Use fly genetics for study axonal grownth

Embed Size (px)

Citation preview

  • 7/24/2019 Use fly genetics for study axonal grownth

    1/11

    JournalofCellScience

    Using fly genetics to dissect the cytoskeletalmachinery of neurons during axonal growth andmaintenance

    Andreas Prokop*, Robin Beaven, Yue Qu and Natalia Sanchez-Soriano*

    Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK

    *Authors for correspondence ([email protected];[email protected])

    Journal of Cell Science 126, 23312341 2013. Published by The Company of Biologists Ltddoi: 10.1242/jcs.126912

    Summary

    The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. Forthis, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream ofthese signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss thefundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that

    regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into thecomplex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches,including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application ofcombinatorial genetics in the versatile genetic model organism Drosophila melanogasterhas started to contribute to the understandingof actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain howknowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such asaxon maintenance in higher animals and humans.

    Key words:Growth cone, Cytoskeleton, Axon, Drosophila, Actin, Microtubule, Brain disorders

    Introduction

    The cytoskeleton consists of actin, intermediate filaments (IFs) and

    microtubules (MTs), and has fundamental roles in virtually everyfunction of cells, including cell division, motility, adhesion, signalling,

    endocytic trafficking and transport, as well as in the regulation of celland organelle shapes and their distributions (Akhmanova and Stearns,

    2013). Naturally, this also applies to the nervous system where the

    cytoskeleton has essential roles during the development, function,

    regeneration and degeneration of neurons. Of the more than 200 entries

    on the OMIM (Online Mendelian Inheritance in Man) database forgenes encoding cytoskeleton-associated proteins, 44% have indexed

    links to human disorders, and 54% of these are linked to nervous

    system disorders, including neurodevelopmental disorders (e.g.

    lissencephalies, mental retardations), functional disorders (e.g.

    deafness) and a wide range of degenerative diseases (seesupplementary material Table S1). Therefore, research of the

    cytoskeleton provides unique opportunities to unravel fundamentalmechanisms of the nervous system, both in health and disease.

    It is currently little understood how cytoskeleton-associated

    proteins contribute to cellular mechanisms of neurons. For

    example, the systemic importance of certain MT-binding

    proteins, such as motor proteins and the structural protein tau,has long been recognised from their involvement in a broad

    spectrum of neurodegenerative diseases, and we know their

    principal molecular functions. However, we have yet to explain

    conclusively how they function within normal or diseased

    neurons (Hirokawa et al., 2010; Morris et al., 2011). Here, we

    argue that this is best performed starting with processes for whichthere is already an extensive body of knowledge about the

    cytoskeleton, in particular the growth of axons.

    Axons are slender neuronal extensions, which can be several

    metres long, and are often arranged into nerves or nerve tracts

    that provide essential information highways in the nervous

    system. The proper function of nervous systems requires axons to

    grow and wire up correctly during development or regeneration,

    and these connections need to be maintained for decades in the

    ageing body. Here, we review the current concepts for the

    cellular roles that actin and MTs have in axons and discuss

    important gaps in our understanding of how the cytoskeleton is

    regulated to this end. We argue that genetics provides important

    means to advance this understanding, and explain how studies

    using the genetic model organism Drosophila melanogastercanmake important contributions. We review recent advances with

    regard to actin and MT regulation during axonal growth in the fly

    and provide an example of how mechanistic understanding in one

    context can be used to identify mechanisms underpinning other

    processes, such as axon maintenance and neurodegeneration.

    The organisation of the cytoskeleton in axons

    Mature axons are the longest cellular entities that are produced by

    animals. They propagate electrical messages, which travel from

    the neuronal cell bodies towards the synaptic connections with

    their distant target cells, often several metres away. To maintain

    This is an Open Access article distributed under the terms of the Creative Commons AttributionLicense (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution

    and reproduction in any medium provided that the original work is properly attributed.

    Commentary 2331

    mailto:[email protected]:[email protected]://creativecommons.org/licenses/by/3.0http://creativecommons.org/licenses/by/3.0mailto:[email protected]:[email protected]
  • 7/24/2019 Use fly genetics for study axonal grownth

    2/11

    JournalofCellScience

    this unusual architecture, shafts of axons contain prominentbundles of parallel MTs, which provide structural support as well

    as the tracks for the vital long-distance cargo transport(Twelvetrees et al., 2012). Axonal MTs are discontinuous and

    are usually not attached to the centrosome (the main microtubuleorganizing centre of most cells); their plus ends mostly, but not

    entirely, point distally (Fig. 1A) (Ahmad et al., 1999; Baas and

    Lin, 2011;Basto et al., 2006;Stiess et al., 2010). The cortex ofaxon shafts is lined by short stabilised actin filaments ( Fig. 1A),which are organised into repetitive rings by the scaffolding

    protein spectrin and linked to the axonal cell membrane through

    ankyrins (Xu et al., 2013). Axons also contain a number ofdifferent IF proteins that can regulate the specific diameters of

    different axon classes (Perrot and Eyer, 2009).

    Axons are usually maintained for the lifetime of an organism,

    i.e. for decades in humans. It is therefore not surprising that axonaldecay is a characteristic feature in the ageing brain (Marner et al.,

    2003). Sites of severe disorganisation of axonal MT bundles

    (referred to as diverticula) are considered an important trigger ofsuch axon loss (Adalbert et al., 2009;Fiala et al., 2007). Axonal

    MT bundles are believed to be stabilised through structural MT-binding proteins (MTBPs), such as tau or MAP1B (Chilton and

    Gordon-Weeks, 2007). At the same time, there seems to be asteady and dynamic MT turnover, as suggested by continued MT

    polymerisation events in mature axons (Kollins et al., 2009). Suchdynamics might allow for structural plasticity, such as shortening

    or extension of the axon shaft (Kuppers-Munther et al., 2004;Lamoureux et al., 2010; Rajagopalan et al., 2010), pruning andregrowth of axons or formation of new side branches (Letourneau,

    2009), which are required for rewiring processes during learningand memory formation or the regeneration of damaged axons

    (Bradke et al., 2012;Saxena and Caroni, 2007).

    Cellular roles of the cytoskeleton during axonal

    development

    During development, axons are initiated as small neuriticprotrusions on the surface of neuronal cell bodies. For this,

    MTs in the neuronal cell bodies become stabilised and pushbeyond the cell cortex (Brandt, 1998). This is assisted by

    dynamic rearrangements of the cortical actin cytoskeleton toremove barrier function (Flynn et al., 2012; Neukirchen and

    Bradke, 2011; Saengsawang et al., 2012) and the formation offilopodia, which provide membrane protrusions into which MTscan extend (Dent et al., 2007;Goncalves-Pimentel et al., 2011).

    In typical vertebrate neurons, several neurites are formedsimultaneously on the cell body, but only one of these is

    selected as the axon. This selection process (referred to as neuronpolarisation) involves signalling cascades leading to the targeted

    Filopodia

    Engorging

    filopodium

    Engorging filopodium

    Cortical actin

    Cortical actin rings

    F-actinlattice

    F-actinbundle

    F-actinarc

    LamellipodiumSoma

    Axon

    CentrosomeMT polymerisation

    F-actin backflow

    Repulsivecue

    MT-destabi-lising drug

    MT-stabilisingdrugElectric field

    MTF-actinlattice

    F-actinbundle

    StabilisedMT

    Attractivecue

    or

    or

    or or

    Growthcone

    Nucleus

    A

    B

    E F-act F F-actC Splayed MT D F-act

    New axon segment

    Key

    Fig. 1. Principal organisation androles of actin and

    MTs in growing axons. (A) The figure shows the

    principal distribution and organisation of MTs and F-

    actin networks in the soma, axon and growth cone of a

    neuron that is exposed to an attractive guidance cue.

    Thetip of the axonalMT bundle forms the central zone

    of the growth cone from where splayed MTs emanate

    into the actin-rich peripheral zone (Dent et al., 2011).

    (B) Directed axon extension (growth cone turning).

    Splayed MTs become preferentially stabilised in acertain direction through guidance cues [or

    experimentally through unilateral exposure to

    MT-(de-)stabilising drugs or the application of an

    electrical field]. Additional MTs follow in that

    direction, leading to engorgement of membrane

    structures in thatarea and, eventually, the establishment

    of a new axon segment (Buck and Zheng, 2002;

    Lowery and Van Vactor, 2009;McCaig et al., 2002;

    Sabry et al., 1991;Tanaka and Kirschner, 1995;

    Tanaka and Kirschner, 1991). (C) Growthcone turning

    requires splayed MTs: low doses of MT-stabilising

    drugs suppress the occurrenceof splayed, side-stepping

    MTs(splayedMT2). Growthcones that are treated this

    way fail to show normal turning behaviour at repulsive

    borders and stall instead (Challacombe et al., 1997;

    Williamson et al., 1996). (D,E) Growth cone turning

    requires F-actin. When F-actin is destabilised through

    drugs (F-act2), MTs tend to be bundled and growth

    cones fail to turn at repulsive borders (Challacombe et

    al., 1996); they also no longer respond to unidirectional

    application of MT-stabilising drugs(Buck and Zheng,

    2002). (F) Growth cone turning towards the cathode in

    electrical fields (galvanotropism) does not require F-

    actin (McCaig, 1989); this turning could be mediated

    by MTBPs, which are attracted to the cathode through

    positive net-charge of their MT-binding domains, thus

    dragging the MTs along with them.

