cholesterol is essential for membranes and parasite replication• Apicomplexans cannot synthesize their own cholesterol• Toxoplasma intercepts host cell cholesterol transport• Drug target: identify and characterize parasite cholesterol transporters

Page 27: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Example: Unique Apicomplexan Isoprenoid Biosynthesis

Page 28: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Example: Unique Apicomplexan Isoprenoid Biosynthesis

Moreno et al Expert Opinions 2008

• Toxoplasma is not sensitive to Fosmidomycin, while Plasmodium is sensitive• Toxoplasma FPPS is a bifunctional enzyme (FPPS and GGPPS activity)• Apicomplexan DOXP pathway a result of the apicoplast

Page 29: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Example: Unique Apicomplexan Isoprenoid Biosynthesis

Moreno et al Expert Opinions 2008

• Toxoplasma is not sensitive to Fosmidomycin, while Plasmodium is sensitive• Toxoplasma FPPS is a bifunctional enzyme (FPPS and GGPPS activity)• Apicomplexan DOXP pathway a result of the apicoplast

Page 30: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Apicoplast as a drug target

• Plastid-like, non-photosynthetic organelle

• Contains many plant-specific metabolic pathways

• Essential for parasite survival

• Apicoplast DNA sequence available

Page 31: Utilizing experimental and genomic tools to develop Toxoplasma gondii drugs Stacey Gilk Coxiella Pathogenesis Section Rocky Mountain Laboratories LICP/NIAID/NIH

Summary

• Experimental approaches such as the small molecule screen can be used to identify potential Apicomplexan drugsand drug targets

• Comparative genomics can be used to identify:- missing metabolic pathways- novel enzymes- unique/modified parasite pathways

• Identify parasite “weaknesses” that can be exploited for vaccine and drug development