24
1 Using neurocomputational modelling to investigate mechanisms underlying socio-economic status effects on cognitive and brain development Michael S. C. Thomas 1, 2 1 Developmental Neurocognition Lab, Centre for Brain and Cognitive Development, Birkbeck, University of London, UK 2 University of London Centre for Educational Neuroscience To appear in: S. Lipina, M. Soledad Segretin, M., & E. Pakulak (Eds.) (2019). Proceedings of the 12 th Mind Brain and Education School, Erice, Sicily: Neuroscience of poverty. CLACSO. Running head: Neurocomputational modelling of SES effects on development Address for correspondence: Prof. Michael S. C. Thomas Developmental Neurocognition Lab Centre for Brain and Cognitive Development Department of Psychological Science, Birkbeck College, Malet Street, Bloomsbury London WC1E 7HX, UK Email: [email protected] Tel.: +44 (0)20 7631 6386 Fax: +44 (0)20 7631 6312

Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

1

Usingneurocomputationalmodellingtoinvestigatemechanisms

underlyingsocio-economicstatuseffectsoncognitiveandbrain

development

MichaelS.C.Thomas1,2

1DevelopmentalNeurocognitionLab,CentreforBrainandCognitive

Development,Birkbeck,UniversityofLondon,UK2UniversityofLondonCentreforEducationalNeuroscience

Toappearin:S.Lipina,M.SoledadSegretin,M.,&E.Pakulak(Eds.)(2019).

Proceedingsofthe12thMindBrainandEducationSchool,Erice,Sicily:

Neuroscienceofpoverty.CLACSO.

Runninghead:NeurocomputationalmodellingofSESeffectsondevelopment

Addressforcorrespondence:

Prof.MichaelS.C.ThomasDevelopmentalNeurocognitionLabCentreforBrainandCognitiveDevelopmentDepartmentofPsychologicalScience,BirkbeckCollege,MaletStreet,BloomsburyLondonWC1E7HX,UKEmail:[email protected].:+44(0)2076316386Fax:+44(0)2076316312

Page 2: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

2

Abstract

Thischapterproposestheutilityofonetoolwithincognitiveneuroscience–neurocomputationalmodelling–forunderstandingthemechanismsthatunderlietheeffectsoflowsocio-economicstatus(SES)oncognitiveandbraindevelopment.ThelargeempiricalliteratureinthisfieldmainlycomprisescorrelationaldatalinkingmetricsofSEStocognitiveoutcomes,educationaloutcomes,andmeasuresofbrainfunctionandstructure.Mechanisticmodelsarerequiredtounifythesedataandprovideafoundationforeffectiveintervention.Amulti-levelartificialneuralnetworkmodelofcognitivedevelopmentisdescribedthatsimulateseffectsofSESintermsofdifferencesincognitivestimulation,againstabackgroundofgeneticvariationincognitiveabilityacrossapopulation.Fiveempiricaleffectsaresimultaneouslycapturedbythemodel:gapsinIQacrossSESthatwidenwithdevelopment(vonStumm&Plomin,2015),increasingrestrictiveeffectsoflowSESonchildrenwithearlyhighcognitiveability(Feinstein,2003),highheritabilityofcognitiveability(Plominetal.,2016),geneticeffectsonsocialmobility(Ayorechetal.,2017),andnon-lineareffectsofSESonmeasuresofbrainstructure,suchascorticalsurfacearea(Nobleetal.,2015).Implicationsandlimitationsofthemodelarediscussed.Computationalmodelsareavaluabletooltocomplementothercognitiveneurosciencemethodsforunderstandingcausalpathwaysofpovertyoncognitiveandbraindevelopment.Keywords:socio-economicstatus;computationalmodelling;artificialneuralnetworks;cognitivedevelopment;behaviouralgenetics;brainimaging

Page 3: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

3

Povertyisaboutpeople’slives.Inequality,oneofitsmajordrivers,isasocialissue.Cognitiveneuroscientistshavebecomeincreasinglyinterestedinhowbeingraisedinpovertyimpactschildren’sbrainandcognitivedevelopment.Buthowcanitbeusefultoreducepeopletoinstancesofindividualbrainfunction?Povertyistheresultofsocialstructuresandthereforeafocusonneurosciencewouldappeartobeadistraction(Farah,2017).

Thereareatleastthreereasonswhyacognitiveneuroscienceapproachmaybeuseful.First,asweshallsee,socioeconomicstatus(SES)–typicallymeasuredbyacombinationoffamilyincome,parentaloccupation,andparentaleducation–hasbeenfoundtocorrelatewithdifferencesinbrainstructure,brainfunction,cognitiveability,andeducationalachievement.However,manyfactorsco-occurwithlowSES(see,e.g.,Hackmanetal.,2015).Mothersmaybemorestressed,havepoorerdiets,andmoredrugexposurewhilepregnant;childrenmayberaisedinlessnurturing,morepolluted,andmoredangerousenvironments;theremaybelesssocialorneighbourhoodsupport,poorerschools,andlesssupportiveattitudestoeducation;childrenmayhavefewerresourcesandopportunitiesforcognitivestimulationandlearning.Thisarrayoffactorsmaynotallbeequallyresponsibleforproducinghealth,cognitive,andeducationaloutcomes.IfthebiologicalcausalpathwaysofSESeffectsareidentified,thiscanhelptotargetthemostefficientinterventionstoalleviatethedownstreameffectsofpoverty.Suchinterventionsoffershort-termmeasures,whilethelonger-termsocialgoalofreducingpovertycanbepursued.

Second,thereisastraightforwardsenseinwhichevidencethatpovertyaffectsthebraininmeasurablewaysisapowerfulmessagetopolicymakers.Abrainimageisworthathousandwords.Braindata,however,representadouble-edgedsword,becausepolicymakersmaybeliabletothinkthateffectsobservedonbrainstructureandfunctionarethenimmutable.Theyarenot,becauseweknowthatthebrainisplastic,andbehaviouralinterventionscanimproveoutcomes.Astudyofbrainmechanismsmustalso,therefore,emphasisethismessageandseektoidentifypathwaystoremediateobserveddeficits.

Third,workineducation,thesocialsciences,andthecognitivescienceshasgeneratedalargebodyofempiricaldataonoutcomesthatarecorrelatedwithSES.Butthesecorrelationaldataareopentomisunderstandingandmisinterpretationiftheunderlyingmechanismsarenotunderstood.Herearethreeexamplesofempiricaldataandthreerespectivepossibleinterpretations.

(1) Gapsinchildren’sIQs(cognitiveability)acrosslevelsofSESareevidentfrominfancyandthesegapswidenthroughchildhoodandadolescence(vonStumm&Plomin,2015).Someprocessmustbegettingworseacrosschildhoodtomakethegapswiden.

(2) Whenchildrenaresplitintobrighterandlessbrightgroupsaroundtwoyearsofageandthenfollowedup,overtimebrighterchildrenfrompoorerbackgroundsfallbackcomparedtotheirpeers,andbyage10,theyhavebeenovertakenbylessbrightclassmatesfromricherfamilies(Feinstein,2003).Withage,children’srankintheirclassisincreasinglyconstrainedbyenvironmentalfactorssuchasSES.Fromdatalikethese,policymakershaveconcludedthatearlypotentialislostthroughenvironmentalfactorssuchaspoorchildcare,poorearlyyearseducation,

Page 4: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

4

poorschoolingandlackofaccesstohealthservices(HMGovernment,2003).

(3) Onewaytomeasuresocialmobilityistoassesswhetherchildrenreacha

higherlevelofeducationalattainmentthantheirparents.Onthismeasure,however,atleasthalfthevariabilitycanbelinkedtogenes(Ayorechetal.,2017).Geneticswouldseemtoplacelimitsonhowmuchsocialmobilitycanbeinfluencedbyinterventions.Dogenesrestrictwhetherchildrencanescapepovertythrougheducation?

