UPT Project 2008 SRE

Embed Size (px)

Citation preview

  • 7/31/2019 UPT Project 2008 SRE

    1/123

    PREFACE

    With the ongoing revolution in electronics and communication where

    innovations are taking place at the blink of eye, it is impossible to keep

    pace with the emerging trends.

    Excellence is an attitude that the whole of the human race is born with. It

    is the environment that makes sure that whether the result of this attitude

    is visible or otherwise. A well planned, properly executed and evaluated

    industrial training helps a lot in culcating a professional attitude. It

    provides a linkage between a student and industry to develop an

    awareness of industrial approach to problem solving, based on a broad

    understanding of process and mode of operation of organization.

    During this period, the student gets the real experience for working in the

    industry environment. Most of the theoretical knowledge that has been

    gained during the course of their studies is put to test here. Apart from

    this the student gets an opportunity to learn the latest technology, which

    immensely helps in them in building their career.

    We had the opportunity to have a real experience on many ventures,

    which increased our sphere of knowledge to great extent. We got a

    chance to learn many new technologies and also interfaced too many

    instruments. And all this credit goes to organization Bharat Electronics

    Limited.

  • 7/31/2019 UPT Project 2008 SRE

    2/123

    ACKOWLEDGEMENTI wish to express my sincere thanks to the management of Bharat Electronics Limited

    (BEL), Bharat Nagar, Ghaziabad including the Head of the Human Resource

    Development Department Mr. Tapash Bose (DGM, H.R.D.) for providing me an

    opportunity to receive training in this esteemed company.

    I am deeply indebted to Mr. M.T.Murali, Sr.Deputy General Manager, Radar

    Division (TESTING) for sparing his most precious time in providing guidance to me in

    training. Without his wise counsel, inestimable encouragement, it would have been

    difficult for me to have knowledge of the functioning of various types of electronics

    equipment particularly radars. Gratitude is also due to him for his constant guidance

    and direction in writing this piece of work.

    Special thanks to Ms. Shweta Saxena, Deputy Engineer for her valuable guidance,

    help and co-operation.

    It is a great pleasure to express my heart full thanks to staff of BEL who helped me

    directly or indirectly through out the successful completion of my training. There is no

    substitute to Team Work; this is one of the lessons I learnt during my training in

    Bharat Electronics Limited.

  • 7/31/2019 UPT Project 2008 SRE

    3/123

    CERTIFICATE

    TO WHOM SO EVER IT MAY CONCERN

    This is to certify thatMILIND RAJ, RISHI BHATNAGAR &

    VISHAL VASHIST, students of B.tech Electronics and

    Communication Engineering from MOTILAL NEHRU

    NATIONAL INSTITUTE OF TECHNOLOGY (DEEMED

    UNIVERSITY) ALLAHABAD has undergone an industrial training

    on project titled Study of RECEIVER of SREat BHARAT

    ELECTRONICS LIMITED, GHAZIABAD w.e.f 19th May

    2008 to 28th June 2008 under the guidance ofMs. Shweta Saxena,

    Deputy Engineer.

    They worked diligently and made valuable contribution during this

    period. All their works are genuine and original.

    Mr. M.T.MURALI Ms. SHWETA

    SAXENA

    (Sr. DEPUTY GENERAL MANAGER) (DEPUTY

    ENGINEER)

    (PROJECT

    GUIDE)

  • 7/31/2019 UPT Project 2008 SRE

    4/123

    DECLARATION

    I hereby declare that the project work entitled UPT RECORDFORM is an

    authentic work carried by me at Bharat ElectronicsLimited, Ghaziabad , underworthy and esteemed guidance ofMs. SHWETA SAXENA (DEPUTYENGINEER)at Bharat Electronics Limited , Ghazi bad.

    This work has not been submitted to any other institution or

    university for award of any degree

    MILIND RAJ UPT 0084/B.Tech/08

    RISHI BHATNAGAR UPT 0083/B.Tech/08VISHAL VASHIST UPT 0082/B.Tech/08

  • 7/31/2019 UPT Project 2008 SRE

    5/123

    ROTATION PROGRAM

    Under this students are introduced to the company by putting them under a

    rotation program to various departments. The several departments where I had

    gone under my rotational program are:

    Test Equipment and Automation

    P.C.B. Fabrication

    Quality Control Works-Radar

    Work Assembly- Communication

    Magnetic

    Microwave lab

    Rotation period was to give us a brief insight of the companys functioning and

    knowledge of the various departments. A brief idea of the jobs done at the

    particular departments was given. The cooperative staff at the various

    departments made the learning process very interesting , which allowed me to

    know about the company in a very short time.