    Journal of Cell Science 126 (11)2332

  • 7/24/2019 Use fly genetics for study axonal grownth

    3/11

    JournalofCellScience

    localisation of cell polarity factors (Barnes and Polleux, 2009)and also depends on the specific stabilisation of MTs in theselected neurite (Brandt, 1998;Chen et al., 2013).

    Once established, axons grow along stereotypic paths to theirtarget cells, a process that is implemented by prominent hand-shaped growth cones at the axon tips. Growth cones are guidedtowards their specific target areas and cells through precise

    spatio-temporal patterns of chemical signals that are arrangedalong their paths (Tessier-Lavigne and Goodman, 1996). Manyguidance cues and their receptors have been identified and shownto mediate repulsion or attraction (Araujo and Tear, 2003;Huberet al., 2003), thus controlling growth cone behaviours, such asgrowth velocity, pausing, turning, retraction or collapse. Thesemorphogenetic movements downstream of guidance signallingare implemented by the prominent actin and MT cytoskeleton ofgrowth cones (Fan et al., 1993), which is arranged in a particularspatial geometry.

    The geometry of growth cones can be subdivided into an actin-rich peripheral zone and a MT-rich central zone (Fig. 1A), andthe area in which MTs and F-actin prominently overlap is oftenreferred to as the transition zone. The central zone of growth

    cones comprises the tips of the axonal MT bundles, and from heresingle MTs splay out into the peripheral zone. The peripheralzone consists of actin-rich membrane protrusions, which includefinger-like filopodia (containing parallel F-actin bundles) andveil-like lamellipodia (containing F-actin lattices; Fig. 1A).Filopodia and lamellipodia sense guidance cues by presentingtheir receptors on their surfaces. They undergo constant shapechanges, driven by continuous assembly of actin filaments at theleading edges, the retrograde flow of these filaments, and theirdepolymerisation and recycling further back in the transitionzone (Box 1). This actin dynamics allow filopodia to reach outinto the growth cone environment and act as signalling andadhesion sensors (Chien et al., 1993; Davenport et al., 1993;Dwivedy et al., 2007; Mattila and Lappalainen, 2008). They

    allow lamellipodia to act as dynamic sites of substrate adhesionand myosin-II-driven contraction and force generation, which areimportant in influencing MT behaviours during guided axonextension (Box 2).

    In current models of growth cone guidance (Fig. 1B) (Dentet al., 2011; Lowery and Van Vactor, 2009), external signalstrigger the directional stabilisation of single MTs in the

    peripheral zone. These stabilised MTs are then joined by theextension of the bulk of MTs from the central domain (a processreferred to as engorgement), thus giving rise to a new axonsegment. This elongation step is completed when lamellipodiaand filopodia relocate distally to the newly formed axon tip(Fig. 1B). In this model, MTs are the essential implementers ofaxon extension, whereas F-actin is required for the directionalityof this extension (through influencing MT behaviours; Box 2).Accordingly, blocking MT dynamics inhibits axon growth(Letourneau and Ressler, 1984; Sanchez-Soriano et al., 2010;Tanaka et al., 1995), whereas the pharmacological or geneticinhibition of actin polymerisation, either in cultured neurons orinvivo, does not usually suppress axonal growth per se, butabrogates growth cone turning and pathfinding (Fig. 1D,E) (Buckand Zheng, 2002; Challacombe et al., 1996; Chien et al., 1993;Kaufmann et al., 1998; Marsh and Letourneau, 1984; Sanchez-Soriano et al., 2010). This said, a directional movement of growthcones does not always require F-actin (Fig. 1F), as somesignalling mechanisms can target MTs directly. For example,

    GSK3-mediated phosphorylation of the MTBPs APC1, MAP1B

    and/or CLASP is known to directly regulate MT stability in

    growth cones (Hur et al., 2011; Lucas et al., 1998; Purro et al.,

    2008).

    Box 1. ABPs and MTBPs as essential regulators ofcytoskeletal dynamics

    MTs are stiff hollow tubes typically formed by 13 protofilaments

    (filamentous polymers ofa- andb-tubulin heterodimers) that grow

    and shrink primarily at their plus ends. Actin filaments are more

    flexible double-helical chains of actin monomers that maintain their

    equilibrium mainly by growth at plus ends and shrinkage at minus

    ends (Fletcher and Mullins, 2010; Hawkins et al., 2010; Stricker

    et al., 2010). Both have in common that they are polymers of

    repetitive building blocks (black helmet-like symbols in the figure)

    that are assembled in a polar fashion. Their dynamics are

    regulated in comparable ways through the following different

    classes of actin-binding proteins (ABPs) and MT-binding proteins

    (MTBPs) as illustrated in the box figure.

    (1) New actin filaments or MTs are generated through nucleation

    factors that catalyse the transition from mono- or oligomers to

    polymers; (2) plus-end dynamics, such as (de-)polymerisation,

    stabilisation, directionality and targeting is regulated by plus-end-

    binding proteins; (3) nucleation or (de-)polymerisation processes

    are further regulated by proteins that bind actin or tubulin

    monomers or oligomers and determine their availability, for

    example, SCAR or N-WASP activates Arp2/3 nucleation, APC1cooperates with mDia1 in nucleation, stathmin sequesters tubulin,

    profilin enhances actin polymerisation by ENAH (Bear and Gertler,

    2009; Okada et al., 2010; Pollitt and Insall, 2009; Steinmetz,

    2007); (4) proteins that bind along actin filaments or MTs can

    stabilise them against depolymerisation, cross-link them into

    bundles and/or networks, and/or link them to other cytoskeletal

    components, organelles or the cortex; (5) minus-end-binding

    proteins regulate stability versus (de-)polymerisation; (6,7) plus-

    and minus-end-directed motor proteins mediate filament

    contraction, the sliding along other cellular structures or

    filaments, or the transport of cargo (C in the figure) along F-actin

    or MTs; (8) different classes of proteins can sever or actively

    depolymerise F-actin or MTs, for example, cofilin depolymerises or

    severs pointed ends of F-actin, type 13 kinesins depolymerise MTs

    from the plus end, and katanin or spastin sever MT shafts ( Paket al., 2008; Conde and Caceres, 2009); (9) post-translational

    modifications (PTM) influence F-actin or MT stability and the

    interaction with certain ABPs and MTBPs (Fukushima et al., 2009;

    Janke and Bulinski, 2011;Terman and Kashina, 2013).

    91

    2

    6

    7

    85

    4

    3

    33

    C

    CPTM

    Nucleation

    G-actin or-tubulin-tubulin

    Polymer/network regulation

    Key

    Cytoskeletal machinery of neurons 2333

  • 7/24/2019 Use fly genetics for study axonal grownth

    4/11

    JournalofCellScience

    The importance and challenge of understanding

    cytoskeletal machinery

    Clearly, the cytoskeleton has essential roles during axonal

    growth, but we still do not understand how it is regulated to

    perform these functions. Different classes of actin-binding

    proteins (ABPs) and MTBPs are known to regulate cytoskeletaldynamics (Box 2); many of these are expressed in neurons

    (Table 1), and we often have a reasonable understanding of their

    molecular mechanisms, at least in vitro. However, we do not

    understand how these individual regulators functionally integrate

    into the common cytoskeletal machinery that ultimately

    implements neuronal behaviours. This deficit also leaves us

    with little means to explain the cellular aberrations causedby mutations of genes encoding ABPs or MTBPs that have

    been linked to brain disorders, including disorders of

    neurodevelopment and axonal growth (supplementary material

    Table S1) (Nugent et al., 2012;Tischfield et al., 2011).

    The need to understand cytoskeletal regulation at the cellularlevel in neurons and non-neuronal cells alike is a current problem(Fletcher and Mullins, 2010;Insall and Machesky, 2009). This isclearly reflected by the number of review articles that attempt to

    propose models explaining the functional integration ofcytoskeletal regulators (e.g. Conde and Caceres, 2009; Dentet al., 2011; Gallo, 2013; Lowery and Van Vactor, 2009; Pak

    et al., 2008). For example, there are mechanistic models aimingto explain how different classes of ABPs functionally combineduring filopodia formation (Mattila and Lappalainen, 2008) andmodels based on end-binding (EB) proteins that propose how anincreasing number of MT-plus-end-associating proteins canregulate MT dynamics (Akhmanova and Steinmetz, 2008;Akhmanova and Steinmetz, 2010) (see also Fig. 2). Currently,such models depend on knowledge gained from a broad rangeof different neuronal systems, and they therefore remainhypothetical and are difficult to test experimentally.