ThischapteroutlinesonemethodologywithincognitiveneurosciencetoinvestigatethemechanismsunderlyingSESeffectsonbrainandcognition:multi-levelneurocomputationalmodelsofcognitivedevelopment.Themodelpresentedherewasappliedtoeachoftheaboveempiricaleffects.Itgeneratedalternativeinterpretationsofeachsetofempiricaldata(Thomas,Forrester&Ronald,2013;Thomasetal.,2018;Thomas&Meaburn,2018).SESeffectsonbrainandcognitivedevelopmentWebeginwitha(very)briefoverviewoftheexistingempiricalliterature.WeknowthatdifferencesinSEShavemarkedeffectsoncognitivedevelopment(Farahetal.,2006).Theseeffectsarenotuniformacrossallareasofcognition,butareparticularlymarkedinthedevelopmentoflanguageandcognitivecontrol(oftenreferredtoas‘executivefunctions’).HackmanandFarah(2009)consideredthesedifferentialeffectsintermsofrelativelyindependent,anatomicallydefinedneurocognitivesystemsinthebrain.StrongesteffectsofSESwereobservedforthelanguagesystem(leftperisylvianregions)andtheexecutivesystem(prefrontalregions,decomposedintoworkingmemorysystem[lateralprefrontal],cognitivecontrol[anteriorcingulate]andrewardprocessing[ventromedialprefrontal]).SESexplained32%ofthevarianceinthelanguagecompositebehaviouralmeasure,6%incognitivecontrol,and6%inworkingmemory.

EffectsofSEShavebeenobservedonmeasuresofbrainstructureusingmagneticresonanceimaging.Forexample,Nobleetal.(2015)reportedeffectsoffamilyincomelevelsoncorticalsurfaceareainacross-sectionalsampleof1099childrenintheUSAaged3-20years.Therelationshipwasnon-linear,withthestrongesteffectsobservedinthelowestincomefamilies;differencesinincomeathigherlevelswereassociatedwithsmallerchangesincorticalsurfacearea.However,SESonlyexplainedafewpercentagepointsofthevariance;therewasagreatdealofvariationinbrainstructuremeasuresnotexplainedbySES.Notably,thestrongesteffectsofSESonbrainstructurewerefoundinregionssupportinglanguage,reading,executivefunctionsandspatialskills,consistentwithbehaviouralevidence.

SEShasalsobeenfoundtoimpactonneuraldevelopmentatmuchearlierages.Betancourtetal.(2016)examinedtherelationshipbetweenSESmeasures(income-to-needsratioandmaternaleducation)inasampleofAfrican-Americanfemaleinfantsaged5weeks.TheyobservedthatlowerSESwasassociatedwithsmallercorticalgreyanddeepgreymattervolumes,pointingtothebiologicalembeddingofadversityveryearlyindevelopment.

Page 5: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

5

Thelinkbetweenbrainstructureandfunctionisindirectandnotwellunderstood.Nevertheless,researchershaveobserveddifferencesinbrainfunctionassociatedwithSESbothwithfunctionalmagneticresonanceimaging(regionaloxygenatedbloodflowdifferences)andwithelectrophysiology(measurementofvoltagepotentialsonthescalpassociatedwithneuralactivity).Forexample,usingfunctionalmagneticresonanceimaging,Raizadaetal.(2008)foundthattheweakerlanguageskillsobservedin5-year-oldchildrenfromlowerSESbackgroundswereassociatedwithreducedhemisphericfunctionalspecialisationinleftinferiorfrontalgyrus.Specialisationtothelefthemisphereisamarkerofthefunctionalmaturationoflanguagesystems.Usingelectrophysiologywithasampleof3-8yearolds,Stevens,LauingerandNeville(2009)demonstratedreducedneuralsignaturesofselectiveattentioninchildrenfromlow-SESfamilies(indexedbymaternaleducation).Inanauditoryprocessingtaskwherethechildrenhadtoattendselectivelytooneoftwosimultaneouslypresentednarrativestories,theneuralprocessingdifferencesthatcharacterisedthelow-SESchildrenwererelatedspecificallytoareducedabilitytofilteroutirrelevantinformation.

Thesefewexamplesillustratethegeneralmethodsfromafastgrowingneuroscienceliterature(forwiderreviewsofstructuralandfunctionalbrainimagingandSESseeFarah,2017;Pavlakisetal.,2015).Importantly,cognitiveneuroscientistsdonotyetunderstandthecausalpathwaysofthesecognitiveandbraineffects,notleastbecausetheSESmeasurerepresentsadistalcauseanddoesnotisolatetheproximalcausesthatinfluencecognitiveandbraindevelopment.SomedifferencesassociatedwithlowSESmayrepresentdeficits(e.g.,poorerbraindevelopmentcausedprenatallybypoormaternalnutritionorpostnatallybychronicstress).Othersmayrepresentadaptations(e.g.,apparentpoorerselectiveattentionmayreflecthighervigilanceappropriatetoamoredangerousenvironment;apparentlyimpulsivitymayreflectmaximisingshort-termrewardsbecauselong-termrewardshaveprovedunreliable).

Hackman,FarahandMeaney(2010)classedpotentialcausalmechanismsintothreetypes,basedonresearchnaturalisticresearchwithhumansandexperimentalresearchwithanimalmodels:(1)thoseoperatingprenatallyonfoetaldevelopment,(2)thoseaffectingpostnatalparentalnurturing,and(3)thoseaffectingpostnatalcognitivestimulation.Explanatorymodelstendtodistinguishwhatislostfromlow-SESfamilies(resources,goodnutrition,learningopportunities)fromwhatisadded(stress,toxins,childhoodadversityexperiences)(Sheridan&McLaughlin,2016).Causalexplanationsarelikelytobecomplex:allthreeclassesoffactorscouldberesponsible;orcombinationscoulddifferperbrainsystem.Thecombinationoffactorsmaydependondetailsofthespecificpopulationandlocalfactors,intermsofabsolutelevelsofresources/poverty,wheretheeconomicandenvironmentalrestrictionslieinaparticularsociety,andtherelativelevelsofpoverty(inequality).

Againstthisbackgroundof(hopefully)remediableenvironmentaleffects,wealsoknowthatinWesternsocieties,afairproportionofchildren’svariabilityincognitiveandeducationaloutcomes,andindeedbrainstructure,canbepredictedbytheirgenotypes–thatis,abilitiesare‘heritable’(Plominetal.,2016).Thetermheritableisoftenmisunderstoodtorelatetonecessaryoutcomes(becausechildren’sgenesaren’tchangeable)butthisinterpretationisincorrect.Indifferentenvironments,geneticeffectsmaybeincreasedor

Page 6: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

6

decreased:observedgeneticeffectsarenotinevitableordeterministic.Theyshowwhatis,notwhatcanbe.Nevertheless,wecantakemeasuresofheritabilityascurrentsummarystatistics:giventhecurrentrangeoffamilyandeducationalenvironmentsthatchildrenareraisedin,andwhichshapetheworldtheycanexplore,heritabilityisastatisticthatcapturehowmuchvarianceiscurrentlybeingpredictedbygeneticsimilarity.

Therehasbeenaflurryofnewfindingswithrespecttolifeoutcomes,SESandbehaviouralgenetics.Forexample,researchershavereportedthateducationalachievementis‘highly’heritable,withasmuchas60%ofthevarianceinexaminationresultsin16yearoldsexplainedbygeneticsimilarity(Krapohletal.,2014).Thesegeneticeffectsappeargeneralacrosstopicsratherthanspecifictodifferentacademicsubjects(Rimfeldetal.,2015).DirectmeasuresofDNAvariationhavepointedtoregionsofthegenomeassociatedwithacademicachievement,albeitwithcoarseeducationalmeasuresastheoutcome(yearsofschoolingcompleted)andsmalleramountsofvarianceexplained(e.g.,11-13%variance;Leeetal.,2018).Notably,variationsinSEShavebeenreportedtopartlyalignwithgeneticvariation(e.g.,Trzaskowskietal.,2014).Moreover,socialmobility–whereanindividual’sSESdiffersfromthatoftheirparents,suchasineducationalattainment–hasitselfbeenreportedaspartlyheritable,withonestudyobservingthatjustunderhalfofthevarianceinsocialmobilitywaslinkedtogeneticvariation(Ayorechetal.,2017),andanotherreportingthatdirectmeasuresofDNAvariationcouldexplainaround3%ofthevarianceinupwardeducationalmobility(Belskyetal.,2018).