    In this Commentary, we promote strategic considerations that

    will help to overcome some of the current shortcomings inexplaining cytoskeletal machinery. We believe that strongeremphasis must be given to studying the various parts of

    cytoskeletal machinery consistently in the same neuronsystems, so that their functional links and interfaces can bedirectly assessed. These neuronal systems should not only beamenable to biochemical, biophysical and cell biologicalapproaches, but also to the use of combinatorial genetics,therefore allowing a systematic assessment of different genemanipulations or combinations of mutations in the same cells.Such a strategy will help us to integrate the knowledge we haveabout single cytoskeletal regulators so that we can develophigher-order concepts about the governance of the cytoskeletalmachinery during axon growth or in the context of braindisorders.

    Drosophilaas a model to study cytoskeletal machinery

    during axonal growthOne organism in which combinatorial genetics has been andcontinues to be most successfully applied to the study of complex

    biological problems is the fruit fly Drosophila melanogaster(Keller, 1996;Roote and Prokop, 2013). Work in Drosophila islow cost, impressively fast, and particularly amenable to geneticmanipulations and unbiased genetic screens (Sanchez-Sorianoet al., 2007). Accordingly, Drosophila research has been anincubator for new ideas and concepts in neurobiology, and workin the fly revealed many fundamental molecular and cellularmechanisms that have turned out to be conserved in higheranimals (Bellen et al., 2010). Work in Drosophila has madeimportant contributions to the understanding of axon growth,including the discovery and analysis of proteins involved in

    pathfinding, and the discovery of mechanisms underpinningpioneer guidance, nerve branching, target cell recognition andaxonal transport (Araujo and Tear, 2003;Astigarraga et al., 2010;Brochtrup and Hummel, 2011; Landgraf and Thor, 2006;Sanchez-Soriano and Prokop, 2005; Sanchez-Soriano et al.,2007;Zala et al., 2013).

    To study the cytoskeletal machinery during axon growth, flyneurons offer a number of useful features. First, most of the

    Drosophila ABPs and MTBPs display a high level of sequenceconservation with their mammalian counterparts, and they areusually expressed in the nervous system (Table 1) (Sanchez-Soriano et al., 2007). Second, cytoskeletal regulators tend to

    Box 2. How F-actin networks influence MTdynamics in growth cones

    N F-actin networks generate membrane protrusions on all sides

    of growth cones that can be invaded by MTs in any direction.

    This facilitates lateral extension and stabilisation of MTs as an

    important prerequisite for growth cone turning (see alsoFig. 1B).

    N F-actin networks can influence MT behaviours mechanically

    (Lee and Suter, 2008;Schaefer et al., 2002) (see alsoFig. 1A).

    Thus, MT extension is antagonised by F-actin backflow or

    through the formation of transverse bundles (arcs) that form

    road-blocks. MT extension can be promoted and guided

    through the formation of radial F-actin bundles as tracks for MT

    elongation. MTs can be pushed laterally or medially through

    actomyosin contractions. Finally, MT extension can be

    channelled into certain directions through coordinated loss of

    F-actin from local spots within lamellipodia.

    N Actin networks form scaffolds that serve as a platform for ABPs.

    Some of these ABPs influence MT behaviours through mediating

    actinMT linkage. This linkage can be direct through ABPs that

    also contain MT-binding domains [e.g. MAP1B, spectraplakins,

    coronin 7 (POD1 in Drosophila), cytoplasmic-linker-associatedproteins (CLASPs) or adenomatous polyposis coli (APC)

    (Bouquet et al., 2007;Moseley et al., 2007; Rothenberg et al.,

    2003; Sanchez-Soriano et al., 2009; Tsvetkovet al., 2007)]. Other

    ABPs are involved in indirect crosstalk with MTs by interacting

    with MTBPs. Reported examples are the ABP drebrin that is

    linked to the MTBP EB3, the ABP PPP1R9A (better known as

    spinophilin) that binds to DCX, IQGAP that interacts with CLIP-

    170, or functional interactions between the actin-binding motor

    protein myosin II and the MT-associated dynein motor protein

    complex (Bielas et al., 2007;Geraldo et al., 2008;Myers et al.,

    2006;Swiech et al., 2011).

    N Some ABPs can tether actin networks to transmembrane

    receptors when they are engaged with their extracellular

    ligands. This has been demonstrated for different classes of

    transmembrane receptors (Giannone et al., 2009;Moore et al.,2009; Moore et al., 2010). Such linkage of F-actin to the

    extracellular environment generates mechanical forces across

    the membrane, which can trigger intracellular signalling events

    (referred to as the clutch mechanism) that then can influence

    actin and MT dynamics (Suter and Forscher, 2000;Suter and

    Miller, 2011).

    Journal of Cell Science 126 (11)2334

  • 7/24/2019 Use fly genetics for study axonal grownth

    5/11

    JournalofCellScience

    display minimal redundancy in the fly genome. For example,eliminating the function of Ena/VASP requires a triple knockoutin mouse, whereas only a single gene needs to be removed in

    Drosophila(Goncalves-Pimentel et al., 2011;Kwiatkowski et al.,2007). Third, mutant alleles or other genetic tools are often

    readily available (McQuilton et al., 2012), and they can usuallybe combined in the same animal in a short time (Goncalves-Pimentel et al., 2011; Koper et al., 2012). Finally,experimentation is fast; axon extension can be studied in flyembryos after only half a day of development, and in primaryneurons after only 6 hours in culture (Prokop et al., 2012;Sanchez-Soriano et al., 2007).

    To study cytoskeletal regulation during axonal growth, geneticmanipulations of cytoskeletal regulators can be combined with a

    broad spectrum of morphological readouts for axon growth invivo (Sanchez-Soriano et al., 2007), including live imaging ofcytoskeletal dynamics (Mattie et al., 2010;Pawson et al., 2008).This repertoire can be further expanded when makingcomplementary studies in Drosophila primary neurons, whichgive access to quantitative measurements of filopodia andlamellipodia, retrograde F-actin flow, the organisation,stabilisation and polymerisation rates of MTs, as well as axonalgrowth rates (Prokop et al., 2012;Sanchez-Soriano et al., 2010).Such readouts are crucial to unravel how ABPs and MTBPsregulate the cytoskeleton in cells. Notably, cytoskeletal dynamics

    in fly neurons are similar to those of other animal neuronsystems, indicating that the underlying regulation is fundamentaland well preserved (Sanchez-Soriano et al., 2010). This said,there will be limitations when using neurons of this little insect

    because some aspects are different in vertebrate neurons;for example, the axon length and life time, the absence

    of neurofilaments and myelination, and their unipolarorganisation, including the spike-initiating zone, which islocated at the base of dendrites away from the soma and notnear the cell body as is the axon initial segment in vertebrates(Grubb and Burrone, 2010;Sanchez-Soriano et al., 2005). In the

    following sections, we will provide examples of work on axonalgrowth in the fly that has contributed new understanding ofcytoskeletal machinery.

    Use of the fly to unravel new ABP functions

    during axonal growth

    Within a few years, work in Drosophila growth cones hasidentified at least four new ABPs as actin regulators in neurons,including Shot, DAAM, Psidin and Canoe. Shot is the only

    Drosophila member of the spectraplakin family of actin- andMT-binding proteins with two close homologues in mammals,

    MACF1 (also known as ACF7) and dystonin (DST, also knownas BPAG1) (Suozzi et al., 2012). Both Shot and ACF7 promotefilopodia formation (Sanchez-Soriano et al., 2009). In Shot, thisfunction is relevant for axon guidance at the CNS midline, and itrequires binding of the two EF-hand domains to the putativetranslational regulator Extra bases (Exba, also known as eIF5C)(Fig. 2A) (Lee et al., 2007; Sanchez-Soriano et al., 2009), thus

    potentially contributing to local translation events in growthcones (Van Horck and Holt, 2008). DAAM (DAAM1 inmammals) is one of four Drosophila formins (Diaphanous,DAAM, Fhos and CG32138) reported to be present in thenervous system (Pawson et al., 2008; Prokop et al., 2011;Sanchez-Soriano et al., 2007). DAAM has now been shown to bethe essential formin in growth cones of embryonic neurons,where it promotes filopodia formation and axonal pathfinding in

    Table 1. Examples of evolutionary conserved MTBPs and ABPs in human and fly

    Cytoskeleton regulator class MTBPs ABPs

    Nucleators c-tubulin ring complex (cTub23Cand other components);doublecortin* (DCX-EMAP)

    Arp2/3 complex (Arpc1, Arp3, etc.); formins(DAAM, Fhos, CG32138, dia)

    Plus-end-binding proteins MAPFRE/EB* (eb1); MT-plus-end-tracking proteins (+TIPs);doublecortin* (DCX-EMAP); CKAP5/CHTOG/XMAP215*(msps)

    ENAH/VASP* (ena); formins (DAAM, Fhos,CG32138, dia); capping proteins* (cpa, cpb);adducins* (hts)

    Mono- or oligomer-binding proteins Stathmin/SCG10* (stai); DPYSL2/CRMP2* (CRMP); CKAP5/CHTOG/XMAP215* (msps); doublecortin* (DCX-EMAP);tub-specific chaperone E* (tbce); CLASP* (chb)

    WASF/SCAR/WAVE* (SCAR); WASL/N-WASP*(WASp); APC* (Apc); b4-thymosin/TMSB4X*(cib)a; profilin* (chic); twinfilin* (twf)

    Shaft stabilisers and cross-linkers MAPT* (tau); MAP2* (tau); MAP1B* (futsch); MACF1*;dystonin* (shot)

    Fascin* (sn); a-actinin* (Actn); plastin/fimbrin*(Fim); filamin* (cher); tropomyosin* (Tm1);moesin*, ezrin*, radixin* (Moe); a/b-spectrin* (a/b-Spec); drebrin* (CG10083); coronin* (coro,

    pod1); MLLT4/Afadin-6* (cno); CTTN*(Cortactin); PPP1R9A* (spinophilin)b

    Minus-end stabilisers c-tubulin ring complex (cTub23Cand other components);CAMSAP1* (Patronin)

    Tropomodulin* (tmod)b; Arp2/3 complex (Arpc1,Arp66B, etc.)

    Plus-end motors Type 1 kinesins (Khc, Klc, Pat1); type 2 kinesins (Klp64D,Klp68D, Kif3C, Kap3); type 3 kinesins (unc-104, Khc-73)

    Myosin XVA* (Myo10A); myosin VA* (didum);myosin II (zip, sqh)

    Minus-e nd motors cytopla smic dynein/dynactin (Dhc64C, ctp, sw, Gl, etc.); type13 kinesins/KIF2C/MCAK* (Klp10A, Klp59C, Klp59D)

    Myosin VI* (jar)

    Severers, de-polymerisers katanin* (Kat60); spastin* (spas); type 13 kinesins/KIF2C/MCAK* (Klp10A, Klp59C, Klp59D)

    Cofilin* (tsr); gelsolin* (Gel)

    Post-translational modifications(enzymes not listed)c

    GTP hydrolysis; acetylation; (poly-) glycylation; (poly-)glutamylation; de-tyrosination; de-glutamylation (D2 tubulin)

    ATP hydrolysis; potentially acetylation, arginylation,phosphorylation, etc.

    Some proteins fulfil more than one function and are repeated in different positions; terms highlighted with an asterisk are listed in OMIM, other terms use otherdescriptors for protein complexes or classes. Terms in brackets are the orthologous Drosophila genes with known functions and/or prominent expression in thenervous system, as indicated in FlyBase (McQuilton et al., 2012).

    aCib represents a triple-repeat of B4-thymosin.bNot declared as orthologues in FlyBase in spite of partial sequence homologies.cAs described byJanke and Bulinski, 2011; Terman and Kashina, 2013.

    Cytoskeletal machinery of neurons 2335

  • 7/24/2019 Use fly genetics for study axonal grownth

    6/11

    JournalofCellScience

    the central nervous system (CNS) (Goncalves-Pimentel et al.,2011; Matusek et al., 2008). Psidin (known as NAA25 inmammals) is the auxiliary subunit of the NatB acetylation

    complex required for protein acetylation (Stephan et al., 2012). Inaddition, it has been shown that Psidin can act outside this

    complex as an ABP that regulates actin dynamics both in neurons

    and in non-neuronal cells of Drosophila (Kim et al., 2011;Stephan et al., 2012). These studies show that Psidin antagonises

    F-actin stabilisation mediated by Tropomyosin 1 in lamellipodia,which is required for the pathfinding of olfactory neurons in the

    fly brain. Canoe and its mammalian homologue MLLT4 (alsoknown as afadin, AFD6) are PDZ-domain-containing ABPs thatlocalise to adherens junctions and have been shown to interact

    with profilin (Boettner et al., 2000;Lorger and Moelling, 2006;Sawyer et al., 2009). In Canoe-deficient embryos, axonal

    pathfinding at the CNS midline is impaired, and this aberration

    correlates with two growth cone phenotypes: an increase infilopodia numbers and a failure to localise Robo proteins

    (receptors that are important regulators of midline pathfinding)to filopodia (Slovakova et al., 2012). In this scenario, Canoe

    EB1Exba /eIF5C

    Tau

    DAAM

    Arp2/3

    Enabled

    Profilin

    CpA+B

    Psisin

    Tm1

    Sh

    ot

    Sh

    ot

    MAP1B

    GRDC-tail

    MtLSEFSR-rodplakinCH

    EB1MTsExba/eIF5CF-actin

    Axon extension

    FilopodiaLamellipodia

    Cortex

    Other MTs

    Apc

    Dynein

    Type 13 kinesins

    CLIP190

    CLASP

    XMAP

    DCX STMN

    Ssp2

    Actin binding

    MT binding

    EB1 binding (+TIP)

    Tubulin binding

    Other binding

    Actin regulatingOther regulatingprocessesSub-machinery

    2 Actin dynamics

    1 MT plus-end dynamics3 MTshaft

    stability

    MT growth

    -tubulin F-actin

    B

    A

    Key

    -tubulin

    Interactions

    Fig. 2. Roles of Shot in MT regulation at the interface with other classes of ABPs and MTBPs.(A) The functional domains of Shot (below the structure) and

    their reported molecular interactions (above the structure). CH, calponin homology domains; plakin, plakin-like domain; SR-rod, spectrin repeat rod; EF, EF-hand

    motifs; GRD, Gas2-related domain; MtLS, microtubule tip localisation sequence; C-tail, C-terminal tail. (B) A close-up of a growth cone showing a single MT andthree different aspects of the cytoskeletal machinery (emboxed and numbered), all of which are being studied in fly neurons. (1) Regulation of MT plus-end

    dynamics; it includes end-binding proteins (here EB1) which directly bind MT plus ends and recruit MT-plus-end-tracking proteins (+TIPs) (blue arrows; see

    Akhmanova and Steinmetz, 2008;Etienne-Manneville, 2010). Shot has to compete with other +TIPs for binding to a limited pool of EB1; when bound to EB1, it

    links MT plus ends to F-actin (via its N-terminal CH domains) and guides polymerising MT plus ends in the direction of axon growth. The proper localisation of

    Shot at MT plus ends also requires direct association with MTs through its GRD and C-terminal tail. CLASPs and XMAP bind tubulin and promote MT

    polymerisation; CLASPs are +TIPs whereas XMAP215 (XMAP) binds MT plus-ends either directly or through +TIPs: Small spindles 2 (Ssp2) in Drosophilaand

    Slains in mammals (not shown;Al-Bassam and Chang, 2011;Currie et al., 2011;van der Vaart et al., 2012;Li et al., 2011; Lowery et al., 2010). Stathmins

    (STMN) sequester tubulin (Manna et al., 2009), and doublecortin (DCX) binds MT plus ends independently (Bechstedt and Brouhard, 2012). (2) Actin dynamics.

    The Shotactin linkage is influenced by actin regulators (red stippled arrows) that coordinate the dynamics and structure of F-actin networks (cortex, lamellipodia,

    filopodia; Pak et al., 2008;Xu et al., 2013). In the context of filopodia formation, Shot contributes to the regulation of F-actin through binding of Exba/eIF5C at its

    EF-hand motifs (Lee et al., 2007;Sanchez-Soriano et al., 2009). (3) MT shaft stability. In addition, Shot binds along MT shafts and stabilises them independent of

    its linkage to F-actin (Sanchez-Soriano et al., 2009;Alves-Silva et al., 2012). Other MT shaft binders are Tau which protects MTs against the MT-severing protein

    Katanin in axons (not shown;Qiang et al., 2006), and mammalian MAP1B can cross-link MTs as well as mediate actin-MT linkage during axon growth ( Bouquet

    et al., 2007;Riederer, 2007). Tau, MAP1B and Shot (in an EB1-independent mode) influence MT polymerisation kinetics through yet unknown mechanisms

    (stippled grey arrow;Alves-Silva et al., 2012;Feinstein and Wilson, 2005;Tymanskyj et al., 2012).

    Journal of Cell Science 126 (11)2336

  • 7/24/2019 Use fly genetics for study axonal grownth

    7/11

    JournalofCellScience

    might regulate the number of filopodia directly through itsfunction as an ABP, or indirectly through acting as a scaffold forRobo receptors, since loss of Robo has been previously shownto lead to an increase in the number of filopodia (Murray andWhitington, 1999).