Evidenceoftheroleofgeneticvariationininfluencingcognitive,educationalandlifeoutcomes,andofthepossiblecorrelationsbetweenthegeneticvariationandSESgradients,drivesthedebatebetweensocialcausationandsocialselectionaccounts(Farah,2017).Underasocialcausationaccount,SESeffectsandtheirpersistenceacrossgenerationsaredrivenbytheenvironmentsinwhichchildrenareraised.Underasocialselectionaccount,SES-relateddifferencesinbrainandcognitionareundergeneticcontrol,withpopulationstratificationofgenotypesaccordingtoSES.

Ourconcernhereisnotthecompetingmeritsoftheseaccounts,butmerelythechallengeposedbyrespectivedataontherolesofenvironmentalfactorsandgeneticfactorsonbrainandcognitivedevelopment.Howcanthesebodiesofempiricaldatabereconciledintoacoherentcausalaccount?Giventhecomplexityandmulti-facetednatureofbothbraindevelopmentandcognitivedevelopment,howcanwebegintoformulateandtestcompetingexplanationsforthepathwaysbywhichSESeffectsoperate–andtheirimplicationsforintervention?Evenunderasocialcausationaccount,onemustaccepttheroleofgeneticvariationincontributingtodifferencesinoutcomes.Evenunderasocialselectionaccount,onemustacceptthatdifferencesinexperienceswillinfluencedevelopment.NeurocomputationalmodellingOnemethodusedincognitiveneurosciencetoformulateandtestcausalaccountsiscomputationalmodelling.Modelscanbeformulatedatdifferentlevelsofdescription:ofindividualneurons,ofcircuitsofneurons,orofwholebrainsystems.Ineachofthesecases,modelsseektocaptureempiricalevidence

Page 7: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

7

onpatternsofbrainactivationoranatomicalstructure.Modelscanalsobeformulatedatacognitivelevel:althoughcertainconstraintsmaybeincludedfromneuroscienceaboutthenatureofcomputation,thetargetisthentocaptureempiricaldataonhigh-levelbehaviour.Multi-levelmodelsincludeconstraintsfromseverallevelsofdescriptionandseektocapturedatabothatthelevelofbrainandbehaviour(Thomas,Forrester&Ronald,2016).Modelsmaybeconstructedtosimulatethecharacteristicsofthestaticpropertiesofasystematagivenpointintime,ortheymaybeconstructedtocapturedevelopmentalchange,wheretrajectoriesofbehaviouraresimulatedastheyalterovertime(Elmanetal.,1996;Mareschal&Thomas,2007).

Howmightweconstructamulti-levelcomputationalmodeltoexplainSESeffectsonbrainandcognitivedevelopment?Minimally,weneedtostipulateaneutrallyconstraineddevelopmentalmechanismwhichacquiresatargetbehaviourthroughinteractionwithastructuredlearningenvironment;weneedtostipulatehowgrowthofthatdevelopmentalmechanismandinteractionswiththestructuredlearningenvironmentmightalterasaconsequenceofvariationsinSES;andweneedtostipulateseparatelyhowgeneticvariationmightalterthepropertiesofthedevelopmentalmechanism,forexampleintermsofhowitgrows,operates,andrespondstostimulation.Thomas,ForresterandRonald(2013)beganthislineofresearchbyconstructinganartificialneuralnetworkmodeloftheeffectsofvariationinSESonlanguageacquisition,focusingonthespecificdomainofinflectionalmorphology(thatis,alteringthesoundsofwordstochangetheirmeaning,suchasinformingthepasttenseofaverb).Themodelwasabletosimulatehowchildren’slanguageskillsalteredacrosstheSESgradient,aswellasgeneratingtestablepredictionsaboutchildren’slanguageoutcomes(seealso,Thomas&Knowland,2014;Thomas,2018,forthemodel’sextensiontoconsideringdelayandgiftedness).Thomas,ForresterandRonald(2016)andThomas(2016)showedhowthesamemodel,treatedmoreabstractly,couldbeextendedintoamulti-levelformat,toincorporateageneticlevelofdescriptionandindicesofbrainstructureaswellasbehaviour.Inthefollowingsections,wedemonstratehowthemodelcanbeappliedtoconsideringSESeffectsonbrainandcognitivedevelopment(Thomasetal.,2018;Thomas&Meaburn,2018).ModelassumptionsandsimplificationsAschematicofthemodelisshowninFigure1.Inthemodel,cognitivedevelopmentoccursthroughtheinteractionofanexperience-dependentmechanismwithastructuredlearningenvironment.Themechanismisanartificialneuralnetwork,whichembodiescomputationalconstraintsfromneuralprocessing(Elmanetal.,1996).Theseconstraintsare,respectively,anetworkofsimplenon-linearintegrate-and-fireprocessingunits,distributedrepresentationsofknowledge,associativeerror-drivenlearningalteringnetworkconnectivitystrengthsandunitthresholds,andnetworkdevelopmentincludingphasesofgrowthandpruning.Thestructuredlearningenvironmentisdrawnfromthefieldoflanguagedevelopment.Thesingleprocessingstructureisassumedtoliewithinalargercognitivearchitecturebutisnotintendedinthismodeltocorrespondtoanyspecificbrainregion.

Page 8: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

8

Themechanismlearnsinput-outputmappingsthatdrivebehaviourrelevanttoitsdomain.Accuracyofinput-outputmappingsisusedasameasureofbehaviouralperformance.Structuralpropertiesoftheartificialneuralnetwork,includingthetotalnumberofconnectionsandthetotalstrengthofexcitatoryandinhibitoryconnections,areusedasanaloguesofbrainstructuremeasuressuchascorticalthickness,corticalsurfacearea,greymattervolume,andwhitemattervolume(Thomas,2016).

Individualdifferencesfactors,suchasSESandgeneticvariationarenotconsideredinisolationbutintermsofhowtheymodulatetheabovespecies-universalmechanismsthatunderpindevelopmentacrossallchildren.Inthissense,themodelconstruesindividualdifferencesasoperatingwithinadevelopmentalframework(Karmiloff-Smith,1998).VariousoptionsareavailabletoimplementtheeffectofSES:asamodulationofthelevelofstimulationavailableinthelearningenvironment(seeThomas,Forrester&Ronald,2013);asamodulationofthegrowthofthenetworkanditsprocessingproperties;orbothoftheseeffectsoperatinginacorrelatedfashion(seeThomasetal.,2018).Eachnetworkrepresentsasimulatedchildundergoingdevelopmentinafamilyenvironment.Eachfamilyisassignedavalue,between0and1,torepresentitsSES,whichisthenusedtomodulatethelearningenvironmentorthenetworkstructure.

Geneticvariationisassumedtooperatebyinfluencingtheneurocomputationalpropertiesoftheprocessingmechanism,intermsofitscapacity,plasticity,andnoisinessofprocessing(thesearebroadcharacterisationsoftheroleofalargersetofparameters,showinTable1).Sincebehaviouralgeneticresearchoncognitionhasindicatedthatcommongeneticvariationamountstolargenumbersofsmallgeneticeffectsonawiderangeofneuralproperties,geneticvariationisimplementedviaapolygeniccodingscheme:anartificialgenomecontainssetsofgeneswhicheachinfluencevariationonaneurocomputationalproperty(14properties,eachinfluencedby8-10genes);thecombinationofsmallvariationsacrossalargesetofpropertiesproducesnetworkswithanormaldistributionoflearningproperties(Thomas,Forrester&Ronald,2016,fordetails).Thecombinationofsimulatedchildrenwithdifferentlearningabilities,interactingwithenvironmentswithdifferentlevelsofstimulation,producesapopulationofchildrenwithdifferentdevelopmentaltrajectoriesinbothbehaviourandbrainstructure.Atanypointindevelopment,cross-sectionscanbetakenofbehaviourorstructureacrossthepopulation,andcorrelationsderivedtoSESorgeneticvariation.

Page 9: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

9

Figure1.StructureofneurocomputationalmodelsimulatingSESeffectsoncognitiveandbraindevelopment.Anexperience-dependentdevelopmentalmechanism(artificialneuralnetwork)interactswithastructuredlearningenvironmenttoacquireacognitivebehaviour.Themulti-levelmodelembodiesconstraintsatthelevelofgenes,brainstructure(connections,units),behaviour,andenvironment.Individualdifferencesfactors(SES,geneticvariation)areconsideredwithrespecttohowtheymodulatespeciesuniversalmechanismssupportingcognitivedevelopment.SimulationdesignAsinglenetworkwastrainedonitsfamily-specificsetofinput-outputmappings.Peritssourcecognitivedomain,inthiscasetheinputswerephonologicalrepresentationsofverbstemsandtheoutputswereinflectedformsofEnglishverbs.Lifespandevelopmentcorrespondedto1000exposures(or‘epochs’)ofthenetworktothetrainingset.Thetrainingsetcomprisedamaximumof500input-outputmappings.Thedevelopmentof1000individualchildrenwassimulated.Genomeswererandomlyinitialisedtoproducegeneticvariationinlearningabilityacrossthepopulation.Pairsof‘twin’networkswerecreatedwhicheithersharedthesamegenome(identical)orshared50%ofgenesonaverage(fraternal)andtwinpairsraisedinthesamefamily.Thisdesignenabledtheuseoftwincorrelationstocomputeheritabilitylevels.SESwasallowedtovarywidelyacrossfamiliestocapturethepotentialeffectsofpoverty.Inthesimulationsdescribedhere,SESwasimplementedasmodulationofthelevelofstimulationinthelearningenvironment,andwasallowedtovarybetween0and

StructuredlearningEnvironment

Experience-dependentdevelopmentalmechanismExperiencemodifiesprocessingStructurewhichmodifiesfunction

Behaviourdevelopsfrominteractionofmechanismwithenvironment

Geneticvariation

Socioeconomicstatus

(maybecorrelated)

Potentiallyinfluencesgrowthofmechanism

Poten

tiallyinfluence

s

learningenviro

nment

Influencesgrowth,capacity,plasticity,maintenanceofmechanism

Individualdifferencesfactors Speciesuniversalfactors

Page 10: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

10

1.Afamilywithavalueof0.6wouldgenerateatrainingsetthatonlycontaineda(randomlysampled)subsetof60%ofthefulltrainingset(seeThomas,2016,forfurtherdetails,includingspecificationofneurocomputationalpropertiesandcalibrationoftheirrange;resultsarereportedfortheG-wideE-wideconditioninthatpaper).Simulation1:SESeffectsonIQchangeacrossdevelopmentThomasetal.(2018)firstconsidereddevelopmentaltrajectoriesofbehaviour.Thepopulationwassplitintothreegroups,thoseintheupperquartileofSES(trainingsetswith>75%ofavailableexperiences),thoseinthemiddletwoquartiles,andthoseinthelowestquartile(<25%ofavailableexperiences).Figure2(a)showsthelatentgrowthtrajectoriesofIQforchildrenfromlow,middle,andhighSESgroupsintheempiricaldataofvonStummandPlomin(2015),foraroundfifteenthousandUKchildrenfollowedfrominfancytoadolescence.Itshowsdivergingtrajectorieswithage.TheSESgapwidens.Figure2(b)showssimulateddataofIQscoresinthemodel,whereIQwascomputedaccordingtothepopulationdistributionateachmeasurementpoint[IQscore=((individualperformance–populationmean)/populationstandarddeviationX15)+100].Figure2(c)showsthedevelopmentaltrajectoriesofperformancewithoutthetransformationtoIQscores.Thesimulationisabletocatchthelowerinitiallevelsofperformanceattheyoungestage,aswellasthedivergenceofthetrajectoriesacrossdevelopmentaltime.

OnemightconcludefromtheempiricaldatathattheconditionsproducingSESdifferencesincognitivedevelopmentmustworsenovertimetoproducethedivergence.ThesimulationsreproducedthedivergingpatternwithaconsistentSESeffectovertime.Inthemodel,divergenceoccurredduetonon-lineartrajectoriesofdevelopment.IncreasinggapsbetweenSESgroupsdonot,then,necessarilyimplyworseningSEScausalfactors.

Page 11: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

11

Figure2.(a)EmpiricallongitudinaldatafromaUKsampleoftwins(N=14,853children)plottingIQchangeoverdevelopmentfrominfancytoadolescence,splitbysocioeconomicstatusandshownseparatelybygender(reproducedwithpermissionfromvonStumm&Plomin,2015).HighSES=>1standarddeviation(SD)aboveSESmean;low=<1SDbelowSESmean;middle=<1SDaboveSESmeanand>1SDbelowSESmean.(b)SimulationdataplottingIQchangeacrosschildren’sdevelopmentwhereSESiscapturedbydifferencesincognitivestimulation.HighSES=upperquartile,MiddleSES=middletwoquartiles,LowSES=lowerquartile.(c)Equivalentmeanperformanceontask(proportioncorrect)forsimulatedSESgroups.(a)(b) (c)Simulation2:SESanddevelopmentaleffectsonpopulationrankorderThomasandMeaburn(2018)usedthesamemodeltosimulatetheanalysisreportedbyFeinstein(2003).Theempiricaldatafromthe1970BirthCohortSurveyarere-plottedinFigure3.Around1,300UKchildrenwereclassifiedintohigh(upperquartile)andlow(lowerquartile)cognitiveabilityat22monthsand

80

85

90

95

100

105

110

115

120

25 50 100 250 500 1000

IQ

Development

High

Middle

Low

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

25 50 100 250 500 1000

Performan

ce

Development

High

Middle

Low

Page 12: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

12

thenfollowedlongitudinallyto10yearsofage,withhighSES(top24%)andlowSES(bottom13%)subgroupstrackedseparately.Childrenaredepictedbythemeanpopulationrankorderoftheirgroup,where100ishighperformanceand1islowperformance.Somewherebetween5and10yearsofage,initiallyhigh-ability/low-SESchildrenfellbelowtherankoflow-ability/high-SESchildren.Followingpublicationofthesedata,thefindingswerecriticisedontwogrounds.First,thattheydonotrepresentarealeffectbutinsteadregressiontothemeanofinitiallyextremescoresthroughmeasurementerror(Jerrim&Vignoles,2013).Second,thatthemostemotivefinding,ofthecross-overofhigh-ability/low-SESandlow-ability/high-SESgroupsbetween5and10,washardtoreplicateanddependedoncut-offsusedtodefinegroups;forexample,crossing-overwasmorelikelyunderlessextremedefinitionsofhighandlowcognitiveability(Washbrook&Lee,2015;e.g.,Figure1).Figure3.Longitudinalempiricaldatafromthe1970BirthCohortSurveyfollowingthepopulationrankofchildrenoncognitiveabilitytasks,splitbyability(high,low)at22months,andfamilysocio-economicstatus(re-plottedfromFeinstein,2003).Y-axisshowsmeanpopulationrankofeachgroup,whereahigherrankmarksbetterperformanceonage-appropriatecognitivetests.