    Use of the fly to study the functional integration

    of ABPs during filopodia regulationDrosophila growth cones have been used to carry out loss-of-function analyses of other ABP-encoding genes, including Arpc1(ARP2), Arp3 (ARP3), capping protein A (CAPZA), capping

    protein B (CAPZB), chickadee (profilin), enabled (ENAH, alsoknown as VASP), singed (fascin) and tropomyosin 1 (TPM1)(human homologues are given in the brackets) (Goncalves-Pimentel et al., 2011;Kraft et al., 2006;Sanchez-Soriano et al.,2010). All these data and tools can now be combined tounderstand the functional networks of ABPs, as is best illustratedfor studies of filopodia formation. Filopodia are prominent actin-

    based structures, and data from numerous studies in a wide rangeof cellular models have led to the formulation of two compositemodels of filopodia formation (Mattila and Lappalainen, 2008).

    In the convergent elongation model, Arp2/3 generates actinfilaments in lamellipodia, and ENAH/VASP aggregates their plusends to give rise to elongating filopodial bundles. In the de novonucleation model, formin molecules aggregate to generate

    clusters of new actin filaments, which then directly elongateinto parallel filopodial bundles.

    Drosophila neurons were used to test whether these two

    models co-exist in neurons. Single-mutant analyses of the factorsessential in these models (i.e. Enabled, the formin DAAM anddifferent Arp2/3 complex components) all caused a partial butsignificant reduction in filopodia numbers, in agreement with the

    potential co-existence of both models (Goncalves-Pimentel et al.,2011;Matusek et al., 2008). When loss of the Arp2/3 componentSop2 was combined with functional loss of DAAM in the same

    neurons (DAAM2/2 Sop22/2 double-mutant neurons), filopodiawere completely absent and F-actin levels were severely depleted(Goncalves-Pimentel et al., 2011). To our knowledge, a geneticcondition that depletes F-actin to this degree has not beenreported for other eukaryotic systems. It indicates that Arp2/3 andDAAM are the prevailing nucleators in embryonic Drosophilaneurons. The fact that the two nucleators enhance each others

    phenotypes indicates that they work in distinct complementaryfunctional pathways during filopodia formation. This isconsistent with the biochemical evidence that Arp2/3 andformins nucleate actin filaments through different molecularmechanisms (Chesarone and Goode, 2009; Mattila andLappalainen, 2008). However, it does not yet resolve whetherthese two nucleators contribute to two entirely separate processesof filopodia formation.

    To make this distinction, genetic interaction studies usingpartial loss of gene functions are very helpful. For example, inheterozygous gene constellation (i.e. one mutant and one normalgene copy), the levels of the proteins they encode tend to be onlymoderately reduced, and, typically, this reduction is not sufficientto cause a phenotype. Accordingly, neurons that are heterozygousfor DAAM, Sop2 or ena show normal filopodia numbers(Goncalves-Pimentel et al., 2011). However, any combinationsof these heterozygous conditions (transheterozygous mutantneurons: DAAM2/+ Sop22/+ or DAAM2/+ ena2/+ or Sop22/+

    ena2/+) become functionally rate-limiting and lead to a strong

    reduction in filopodia numbers (Goncalves-Pimentel et al., 2011).These findings are inconsistent with regard to whether twocompletely separate modes of filopodia formation exist, but dosuggest that the pathways downstream of the two nucleatorsconverge at some point. Therefore, these authors suggested amore general model of convergent elongation, in which not onlyArp2/3-derived but also DAAM-derived actin filaments can be

    used by Ena to be transformed into filopodial actin bundles(Goncalves-Pimentel et al., 2011). These examples illustrate howsystematic genetic analyses used in Drosophila neurons cancontribute to the formulation of new mechanistic models ofcytoskeletal regulation.

    Use of the fly to study mechanisms of actinMT

    linkage during axonal growth and maintenance

    ActinMT crosstalk is an important aspect of cytoskeletalregulation in growing axons, but its mechanisms are littleunderstood (Box 2). Promising contributions have been made bywork on the above mentioned spectraplakins Shot and ACF7.Besides filopodia-associated phenotypes, we have shown thatloss of Shot in fly neurons and loss of the mouse homologue

    ACF7 in mouse neurons result in another conserved phenotype disorganised axonal MT bundles that is coupled with reducedaxon growth (Sanchez-Soriano et al., 2009). Detailed work onShot has shown that these functions depend on actinMT linkage.

    Structurefunction analyses have revealed that functions of Shotin MT organisation depend on three simultaneous molecularinteractions (Fig. 2): (1) binding of its N-terminal calponinhomology domains to F-actin, (2) association to MTs throughtwo C-terminal domains (the Gas2-related domain and the

    positively charged C-terminal tail), and (iii) binding of C-terminal tail to EB1 (end-binding protein 1) at MT plus ends(Alves-Silva et al., 2012; Bottenberg et al., 2009; Lee andKolodziej, 2002; Sanchez-Soriano et al., 2009). These findingssuggest a model in which Shot binds to the plus ends of

    polymerising MTs and guides them along actin structures in thedirection of axon growth (Alves-Silva et al., 2012). This model isfurther supported by the observation that frequent off-trackextensions of MTs are seen during live imaging of shotmutantneurons; this can explain the observed MT disorganisation anddiminished axon growth (off-track MTs are less likely tocontribute to axon extension). The guidance model is alsosupported by shot-like MT-disorganisation phenotypes observedin EB1-deficient, as well as in shot2/+ eb12/+ transheterozygousmutant neurons (Alves-Silva et al., 2012), and, furthermore, isconsistent with proposed roles of ACF7 in guiding MT extensionalong actin stress fibres towards focal adhesions in non-neuronalcells (Kodama et al., 2004).

    Notably, the MT guidance model offers a promising molecularplatform for further research. On the one hand, it can be used tounderstand the roles of other cytoskeletal regulators during MTguidance, for example of ABPs or the various proteins that bindand regulate MT plus ends (see details in Fig. 2). On the otherhand, the MT guidance model suggests a potential mechanismcontributing to the maintenance of axons in the mature nervoussystem, as will be explained in the following.

    The second mammalian homologue of Shot, dystonin, isstrongly expressed in peripheral neural ganglia (Leung et al.,2001), which, in dystonin mutant mice, undergo a severeneurodegeneration at postnatal stages that is referred to asHSAN (hereditary sensory autonomic neuropathy) (Duchen et al.,

    Cytoskeletal machinery of neurons 2337

  • 7/24/2019 Use fly genetics for study axonal grownth

    8/11

    JournalofCellScience

    1963;Duchen et al., 1964). The underlying mechanisms remaininconclusive and were proposed to be associated with roles ofdystonin in intermediate filament organisation and axonaltransport, and in ER or Golgi dysfunction (Ferrier et al., 2013;Young and Kothary, 2007). We propose instead that HSAN

    pathology might be primarily caused by defects in MT guidanceand stabilisation on the basis of the following argument. Axonal

    MT bundles are believed to be stabilised through structuralMTBPs, such as tau or MAP1B (Fig. 2) (Chilton and Gordon-Weeks, 2007). At the same time, there appears to be a steadyand dynamic MT turnover, as suggested by continued MT

    polymerisation events in mature axons (Kollins et al., 2009).Spectraplakins can regulate both functions through twofunctionally conserved domains at their C-terminus: the Gas2-related domain can stabilise MTs against depolymerisation,whereas the C-terminal tail mediates the aforementioned bindingto EB1 required for MT guidance. These domains jointly mediatea robust association along the shaft and at the tip of MTs that isrequired for both MT guidance and stabilisation (Fig. 2) (Alves-Silva et al., 2012; Honnappa et al., 2009; Sun et al., 2001).Absence of either domain in Shot causes severe MT

    disorganisation and loss of MT stability in axons of developingfly neurons (Alves-Silva et al., 2012; Sanchez-Soriano et al.,2009) and, in addition, mature sensory neurons of dystoninmutant mice, which are prone to degeneration display severe MTdisorganisation and loss of MT stability (Ferrier et al., 2013;Yang et al., 1999). Consistently, a recently reported frame-shiftmutation in the human dystonin gene functionally deletes theGas2-related domain and the C-terminal tail and causes a severeform of HSAN that mirrors the degenerative pathology of dystoninmutant mice (Edvardson et al., 2012). These data suggest thatspectraplakins perform similar MT-regulating functions during thedevelopment of fly neurons and the maintenance of sensorymammalian neurons. Severe MT disorganisation and instabilitycaused by absence of spectraplakins can, therefore, be expected to

    affect vital functions such as axonal transport and impactnegatively on neuronal survival (Sheng and Cai, 2012).

    This example shows how functional studies of cytoskeletalregulators during axon growth in the fly can provide new ideasand testable hypotheses for research on other aspects of neuronalcytoskeleton, even in other animals.