Figure4depictsthecomputationalsimulationofthesedata(Thomas&

Meaburn,2018).Earlyintraining(25epochsoutof1000epochs),simulatedchildrenweresplitintohighandlow‘ability’groupsbasedonbehaviour(accuracyofinput-outputmappings).Highabilitywasdefinedaspopulationrank>650(where1000isgood,1ispoor),lowabilityaspopulationrank<350.ThesegroupsweresubdividedbySES,asameansplit(simulatedSESvaried0to1;highSES>.5,lowSES<.5).Performanceofthegroupswasthenfollowedoverdevelopment.Figure4(a)depictsthemeanpopulationrankofeachgroup.AsintheFeinstein(2003)data,high-ability/high-SESandlow-ability/low-SESgroupsbroadlyheldtheirmeanrank.High-ability/low-SESshoweddecliningrankand

0

10

20

30

40

50

60

70

80

90

100

22 40 60 120

Averagepo

sitio

ninth

edistrib

ution

MonthsofAge

HighSES,HighAbilityat22m(n=105)

HighSES,LowAbilityat22m(n=55)

LowSES,HighAbilityat22m(n=36)

LowSES,LowAbilityat22m(n=53)

Page 13: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

13

low-ability/high-SESshowascendingrank,suchthatthegroupsconverged.Notably,theydidnotcrossover.Figure4(b)showsthesamedatabutforperformance.Itisincludedtoemphasisethatweareobservingmodulationsindevelopmentaltrajectories,andthatchangesinrelativerankpositionsmayexaggeratesmalldifferencesinindividualswhoareneverthelessallshowingdevelopmentalimprovementswithage.

Cruciallyhere,therewasnonoiseinthemeasurementofperformanceinthegroups.Theconvergenceofthetrajectories,atleastinthesimulation,cannothaverisenfromregressiontothemeanfollowingmeasurementerror(Jerrim&Vignoles,2013).Itisarealreflectionoftheoperationofconstraintsondevelopment.Figure4(c)takesthesamepopulationofchildrenbutnowaltersthedefinitionofhighandlowabilitytobelessextreme(highability:populationrank>500;lowability:populationrank<500)andthedefinitionofSESmoreextreme(high:SES>.75;low:SES<.25).Nowthetrajectoriesofhigh-ability/low-SESandlow-ability/high-SESdidcrossover.Thesimulationscapturedtheempiricalobservationthatthecrossoverpatternissensitivetogroupdefinitions(Washbrook&Lee,2015).

OnesimpleinterpretationoftheFeinsteindataisthatchangesinchildren’spopulationrankperformanceincognitiveabilitytestsstemfromenvironmentalcauses.Forthesimulation,wehaveavailabletousthefullsetofparametersthatinfluenceseachsimulatedchild’sdevelopmentaltrajectory:boththestipulatedenvironmentaleffect,intermsofthelevelofcognitivestimulation,andthestipulatedgeneticindividualdifferences,intermsoftheneurocomputationalpatternsofeachartificialneuralnetwork.Wecanthenusetheseparametersinamultipleregressionanalysistoseewhichpredictedpopulationrankchangeacrossdevelopment.

Wasalltherankchangeduetotheenvironmentalmanipulation?Table1showstheresultsofthismultipleregression,withtheenvironmentalparametermarkedinbold,andtherespectiveinfluenceofeachneurocomputationalparameterbelow.First,itisworthnotingthatinthesimulation,sinceenvironmentaldifferencesactedthroughoutdevelopment,theyinfluencedmeasuresofabilityevenattheearlystageofdevelopment,hereexplaining22.7%ofthevarianceatthefirsttimepoint.Earlymeasurementdoesnotgiveanunbiasedmeasureof‘genetic’abilityfreefromSESinfluences.Second,asexpected,environmentaldifferencesdidaccountforasignificantamountofvarianceinchildren’schangeinrankacrossdevelopment,upto10%atthefinaltimepoint.Butnotably,anumberofneurocomputationalparametersalsocontributedtochangeinrank.Theseincludedparametersinfluencingthecapacityandplasticityofthemechanism,andconsequentlytheshapeofthedevelopmentaltrajectory.

Inotherwords,themodelhighlightsthatchildrendevelopatdifferentrates.Somechildrenarelatebloomers,othersslowlaterindevelopment.Thiswillcausechangesinpopulationrankorderthatarenotsolelyrelatedtovariationsinenvironmentalstimulation.Itisnotnecessary,therefore,toconcludefromtheFeinsteinplotthattheonlycauseofchangesinchildren’spopulationrankisduetoenvironmentalcausessuchasSES.Inturn,thisimpliesthatnotallthechangeinrankwouldberemovedbyreducingSESdisparities.

Page 14: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

14

Figure4.Simulationsoflongitudinalchangeinrankandchangeinperformanceacrossdevelopmentinthecomputermodel.Rank1000=best,rank1=worst.SESparametervariesbetween1(highest)and0(lowest).(a)Meanchangeinrankforhighandlowabilitygroupsdefinedattime1(epoch25),wherehighisrank>650andlowisrank<350,splitbySES,wherehigh>.5andlow<.5.(b)Equivalentperformanceontask(proportioncorrect).(c)Meanchangeinrankwherehighabilityistime1rank>500andlowabilityisrank<500,andwherehighSES>.75andlowSES<.25.(d)Equivalentperformanceontaskforthesegroupcriteria.

(a)

0100200300400500600700800900

1000

25 50 100 250 500 1000

Meanrnakinpop

ulation

Epochsoftraining(development)

HighSESHighAbility

LowSESHighAbility

HighSESLowAbility

LowSESLowAbility

00.10.20.30.40.50.60.70.80.91

25 50 100 250 500 1000

Meanpe

rforman

ceontask

Epochsoftraining(development)

HighSESHighAbility

LowSESHighAbility

HighSESLowAbility

LowSESLowAbility

01002003004005006007008009001000

25 50 100 250 500 1000

Meanrnakinpop

ulation

Epochsoftraining(development)

HighSESHighAbility

LowSESHighAbility

HighSESLowAbility

LowSESLowAbility

00.10.20.30.40.50.60.70.80.91

25 50 100 250 500 1000

Meanpe

rforman

ceontask

Epochsoftraining(development)

HighSESHighAbility

LowSESHighAbility

HighSESLowAbility

LowSESLowAbility

(c)

(b) (d)

Page 15: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

15

Table1.Levelofenvironmentalstimulationandneurocomputationalparametersaspredictorsofdevelopmentalchangeinthemodel,measuredbyindividual’schangeinpopulationrankperformanceacrossdevelopment(scoresshowstandardisedbetacoefficientsfromalinearregressionmodel).Neurocomputationalparametersarelabelledaccordingtotheirapproximateprocessingrole.Bothenvironmentalstimulationandnetworkparametersexplainvarianceinrankchange(environmentismarkedbybold).Therightmostcolumnindicatespredictorsofwhetheranindividual’sperformance(rank)asanadultexceedstherankofthequalityoftheirenvironment,asanindicatorofsocialmobility.Time1=25epochsoftraining,Time2=50,Time3=100,Time4=250,Time5=500,Time6=1000. PredictorsofdevelopmentalchangeinPopulation

rankagainstTime1

Finalrank

vs.SESrank

Parameter Neuralnetwork

processingrole

Time2 Time3 Time4 Time5 Time6

Modelfit(R2) 0.181* 0.312* 0.368* 0.379* 0.384* 0.466*

SES Environment 0.158* 0.274* 0.332* 0.337* 0.333* -0.361*

Hidden Units Capacity -0.069+ -0.089* -0.079* -0.07* -0.053+ 0.356*

Architecture Capacity -0.185* -0.212* -0.171* -0.142* -0.129* 0.297*

Sparseness Capacity 0.028 0.037 0.036 0.032 0.036 0.016

Pruning Onset Capacity 0.044 0.074* 0.077* 0.074* 0.067* 0.061*

Pruning

probability Capacity 0.021 0.017 0.004 -0.002 -0.006 -0.007

Pruning

Threshold Capacity 0.033 0.013 0.006 0.023 0.025 -0.002

Learning

algorithm

Capacity /

plasticity -0.064+ -0.074* -0.107* -0.119* -0.138* 0.172*

Learning Rate Plasticity -0.148* -0.159* -0.177* -0.186* -0.199* -0.004

Momentum Plasticity -0.077* -0.091* -0.109* -0.108* -0.105* -0.089*

Weight variance Plasticity 0.006 0.004 0.033 0.043 0.052+ -0.1*

Unit activation

function

Plasticity /

signal -0.107* -0.147* -0.178* -0.184* -0.188* -0.053+

Noise Signal 0.019 0.036 0.069* 0.101* 0.116* -0.143*

Response

threshold Signal -0.223* -0.292* -0.304* -0.308* -0.309* 0.11*

Weight Decay Signal -0.004 -0.015 -0.011 -0.003 -0.003 -0.015

+ p < 0.05 * p < .01

Page 16: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

16

Simulation3:GeneticconstraintsonsocialmobilityThemodelconsideredSESeffectsagainstthebackgroundofgeneticallyinfluencedvariationsinlearningability.Thus,thesesimulationswereabletocapturethehighheritabilityofbehaviour.Forexample,heritabilityofbehaviourshowninFigure4(a)atthefinalmeasurementpointwas51%underanadditivemodel,computedfromthetwindesign.Thegeneticcomponentalsoallowsthesimulationtoaddressdataonsocialmobility.Inthemodel,socialmobilityisdefinedasadevelopmentaloutcomethatisgreaterorlesserthantheSESofthefamilyinwhichthechildisraised(Thomas&Meaburn,2018).Thiscanbemeasuredasthedifferenceinpopulationrankorderofafamily’sSEScomparedtothesimulatedchild’spopulationrankorderabilityattheendoftraining.Forexample,iftheSESrankwas500andtheabilityrankwas600,thiswouldqualifyasupwardssocialmobility;iftheSESrankwas500andthefinalabilityrankwas400,thiswouldqualifyasdownwardssocialmobility.Table1,rightmostcolumn,showstheresultsofamultiplelinearregressionpredictingtherankdisparitymeasureofsocialmobilityfromeachsimulatedchild’sparameters.Notably,SESitselfpredictedareliableamountofthedisparitymeasure.MuchofthisrelationshipwasdrivenbynetworksthatfellbelowexpectedlevelsinhighSESenvironments,lessbynetworksthatfinishedaboveexpectedlevelsinlowSESenvironments.Severaloftheneurocomputationalparametersrelatingtothenetwork’scapacitywerereliablepredictorsofthedisparitymeasure.Theseindexedwhetherthenetworkhadthecapacitytobesttakeadvantageoftheinformationthatwasavailableintheenvironment.

Totheextentthatthecapacityoflearningmechanismsisgeneticallyinfluenced,thissimulationthereforecapturedgeneticinfluencesonperformanceandonsocialmobility.ItisthesamesimulationthatcapturedempiricaldataonwideningIQgapsfromSESacrossdevelopment.ThesamesimulationthatcapturedtherestrictiveeffectsofSESonchildrendeemedhigh-abilityearlyindevelopment.Thesediversebehaviouraleffectswerecapturedinasinglemechanisticframework.Simulation4:SESeffectsonbrainstructureCanthemodelalsocapturedataonbrainstructure?Thelinksbetweenmodelandbraincanonlybeweak,becausethemodelhasaverylimiteddegreeofbiologicalrealism,necessitatedbytherequirementtomakecontactwithhigh-levelbehaviour.Moreover,thereisstillcontroversyhowthephysicalpropertiesthatstructuralbrainimagingmeasuresrelatetocognitivefunction.Despitethefactthatcognitiveabilityshowsbroadlyamonotonicallyincreasingfunctionwithage,someofthebrainstructuremeasuresreducefrommiddlechildhoodonwards(greymattervolume,corticalthickness),whileothersincrease(whitemattervolume,corticalsurfacearea);andtheunderlyingbiologicalmechanismsarestillamatterofdebate(Natuetal.,2018;Nobleetal.,2015).

Themodeldidnotsimulatethegrowthofeachnetwork,rathercapturingvariabilityintheoutcomeofthegrowthamongstitsparametersintermsofnetworkarchitecture(pathwayslinkinginputandoutput),numberofprocessingunits,anddensenessofconnectivity.Itdid,however,simulateareductioninconnectivityfrommid-childhoodonwards,intermsofapruningprocesswithvariablytimedonsetthatremovedunusedconnections(seeThomas,Knowland

Page 17: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

17

&Karmiloff-Smith,2011).Fortheartificialneuralnetwork,twostructuralmeasuresofferedpossibleanaloguestobrainmeasures:thetotalstrengthofconnectionsinthenetworkandthetotalnumberofconnections.Duringtraining,thetotalstrengthincreasesasthoseusefulindrivingbehaviourarestrengthened,whilethenumberofconnectionsreducesasthosenotusefulfordrivingbehaviourareremoved.Thesetwonetworkmeasuresprovidepossibleanaloguestocorticalsurfacearea/whitematterdensityandcorticalthickness/greymatterdensity,respectively,byvirtueoftheirsimilardevelopmentaltrajectories.

Figure5takesamid-pointindevelopmentforthesimulatedpopulationconsideredintheprevioussections.Figure5(a)re-plotsdatafromasampleofover1000USchildrenaged3-20linkingcorticalsurfaceareatofamilyincome(Nobleetal.,2015).Asmallamountofvarianceisexplained,withanon-linearfunctionthatexhibitsstrongereffectsonbrainstructureatthelowestincomelevels.Figure5(b)plotstotalconnectionstrengthforthesimulatedpopulationagainstlevelofstimulation.Again,smallamountsofvarianceareexplained,andanon-linearfunctiongivesabestfit.Thus,thesamesimulatedpopulationthatcapturescross-sectionalempiricaldataonSESeffectsonbehaviourcanalsocapturecross-sectionalpatternsobservedinbrainstructuredata.

Themodelofferstwobenefitsatthislevel.First,itprovidesacandidatehypothesisaboutthefunctionalrelevanceofthebrainstructuremeasures–thattheyrepresentchangesofconnectivityarisingfromexperience-dependentdevelopmentalchange.Second,becausethefunctioningofanartificialneuralnetworkiswellunderstood–intermsofactivationsofnetworksofintegrate-and-fireneurons,andlearningalgorithmsthatupdateconnectivityandthresholds–itthendemonstrateshowindicesofnetworkstructureonlyserveasanindirectmeasureoffunction,andhowfunctionmodulatesstructureasaconsequenceof(variable)experience.

Page 18: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

18

Figure5.Empiricaldatare-plottedfromNobleetal.(2015)showingtherelationshipbetweenannualfamilyincome($)andcorticalsurfacearea(mm2)inasampleof1099USchildrenbetweentheageof3and20.(b)Computersimulationdatashowingtherelationshipbetweenlevelofcognitivestimulationintheenvironmentinwhichchildrenareraised,andthetotalmagnitudeofconnectionstrengthsineachartificialneuralnetwork,assessedatamid-pointindevelopment(500epochsoftraining).Bothplotsshowanon-linear(log)relationshipbetweentheenvironmentalmeasureandthestructuralmeasure,aswellasmuchunexplainedvariability(linearandnon-linearfitsareshown,alongwithrespectiveR2values).(a)(b)

y=5409.4x+6318.8R²=0.05492

y=1637.1ln(x)+10624R²=0.0593

0

5000

10000

15000

20000

25000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Magnitude

ofcon

nections

Environment(SES)

y=0.0368x+167071R²=0.0263

y=3057.5ln(x)+136686R²=0.03077

100000

120000

140000

160000

180000

200000

220000

240000

0 50000 100000 150000 200000 250000 300000 350000

MRIcorticalsu

rfacearea

Environment(Income$)

Page 19: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

19

DiscussionAmulti-levelneurocomputationalmodelwasabletocapturebothbehaviouraldataandbrainstructuredataontheeffectsofdifferencesinsocioeconomicstatusondevelopment.Itdidsowhilealsoincorporatingthecontributionofgeneticvariationtocognitivedevelopment,leadingtohighheritabilityofbehaviour;andbyassumingthatSESoperatesviadifferencesinlevelsofcognitivestimulation.Variationbetweenindividualswasconceivedasthemodulationoftrajectoriesofdevelopment,drivenbyspeciesuniversalmechanisms.