    Conclusions and future perspectives

    In this Commentary, we have discussed how systematic andcombinatorial genetic studies of different ABPs and MTBPs inthe neuronal system of the fly can improve our understandingof cytoskeletal regulation during a biological process such asaxon growth. Considering the high degree of evolutionaryconservation of actin, tubulin and their regulators, theenormous similarities of cytoskeletal dynamics in fly andvertebrate neurons, and the similarities of mutant phenotypesreported so far, we feel that insights gained in the fly system will

    be informative for cytoskeletal research in mammalian or othervertebrate neurons.

    Understanding the cytoskeletal regulation that underpinscellular behaviours will have important implications andapplications. For example, we still have little understanding ofhow signalling mechanisms instruct the cytoskeleton to influencegrowth cone behaviours (Huber et al., 2003). Knowing how thevarious ABPs and MTBPs that are targeted by particularsignalling events contribute to the cellular cytoskeletal

    machinery will greatly help to close this knowledge gap.Understanding these cellular roles of cytoskeletal regulators isalso the first step on the long path to developing mathematicalmodels that can describe the cytoskeletal dynamics that are at the

    basis of different cellular processes (Oelz et al., 2008), and it willfacilitate the introduction of systems approaches for cell biologyresearch (Liberali and Pelkmans, 2012). Furthermore, the

    principal strategies described here for axon growth can also beapplied to the investigation of the roles and regulation of thecytoskeleton in other relevant areas, such as synapse formation,axonal pruning and Wallerian degeneration, axon regenerationand neurodegeneration. Notably, for all of these processes,suitable Drosophila models have already been established, thushopefully paving the way for rapid progress (Bossing et al., 2012;Fang and Bonini, 2012; Gistelinck et al., 2012; Goellner andAberle, 2012;Jaiswal et al., 2012).

    Acknowledgements

    We would like to thank Tom Millard, Laura Anne Lowery, PhillipGordon-Weeks, Joszef Mihaly and Erik Dent for their very helpfuland constructive comments on this manuscript.

    Funding

    Authors on this Commentary were funded by the Biotechnology andBiological Sciences Research Council (BBSRC) [grant numbers BB/D526561/1, BB/I002448/1]. Deposited in PMC for immediate release.

    Supplementary material available online at

    http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.126912/-/DC1

    ReferencesAdalbert, R., Nogradi, A., Babetto, E., Janeckova, L., Walker, S. A.,

    Kerschensteiner, M., Misgeld, T. and Coleman, M. P. (2009). Severely dystrophicaxons at amyloid plaques remain continuous and connected to viable cell bodies.Brain 132 , 402-416.

    Ahmad, F. J., Yu, W., McNally, F. J. and Baas, P. W. (1999). An essential role forkatanin in severing microtubules in the neuron.J. Cell Biol. 145, 305-315.

    Akhmanova, A. and Stearns, T.(2013). Cell architecture: putting the building blockstogether. Curr. Opin. Cell Biol. 25 , 3-5.

    Akhmanova, A. and Steinmetz, M. O.(2008). Tracking the ends: a dynamic proteinnetwork controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9 , 309-322.

    Akhmanova, A. and Steinmetz, M. O. (2010). Microtubule +TIPs at a glance. J. CellSci. 123, 3415-3419.

    Al-Bassam, J. and Chang, F. (2011). Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol. 21 , 604-614.

    Alves-Silva, J., Sanchez-Soriano, N., Beaven, R., Klein, M., Parkin, J., Millard,

    T. H., Bellen, H. J., Venken, K. J. T., Ballestrem, C., Kammerer, R. A. et al.(2012). Spectraplakins promote microtubule-mediated axonal growth by functioningas structural microtubule-associated proteins and EB1-dependent +TIPs (tipinteracting proteins). J. Neurosci. 32, 9143-9158.

    Araujo, S. J. and Tear, G. (2003). Axon guidance mechanisms and molecules: lessonsfrom invertebrates. Nat. Rev. Neurosci. 4 , 910-922.

    Astigarraga, S., Hofmeyer, K. and Treisman, J. E. (2010). Missed connections:photoreceptor axon seeks target neuron for synaptogenesis. Curr. Opin. Genet. Dev.20, 400-407.

    Baas, P. W. and Lin, S. (2011). Hooks and comets: The story of microtubule polarity

    orientation in the neuron. Dev. Neurobiol. 71 , 403-418.Barnes, A. P. and Polleux, F. (2009). Establishment of axon-dendrite polarity indeveloping neurons. Annu. Rev. Neurosci. 32 , 347-381.

    Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C. G., Khodjakov, A. and

    Raff, J. W. (2006). Flies without centrioles. Cell125, 1375-1386.

    Bear, J. E. and Gertler, F. B. (2009). Ena/VASP: towards resolving a pointedcontroversy at the barbed end. J. Cell Sci. 122 , 1947-1953.

    Bechstedt, S. and Brouhard, G. J. (2012). Doublecortin recognizes the 13-protofilament microtubule cooperatively and tracks microtubule ends. Dev. Cell23 ,181-192.

    Bellen, H. J., Tong, C. and Tsuda, H. (2010). 100 years ofDrosophilaresearch and itsimpact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci.11, 514-522.

    Bielas, S. L., Serneo, F. F., Chechlacz, M., Deerinck, T. J., Perkins, G. A., Allen,P. B., Ellisman, M. H. and Gleeson, J. G. (2007). Spinophilin facilitatesdephosphorylation of doublecortin by PP1 to mediate microtubule bundling at theaxonal wrist. Cell129, 579-591.

    Journal of Cell Science 126 (11)2338

    http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.126912/-/DC1http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1016/j.cell.2007.03.023http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1038/nrn2839http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1016/j.devcel.2012.05.006http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1242/jcs.038125http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1016/j.cell.2006.05.025http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1146/annurev.neuro.31.060407.125536http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1002/dneu.20818http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1016/j.gde.2010.04.001http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1038/nrn1243http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1523/JNEUROSCI.0416-12.2012http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1016/j.tcb.2011.06.007http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1242/jcs.062414http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1038/nrm2369http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1016/j.ceb.2012.12.003http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1083/jcb.145.2.305http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://dx.doi.org/10.1093/brain/awn312http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.126912/-/DC1
  • 7/24/2019 Use fly genetics for study axonal grownth

    9/11

    JournalofCellScience

    Boettner, B., Govek, E. E., Cross, J. and Van Aelst, L. (2000). The junctionalmultidomain protein AF-6 is a binding partner of the Rap1A GTPase and associateswith the actin cytoskeletal regulator profilin. Proc. Natl. Acad. Sci. USA 97 , 9064-

    9069.

    Bossing, T., Barros, C. S., Fischer, B., Russell, S. and Shepherd, D. (2012).

    Disruption of microtubule integrity initiates mitosis during CNS repair. Dev. Cell23,433-440.

    Bottenberg, W., Sanchez-Soriano, N., Alves-Silva, J., Hahn, I., Mende, M. and

    Prokop, A. (2009). Context-specific requirements of functional domains of theSpectraplakin Short stop in vivo. Mech. Dev. 126 , 489-502.

    Bouquet, C., Ravaille-Veron, M., Propst, F. and Nothias, F. (2007). MAP1Bcoordinates microtubule and actin filament remodeling in adult mouse Schwann celltips and DRG neuron growth cones. Mol. Cell. Neurosci.36, 235-247.

    Bradke, F., Fawcett, J. W. and Spira, M. E. (2012). Assembly of a new growth cone

    after axotomy: the precursor to axon regeneration. Nat. Rev. Neurosci. 13, 183-193.

    Brandt, R. (1998). Cytoskeletal mechanisms of axon outgrowth and pathfinding. CellTissue Res. 292, 181-189.

    Brochtrup, A. and Hummel, T. (2011). Olfactory map formation in the Drosophilabrain: genetic specificity and neuronal variability. Curr. Opin. Neurobiol. 21, 85-92.

    Buck, K. B. and Zheng, J. Q. (2002). Growth cone turning induced by direct localmodification of microtubule dynamics. J. Neurosci. 22 , 9358-9367.

    Challacombe, J. F., Snow, D. M. and Letourneau, P. C. (1996). Actin filamentbundles are required for microtubule reorientation during growth cone turning toavoid an inhibitory guidance cue. J. Cell Sci. 109, 2031-2040.

    Challacombe, J. F., Snow, D. M. and Letourneau, P. C. (1997). Dynamic microtubuleends are required for growth cone turning to avoid an inhibitory guidance cue.

    J. Neurosci. 17, 3085-3095.

    Chen, S., Chen, J., Shi, H., Wei, M., Castaneda-Castellanos, D. R., Bultje, R. S., Pei,

    X., Kriegstein, A. R., Zhang, M. and Shi, S.-H. (2013). Regulation of microtubulestability and organization by mammalian Par3 in specifying neuronal polarity. Dev.Cell24 , 26-40.