Inthesimulationdatapresented,SESwasimplementedasvariationsinthelevelofcognitivestimulation.However,amodellingframeworkprovidestheopportunitytoimplementandcomparealternativehypotheses,forexampleinhowwelltheycapturetheeffectsizeandshape(linear,log)ofSESeffectsonparticularmeasuresofbehaviourandbrainstructure.Thomasetal.(2018)comparedtwoalternativehypotheses:thatSESmayinsteadinfluencethegrowthofthenetworksthemselves(perthefindingsofBetancourtetal.,2016),andthereforeprocessingcapacity;orthatSESmayinfluencebothnetworkgrowthandcognitivestimulation,inacorrelatedmanner.Thecomputationalmodelthereforeprovidesafoundationtohypothesistestdifferentcausalaccountsofempiricaldata.

Thomasetal.(submitted)havearguedthatonceabasicdevelopmentalmodelofcognitivevariationexists,itprovidesthebasistoexploreinterventions,forexample,byalteringthequantityandqualityofcognitivestimulationthatindividualsexperience.Thenextstepforthemodel,then,istoexplorewhetherthegapsbetweenindividualsatdifferenceSESlevelscanbeclosedoreliminatedbyinterventionsthatequaliseenvironments,forinstancebysupplementingthestimulationreceivedbychildrenfromlow-SESfamilies.ThomasandMeaburn(2018)carriedoutthesesimulations,consideringtheextenttowhichopportunitiestoclosegapsdependedontheoriginofindividualdifferences(e.g.,howheritabletheywere)andwhetherinterventionsweremodulatedbychangesinplasticitywithage(Thomas&Johnson,2006).Thebroadpatternwasthatequalisedandenrichedenvironmentsimprovedpopulationmeansunderallconditions;whenheritabilitywashigher,improvementsweresmallerandgapsreducedless;butearlierinterventionsservedtoreducegapsmorethanlateinterventions.

Theresearchdescribedhereispresentedtoarguefortheutilityofneurocomputationalmodellingasoneresearchtooltofurthertheneuroscienceofpoverty.Oneshouldbecautious,however,toseesuchmodelsincontext.Modelsdonotdemonstratewhatisactuallythecase:theydemonstratethesufficiencyofparticularmechanisticaccountstoexplaintheobservedempiricaldata;andtherefore,indirectly,whatanygivenpatternofempiricaldatamustimplyaboutcausalmechanisms.Bydemonstratingthepossiblecausalexplanationsofdata,theydoatleastencouragetheavoidanceofmisinterpretationofthosedata.Forexample,thepatternofwideningIQgapsacrossSESgroupsacrossdevelopmentmightbeinterpretedtomeanthattheactionofSESdifferencesworsens;themodelshowedthepatternwouldemergeevenstaticcausalSESfactors.ThedeclineofpopulationrankforearlyhighabilitychildrenfromlowSESbackgroundscouldbeinterpretedtomeanthat

Page 20: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

20

populationranksareentirelydependentonenvironmentalfactors;themodelshowedthattheempiricaldataareconsistentwithalimitedroleofenvironmentinchildren’srespectiveabilities.TheinfluentialroleofSESoncognitivedevelopmentandeducationalattainmentmightbetakenassupportingasocialcausationaccountofSESdifferences,andoftheprimaryroleofenvironmentinchildren’soutcome.ThemodeldisplayedrealisticSESeffectsbothonbehaviourandnetworkstructurewhilstdisplayinghighheritabilityofindividualdifferences,evenindeedtheheritabilityofdifferencesinsocialmobility.

Clearly,themodelpresentedhereishighlysimplified.Whileitsharedsomeprinciplesofneuralprocessing,itisnotamodelofbrainfunction.Itisessentiallyamachine-learningmechanismthatacquiresasmallsetofinput-outputmappings,representingatbestasinglecomponentofalargersystem.AmorerealisticmodelofSESeffectsondevelopmentwouldneedtodepictagoal-oriented,adaptive,autonomousagent,witharepertoireofbehavioursthatcanalteritssubjectiveenvironment;toincludeseparatecognitive,affectiveandreward-basedaspects;andprovideapathwayfornon-cognitivedimensions(diet,chronicstress,fitness)toalteritsprocessingproperties.Andclearly,thereisagreatdealmoretophenomenasuchassocialmobility(andthesocietalstructuresthatsupportorhinderit)thannotionsofcognitivestimulationandpropertiesofdevelopmentalmechanisms.

Nevertheless,thekeymotivationforconstructingamodelofthecurrentlevelofsimplicityistoemphasisetheimportanceofderivingcausal,mechanisticaccountstoexplainthelargebodyofcorrelationalevidencethathasaccumulatedonhowSESisassociatedwithdifferencesincognitive,educational,andlifeoutcomes.Computationalmodellingisbutoneamongstseveralneurosciencemethodsthatcanshedlightonmechanism,methodssuchasbrainimaging,anatomy,animalmodels,andgenetics.MechanisticinsightsultimatelyprovidethebasistoderivetargetedinterventionsthatcanamelioratetheconsequencesofdifferencesinSES,andespeciallypoverty(Thomas,2017).Thepotentialofmechanisticinsightstoinforminterventionisthemotivatingfactorbehindtheinvolvementofneuroscienceinasocialissuesuchaspoverty–evenifthewiderambitionistoaltersocietalstructuresthatcontributetopovertyinthefirstplace.

Page 21: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

21

AcknowledgementsThisworkwassupportedbyMRCgrantMR/R00322X/1andaWellcomeTrust/BirkbeckISSFCareerDevelopmentAwardheldattheUniversityofWesternOntario,Canada.

Page 22: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

22

ReferencesAyorech,Z.,Krapohl,E.,Plomin,R.,&vonStumm,S.(2017).Geneticinfluenceon

intergenerationaleducationalattainment.PsychologicalScience,28(9),1302–1310.

Belsky,D.W.,Domingue,B.W.,Wedow,R.,Arseneault,L.Boardman,J.D.,Caspi,A.,…&Harris,K.M.(2018).Geneticanalysisofsocial-classmobilityinfivelongitudinalstudies.ProceedingsoftheNationalAcademyofSciences,Jul2018,201801238;DOI:10.1073/pnas.1801238115

Betancourt,L.M.,Avants,B.,Farah,M.J.,Brodsky,N.L.,Wu,J.,Ashtari,M.,&Hurt,H.(2016).Effectofsocioeconomicstatus(SES)disparityonneuraldevelopmentinfemaleAfrican-Americaninfantsatage1month.DevelopmentalScience,19(6),947-956.doi:10.1111/desc.12344.

Elman,J.L.,Bates,E.A.,Johnson,M.H.,Karmiloff-Smith,A.,Parisi,D.,&Plunkett,K.(1996).Rethinkinginnateness:Aconnectionistperspectiveondevelopment.Cambridge,MA:MITPress.

Farah,M.J.(2017).Theneuroscienceofsocioeconomicstatus:Correlates,causes,andconsequences.Neuron,96,September27,2017,56-71.

Farah,M.J.,Shera,D.M.,Savage,J.H.,Betancourt,L.,Giannetta,J.M.,Brodsky,N.L.,…&Hurt,H.(2006).Childhoodpoverty:Specificassociationswithneurocognitivedevelopment.BrainResearch,1110,166–174.

Feinstein,L.(2003).InequalityintheearlycognitivedevelopmentofBritishchildreninthe1970cohort.Economica,70(277),73–98.

HackmanD.A.,Gallop,R.,Evans,G.W.&Farah,M.J.(2015).Socioeconomicstatusandexecutivefunction:Developmentaltrajectoriesandmediation.DevelopmentalScience,18(5),686–702.

Hackman,D.A.,&Farah,M.J.(2009).Socioeconomicstatusandthedevelopingbrain.TrendsinCognitiveSciences,13(2),65-73.

Hackman,D.A.,Farah,M.J.&Meaney,M.J.(2010).Socioeconomicstatusandthebrain.NatureReviewsNeuroscience,11,651–659.

HMGovernment(2003).Everychildmatters.GreenPaper,Cm5860Jerrim,J.&Vignoles,A.(2013).Socialmobility,regressiontothemeanandthe

cognitivedevelopmentofhighabilitychildrenfromdisadvantagedhomes.JournaloftheRoyalStatisticalSociety:SeriesA(StatisticsinSociety),176(4),887-906.

Karmiloff-Smith,A.(1998).Developmentitselfisthekeytounderstandingdevelopmentaldisorders.TrendsinCognitiveSciences,2,389–398.doi:10.1016/S1364-6613(98)01230-3

Krapohl,E.,Rimfeld,K.,Shakeshaft,N.G.,Trzaskowski,M.,McMillan,A.,Pingault,J.B.,Asbury,K.,Harlaar,N.,Kovas,Y.,Dale,P.S.,&Plomin,R.(2014).Thehighheritabilityofeducationalachievementreflectsmanygeneticallyinfluencedtraits,notjustintelligence.Proc.Natl.Acad.Sci.USA111,15273–15278.

Lee,J.J.etal.(2018).Genediscoveryandpolygenicpredictionfromagenome-wideassociationstudyofeducationalattainmentin1.1millionindividuals.NatureGenetics,50,August2018,1112–1121.https://doi.org/10.1038/s41588-018-0147-3

Mareschal,D.,&Thomas,M.S.C.(2007).Computationalmodellingindevelopmentalpsychology.IEEETransactionsonEvolutionaryComputation

Page 23: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

23

(SpecialIssueonAutonomousMentalDevelopment),11,137–150.doi:10.1109/TEVC.2006.890232

Natu,V.S.,Gomez,J.,Barnett,M.,Jeska,B.,Kirilina,E.,Jaeger,C.,Zhen,Z.,Cox,S.,Weiner,K.S.,Weiskopf,N.,&Grill-Spector,K.(2018).Apparentthinningofvisualcortexduringchildhoodisassociatedwithmyelination,notpruning.bioRxiv368274;doi:https://doi.org/10.1101/368274

Noble,K.G.,Houston,S.M.,Brito,N.H.etal.(2015).Familyincome,parentaleducationandbrainstructureinchildrenandadolescents.NatureNeuroscience,18,773–778.

Pavlakis,A.E.,Noble,K.,Pavlakis,S.G.,Ali,N.,&Frank,Y.(2015).BrainImagingandElectrophysiologyBiomarkers:IsThereaRoleinPovertyandEducationOutcomeResearch?PediatricNeurology,52(4),383-388.

Plomin,R.,DeFries,J.C.,Knopik,V.S.,&Neiderhiser,J.M.(2016).Top10replicatedfindingsfrombehavioralgenetics.PerspectivesonPsychologicalScience,11(1),3–23.https://doi.org/10.1177/1745691615617439

Raizada,R.D.S.,Richards,T.L.,Meltzoff,A.,&Kuhl,P.K.(2008).Socioeconomicstatuspredictshemisphericspecialisationoftheleftinferiorfrontalgyrusinyoungchildren.NeuroImage,40(3),1392–1401.http://doi.org/10.1016/j.neuroimage.2008.01.021

Rimfeld,K.,Kovas,Y.,Dale,P.S.,&Plomin,R.(2015).Pleiotropyacrossacademicsubjectsattheendofcompulsoryeducation.ScientificReports,5,11713

Sheridan,M.A.&McLaughlin,K.A.(2016).Neurobiologicalmodelsoftheimpactofadversityoneducation.CurrentOpinioninBehavioralSciences,10,108–113.

Stevens,C.,Lauinger,B.,&Neville,H.(2009).Differencesintheneuralmechanismsofselectiveattentioninchildrenfromdifferentsocioeconomicbackgrounds:anevent-relatedbrainpotentialstudy.DevelopmentalScience,12(4),634–646.doi:10.1111/j.1467-7687.2009.00807.x

Thomas,M.S.C.(2016).Domoreintelligentbrainsretainheightenedplasticityforlongerindevelopment?Acomputationalinvestigation.DevelopmentalCognitiveNeuroscience,19,258-269.

Thomas,M.S.C.(2017).Ascientificstrategyforlifechances.ThePsychologist,30,22-26.

Thomas,M.S.C.(2018).Aneurocomputationalmodelofdevelopmentaltrajectoriesofgiftedchildrenunderapolygenicmodel:Whenaregiftedchildrenheldbackbypoorenvironments?Intelligence,69,200-212

Thomas,M.S.C.&Meaburn,E.(2018).Neurocomputationalmodellingofsocialmobility–Underwhatmodelsofindividualdifferencescaninterventionsnarrowthegaps?Manuscriptinpreparation,2018.

Thomas,M.S.C.&Johnson,M.H.(2006).Thecomputationalmodellingofsensitiveperiods.DevelopmentalPsychobiology,48(4),337-344.

Thomas,M.S.C.&Knowland,V.C.P.(2014).Modellingmechanismsofpersistingandresolvingdelayinlanguagedevelopment.JournalofSpeech,Language,andHearingResearch,57(2),467-483.

Thomas,M.S.C.,Coecke,S.,&Dick,F.(2018).Aneurocomputationalbasisforsocioeconomiceffectsonthedevelopmentofbehaviourandbrainstructure.Manuscriptinpreparation,2018.

Page 24: Using neurocomputational modelling to investigate ...193.61.4.246/dnl/wp-content/uploads/2019/01/Thomas_draft18_Modelling... · a great deal of variation in brain structure measures

24

Thomas,M.S.C.,Fedor,A.,Davis,R.,Yang,J.,Alireza,H.,Charman,T.,MastersonJ.,&Best,W.(submitted).Computationalmodellingofinterventionsfordevelopmentaldisorders.Manuscriptsubmittedforpublication,2018.

Thomas,M.S.C.,Forrester,N.A.,&Ronald,A.(2016).Multi-scalemodelingofgene-behaviorassociationsinanartificialneuralnetworkmodelofcognitivedevelopment.CognitiveScience,40(1),51-99.

Thomas,M.S.C.,Knowland,V.C.P.,&Karmiloff-Smith,A.(2011).Mechanismsofdevelopmentalregressioninautismandthebroaderphenotype:Aneuralnetworkmodelingapproach.PsychologicalReview,118(4),637-654.

Thomas,M.S.C.,Ronald,A.,&Forrester,N.A.(2013).Modelingsocio-economicstatuseffectsonlanguagedevelopment.DevelopmentalPsychology,49(12),2325-43.

Trzaskowski,M.,Harlaar,N.,Arden,R.,Krapohl,E.,Rimfeld,K.,McMillan,A.,...&Plomin,R.(2014).Geneticinfluenceonfamilysocioeconomicstatusandchildren’sintelligence.Intelligence,42,83–88.

vonStumm,S.&Plomin,R.(2015).Socioeconomicstatusandthegrowthofintelligencefrominfancythroughadolescence.Intelligence,48,30–36.https://doi.org/10.1016/j.intell.2014.10.002

Washbrook,E.&Lee,R.(2015).BeyondtheFeinsteinchart:InvestigatingdifferentialachievementtrajectoriesinaUScohort.LongitudinalandLifeCourseStudies,6(3),359-368.