    Chesarone, M. A. and Goode, B. L. (2009). Actin nucleation and elongation factors:mechanisms and interplay. Curr. Opin. Cell Biol. 21 , 28-37.

    Chien, C. B., Rosenthal, D. E., Harris, W. A. and Holt, C. E. (1993). Navigationalerrors made by growth cones without filopodia in the embryonic Xenopus brain.Neuron 11 , 237-251.

    Chilton, J. and Gordon-Weeks, P. (2007). Role of microtubules and MAPs during

    neuritogenesis. In Intracellular Mechanisms for Neuritogenesis(ed. I. de Curtis), pp.57-88. New York, NY: Springer.

    Conde, C. and Caceres, A. (2009). Microtubule assembly, organization and dynamics

    in axons and dendrites. Nat. Rev. Neurosci. 10 , 319-332.

    Currie, J. D., Stewman, S., Schimizzi, G., Slep, K. C., Ma, A. and Rogers, S. L.(2011). The microtubule lattice and plus-end association ofDrosophilaMini spindles

    is spatially regulated to fine-tune microtubule dynamics. Mol. Biol. Cell 22, 4343-4361.

    Davenport, R. W., Dou, P., Rehder, V. and Kater, S. B.(1993). A sensory role forneuronal growth cone filopodia. Nature 361 , 721-724.

    Dent, E. W., Kwiatkowski, A. V., Mebane, L. M., Philippar, U., Barzik, M.,Rubinson, D. A., Gupton, S., Van Veen, J. E., Furman, C., Zhang, J. et al.(2007).Filopodia are required for cortical neurite initiation.Nat. Cell Biol. 9 , 1347-1359.

    Dent, E. W., Gupton, S. L. and Gertler, F. B.(2011). The growth cone cytoskeleton inaxon outgrowth and guidance. Cold Spring Harb. Perspect. Biol. 3 , 3.

    Duchen, L. W., Falconer, D. S. and Strich, S. J. (1963). Dystonia musculorum. Ahereditary neuropathy of mice affecting mainly sensory pathways. J. Physiol.165, 7P-9P.

    Duchen, L. W., Strich, S. J. and Falconer, D. S. (1964). Clinical and pathological

    studies of a hereditary neuropathy in mice (dystonia musculorum). Brain87, 367-378.

    Dwivedy, A., Gertler, F. B., Miller, J., Holt, C. E. and Lebrand, C. (2007). Ena/VASP function in retinal axons is required for terminal arborization but not pathway

    navigation. Development134 , 2137-2146.

    Edvardson, S., Cinnamon, Y., Jalas, C., Shaag, A., Maayan, C., Axelrod, F. B. and

    Elpeleg, O. (2012). Hereditary sensory autonomic neuropathy caused by a mutation

    in dystonin. Ann. Neurol. 71, 569-572.

    Etienne-Manneville, S. (2010). From signaling pathways to microtubule dynamics: thekey players. Curr. Opin. Cell Biol. 22 , 104-111.

    Fan, J., Mansfield, S. G., Redmond, T., Gordon-Weeks, P. R. and Raper, J. A.

    (1993). The organization of F-actin and microtubules in growth cones exposed to abrain-derived collapsing factor. J. Cell Biol. 121 , 867-878.

    Fang, Y. and Bonini, N. M. (2012). Axon degeneration and regeneration: insights fromDrosophila models of nerve injury. Annu. Rev. Cell Dev. Biol. 28 , 575-597.

    Feinstein, S. C. and Wilson, L. (2005). Inability of tau to properly regulate neuronalmicrotubule dynamics: a loss-of-function mechanism by which tau might mediateneuronal cell death. Biochim. Biophys. Acta 1739, 268-279.

    Ferrier, A., Boyer, J. G. and Kothary, R. (2013). Cellular and molecular biology ofneuronal dystonin. Int. Rev. Cell Mol. Biol. 300 , 85-120.

    Fiala, J. C., Feinberg, M., Peters, A. and Barbas, H. (2007). Mitochondrialdegeneration in dystrophic neurites of senile plaques may lead to extracellulardeposition of fine filaments. Brain Struct. Funct. 212 , 195-207.

    Fletcher, D. A. and Mullins, R. D.(2010). Cell mechanics and the cytoskeleton. Nature

    463, 485-492.

    Flynn, K. C., Hellal, F., Neukirchen, D., Jacob, S., Tahirovic, S., Dupraz, S., Stern,

    S., Garvalov, B. K., Gurniak, C., Shaw, A. E. et al. (2012). ADF/cofilin-mediated

    actin retrograde flow directs neurite formation in the developing brain. Neuron 76 ,1091-1107.

    Fukushima, N., Furuta, D., Hidaka, Y., Moriyama, R. and Tsujiuchi, T. (2009).Post-translational modifications of tubulin in the nervous system. J. Neurochem.109,683-693.

    Gallo, G. (2013). Mechanisms underlying the initiation and dynamics of neuronalfilopodia: from neurite formation to synaptogenesis.Int. Rev. Cell Mol. Biol. 301, 95-156.

    Geraldo, S., Khanzada, U. K., Parsons, M., Chilton, J. K. and Gordon-Weeks, P. R.

    (2008). Targeting of the F-actin-binding protein drebrin by the microtubule plus-tipprotein EB3 is required for neuritogenesis. Nat. Cell Biol. 10 , 1181-1189.

    Giannone, G., Mege, R. M. and Thoumine, O. (2009). Multi-level molecular clutchesin motile cell processes.Trends Cell Biol. 19 , 475-486.

    Gistelinck, M., Lambert, J. C., Callaerts, P., Dermaut, B. and Dourlen, P.(2012).Drosophila models of tauopathies: what have we learned? Int. J. Alzheimers Dis.2012, 970980.

    Goellner, B. and Aberle, H. (2012). The synaptic cytoskeleton in development anddisease. Dev. Neurobiol. 72 , 111-125.

    Goncalves-Pimentel, C., Gombos, R., Mihaly, J., Sanchez-Soriano, N. and Prokop,

    A. (2011). Dissecting regulatory networks of filopodia formation in a Drosophilagrowth cone model. PLoS ONE6, e18340.

    Grubb, M. S. and Burrone, J. (2010). Building and maintaining the axon initialsegment. Curr. Opin. Neurobiol. 20 , 481-488.

    Hawkins, T., Mirigian, M., Selcuk Yasar, M. and Ross, J. L. (2010). Mechanics ofmicrotubules. J. Biomech. 43 , 23-30.

    Hirokawa, N., Niwa, S. and Tanaka, Y.(2010). Molecular motors in neurons: transportmechanisms and roles in brain function, development, and disease. Neuron 68 , 610-638.

    Honnappa, S., Gouveia, S. M., Weisbrich, A., Damberger, F. F., Bhavesh, N. S.,

    Jawhari, H., Grigoriev, I., van Rijssel, F. J., Buey, R. M., Lawera, A. et al.(2009).An EB1-binding motif acts as a microtubule tip localization signal. Cell138, 366-376.

    Huber, A. B., Kolodkin, A. L., Ginty, D. D. and Cloutier, J. F. (2003). Signaling atthe growth cone: ligand-receptor complexes and the control of axon growth andguidance. Annu. Rev. Neurosci. 26 , 509-563.

    Hur, E. M., Saijilafu, Lee, B. D ,Kim, S. J, Xu, W. L. and Zhou, F. Q. (2011). GSK3controls axon growth via CLASP-mediated regulation of growth cone microtubules.Genes Dev. 25 , 1968-1981.

    Insall, R. H. and Machesky, L. M. (2009). Actin dynamics at the leading edge: fromsimple machinery to complex networks. Dev. Cell17 , 310-322.

    Jaiswal, M., Sandoval, H., Zhang, K., Bayat, V. and Bellen, H. J. (2012). Probingmechanisms that underlie human neurodegenerative diseases in Drosophila. Annu.Rev. Genet. 46 , 371-396.

    Janke, C. and Bulinski, J. C. (2011). Post-translational regulation of the microtubulecytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12 , 773-786.

    Kaufmann, N., Wills, Z. P. and Van Vactor, D. (1998). Drosophila Rac1 controlsmotor axon guidance. Development125, 453-461.

    Keller, E. F. (1996). Drosophila embryos as transitional objects: the work of Donald

    Poulson and Christiane Nusslein-Volhard. Hist. Stud. Phys. Biol. Sci. 26 , 313-346.Kim, J. H., Cho, A., Yin, H., Schafer, D. A., Mouneimne, G., Simpson, K. J.,Nguyen, K. V., Brugge, J. S. and Montell, D. J.(2011). Psidin, a conserved proteinthat regulates protrusion dynamics and cell migration. Genes Dev. 25 , 730-741.

    Kodama, A., Lechler, T. and Fuchs, E. (2004). Coordinating cytoskeletal tracks topolarize cellular movements. J. Cell Biol. 167 , 203-207.

    Kollins, K. M., Bell, R. L., Butts, M. and Withers, G. S. (2009). Dendrites differ fromaxons in patterns of microtubule stability and polymerization during development.Neural Dev. 4 , 26.

    Koper, A., Schenck, A. and Prokop, A. (2012). Analysis of adhesion molecules andbasement membrane contri butions t o synaptic adhesion at the DrosophilaembryonicNMJ. PLoS ONE7 , e36339.

    Kraft, R., Escobar, M. M., Narro, M. L., Kurtis, J. L., Efrat, A., Barnard, K. and

    Restifo, L. L. (2006). Phenotypes of Drosophila brain neurons in primary culturereveal a role for fascin in neurite shape and trajectory. J. Neurosci. 26 , 8734-8747.

    Kuppers-Munther, B., Letzkus, J. J., Luer, K., Technau, G., Schmidt, H. and

    Prokop, A. (2004). A new culturing strategy optimises Drosophila primary cellcultures for structural and functional analyses. Dev. Biol. 269, 459-478.

    Kwiatkowski, A. V., Rubinson, D. A., Dent, E. W., Edward van Veen, J., Leslie,

    J. D., Zhang, J., Mebane, L. M., Philippar, U., Pinheiro, E. M., Burds, A. A. et al.(2007). Ena/VASP Is Required for neuritogenesis in the developing cortex.Neuron56, 441-455.

    Lamoureux, P., Heidemann, S. R., Martzke, N. R. and Miller, K. E. (2010). Growthand elongation within and along the axon. Dev. Neurobiol. 70 , 135-149.

    Landgraf, M. and Thor, S. (2006). Development of Drosophila motoneurons:specification and morphology. Semin. Cell Dev. Biol. 17 , 3-11.

    Lee, S. and Kolodziej, P. A. (2002). Short Stop provides an essential link between F-actin and microtubules during axon extension. Development129, 1195-1204.

    Lee, A. C. and Suter, D. M. (2008). Quantitative analysis of microtubule dynamicsduring adhesion-mediated growth cone guidance. Dev. Neurobiol. 68 , 1363-1377.

    Lee, S., Nahm, M., Lee, M., Kwon, M., Kim, E., Zadeh, A. D., Cao, H., Kim, H. J.,

    Lee, Z. H., Oh, S. B. et al. (2007). The F-actin-microtubule crosslinker Shot is aplatform for Krasavietz-mediated translational regulation of midline axon repulsion.Development134 , 1767-1777.

    Letourneau, P. C. (2009). Actin in axons: stable scaffolds and dynamic filaments.Results Probl. Cell Differ. 48 , 265-290.

    Cytoskeletal machinery of neurons 2339

    http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1073/pnas.97.16.9064http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.devcel.2012.06.002http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mod.2009.04.004http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1016/j.mcn.2007.07.002http://dx.doi.org/10.1007/s004410051049http://dx.doi.org/10.1007/s004410051049http://dx.doi.org/10.1007/s004410051049http://dx.doi.org/10.1007/s004410051049http://dx.doi.org/10.1007/s004410051049http://dx.doi.org/10.1007/s004410051049http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.conb.2010.11.001http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.devcel.2012.11.014http://dx.doi.org/10.1016/j.ceb.2008.12.001http://dx.doi.org/10.1016/j.ceb.2008.12.001http://dx.doi.org/10.1016/j.ceb.2008.12.001http://dx.doi.org/10.1016/j.ceb.2008.12.001http://dx.doi.org/10.1016/j.ceb.2008.12.001http://dx.doi.org/10.1016/j.ceb.2008.12.001http://dx.doi.org/10.1016/0896-6273(93)90181-Phttp://dx.doi.org/10.1016/0896-6273(93)90181-Phttp://dx.doi.org/10.1016/0896-6273(93)90181-Phttp://dx.doi.org/10.1016/0896-6273(93)90181-Phttp://dx.doi.org/10.1016/0896-6273(93)90181-Phttp://dx.doi.org/10.1016/0896-6273(93)90181-Phttp://dx.doi.org/10.1038/nrn2631http://dx.doi.org/10.1038/nrn2631http://dx.doi.org/10.1038/nrn2631http://dx.doi.org/10.1038/nrn2631http://dx.doi.org/10.1038/nrn2631http://dx.doi.org/10.1038/nrn2631http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1091/mbc.E11-06-0520http://dx.doi.org/10.1038/361721a0http://dx.doi.org/10.1038/361721a0http://dx.doi.org/10.1038/361721a0http://dx.doi.org/10.1038/361721a0http://dx.doi.org/10.1038/361721a0http://dx.doi.org/10.1038/361721a0http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1038/ncb1654http://dx.doi.org/10.1101/cshperspect.a001800http://dx.doi.org/10.1101/cshperspect.a001800http://dx.doi.org/10.1101/cshperspect.a001800http://dx.doi.org/10.1101/cshperspect.a001800http://dx.doi.org/10.1101/cshperspect.a001800http://dx.doi.org/10.1101/cshperspect.a001800http://dx.doi.org/10.1093/brain/87.2.367http://dx.doi.org/10.1093/brain/87.2.367http://dx.doi.org/10.1093/brain/87.2.367http://dx.doi.org/10.1093/brain/87.2.367http://dx.doi.org/10.1093/brain/87.2.367http://dx.doi.org/10.1093/brain/87.2.367http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1242/dev.002345http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1002/ana.23524http://dx.doi.org/10.1016/j.ceb.2009.11.008http://dx.doi.org/10.1016/j.ceb.2009.11.008http://dx.doi.org/10.1016/j.ceb.2009.11.008http://dx.doi.org/10.1016/j.ceb.2009.11.008http://dx.doi.org/10.1016/j.ceb.2009.11.008http://dx.doi.org/10.1016/j.ceb.2009.11.008http://dx.doi.org/10.1083/jcb.121.4.867http://dx.doi.org/10.1083/jcb.121.4.867http://dx.doi.org/10.1083/jcb.121.4.867http://dx.doi.org/10.1083/jcb.121.4.867http://dx.doi.org/10.1083/jcb.121.4.867http://dx.doi.org/10.1083/jcb.121.4.867http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1146/annurev-cellbio-101011-155836http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/j.bbadis.2004.07.002http://dx.doi.org/10.1016/B978-0-12-405210-9.00003-5http://dx.doi.org/10.1016/B978-0-12-405210-9.00003-5http://dx.doi.org/10.1016/B978-0-12-405210-9.00003-5http://dx.doi.org/10.1016/B978-0-12-405210-9.00003-5http://dx.doi.org/10.1016/B978-0-12-405210-9.00003-5http://dx.doi.org/10.1016/B978-0-12-405210-9.00003-5http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1007/s00429-007-0153-1http://dx.doi.org/10.1038/nature08908http://dx.doi.org/10.1038/nature08908http://dx.doi.org/10.1038/nature08908http://dx.doi.org/10.1038/nature08908http://dx.doi.org/10.1038/nature08908http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1016/j.neuron.2012.09.038http://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1111/j.1471-4159.2009.06013.xhttp://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1016/B978-0-12-407704-1.00003-8http://dx.doi.org/10.1038/ncb1778http://dx.doi.org/10.1038/ncb1778http://dx.doi.org/10.1038/ncb1778http://dx.doi.org/10.1038/ncb1778http://dx.doi.org/10.1038/ncb1778http://dx.doi.org/10.1038/ncb1778http://dx.doi.org/10.1016/j.tcb.2009.07.001http://dx.doi.org/10.1016/j.tcb.2009.07.001http://dx.doi.org/10.1016/j.tcb.2009.07.001http://dx.doi.org/10.1016/j.tcb.2009.07.001http://dx.doi.org/10.1016/j.tcb.2009.07.001http://dx.doi.org/10.1016/j.tcb.2009.07.001http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1155/2012/970980http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1007/400_2009_15http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1242/dev.02842http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1002/dneu.20662http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1016/j.semcdb.2005.11.007http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1002/dneu.20764http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.neuron.2007.09.008http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1016/j.ydbio.2004.01.038http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1523/JNEUROSCI.2106-06.2006http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1371/journal.pone.0036339http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1186/1749-8104-4-26http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1083/jcb.200408047http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.1101/gad.2028611http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.2307/27757764http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1038/nrm3227http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1146/annurev-genet-110711-155456http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1016/j.devcel.2009.08.012http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1101/gad.17015911http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1146/annurev.neuro.26.010302.081139http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.cell.2009.04.065http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.neuron.2010.09.039http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.jbiomech.2009.09.005http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1016/j.conb.2010.04.012http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1371/journal.pone.0018340http://dx.doi.org/10.1002/dneu.20892http://dx.doi.org/