  • 7/31/2019 UPT Project 2008 SRE

    6/123

    BHARAT ELECTRONICS

    LIMITED

    INTRODUCTION

    India, as a country, has been very lucky with regard to the introduction of telecom

    products. The first telegraph link was commissioned between Calcutta and Diamond

    Harbor in the year 1852, which was invented in 1876. First wireless communication

    equipment were introduced in Indian Army in the year 1909 with the discovery of

    Radio waves in 1887 by Hertz and demonstration of first wireless link in the year 1905

    by Marconi and Vacuum Tube in 1906. Setting up of radio station for broadcast and

    other telecom facilities almost immediately after their commercial introduction abroad

    followed this. After independence of India in 1947 and adoption of its constitution in

    1950, the government was seized with the plans to lay the foundations of a strong, self-

    sufficient modern India. On the industrial front, Industrial Policy Resolution (IPR) was

    announced in the year 1952. It was recognized that in certain core sectors infrastructure

    facilities require huge investments, which cannot be met by private sector and as such

    the idea of Public Sector Enterprises (PSR) was mooted. With telecom and electronics

    recognized among the core sectors, Indian Telephone Industry, now renamed as ITI

    Limited, was formed in 1953 to undertake local manufacture of telephone equipment,

    which were of electro-mechanical nature at that stage. Hindustan Cable Limited was

    also started to take care of telecom cables.

    Bharat Electronics Limited (BEL) was established in 1954 as a public SectorEnterprise under the administrative control of Ministry of Defence as the fountainhead

    to manufacture and supply electronics components and equipment. BEL, with a

    noteworthy history of pioneering achievements, has met the requirement of state-of-art

    professional electronic equipment for Defence, broadcasting, civil Defence and

    telecommunications as well as the component requirement of entertainment and

  • 7/31/2019 UPT Project 2008 SRE

    7/123

    medical X-ray industry. Over the years, BEL has grown to a multi-product, multi-unit,

    and technology driven company with track record of a profit earning PSU.

    The company has a unique position in India of having dealt with all the

    generations of electronic component and equipment. Having started with a HF receiver

    in collaboration with T-CSF of France, the companys equipment designs have had a

    long voyage through the hybrid, solid-state discrete component to the state of art

    integrated circuit technology. In the component arena also, the company established its

    own electron value manufacturing facility. It moved on to semiconductors with the

    manufacture of germanium and silicon devices and then to the manufacture of

    Integrated circuits. To keep in pace with the component and technology, its

    manufacturing and products assurance facilities have also undergone sea change. The

    design groups have CADD facility, the manufacturing has CNC machines and a Mass

    Manufacture Facility. QC checks are preformed with multi-dimensional profile

    measurement machines, Automatic testing machines, environmental labs to check

    extreme weather and other operational conditions. All these facilities have been

    established to meet the stringent requirements of MIL grade systems.

    Today BELs infrastructure is spread over nine locations with 29 production

    divisions having ISO-9001/9002 accreditation. Product mix of the company are spread

    over the entire Electro-magnetic (EM) sp 3ectrum ranging from tiny audio frequency

    semiconductor to huge radar systems and X-ray tubes on the upper edge of the

    spectrum. Its manufacturing units have special focus towards the products ranges like

    Defence Communication, Raders, Optical & Opto-electronics, Telecommunication,

    sound and Vision Broadcasting, Electronic Components, etc.

    Besides manufacturing and supply of a wide variety of products, BEL offers a

    variety of services like Telecom and Rader Systems Consultancy, Contract

    Manufacturing, Calibration of Test & Measuring Instruments, etc. At the moment, the

    company is installing MSSR radar at important airports under the modernization of

    airports plan of National Airport Authority (NAA).

  • 7/31/2019 UPT Project 2008 SRE

    8/123

    BEL has nurtured and built a strong in-house R&D base by absorbing

    technologies from more than 50 leading companies worldwide and DRDO Labs for a

    wide range of products. A team of more than 800 engineers is working in R&D. Each

    unit has its own R&D Division to bring out new products to the production lines.

    Central Research Laboratory (CRL) at Bangalore and Ghaziabad works as independent

    agency to undertake contemporary design work on state-of-art and futuristic

    technologies. About 70% of BELs products are of in-house design.

    BEL was among the first Indian companies to manufacture computer parts and

    peripherals under arrangement with International Computers India Limited (ICIL) in

    1970s. BEL assembled a limited number of 1901 systems under the arrangement with

    ICIL. However, following Governments decision to restrict the computer manufacture

    to ECIL, BEL could not progress in its computer manufacturing plans. As many of its

    equipment were microprocessor based, the company,

    Continued to develop computers based application, both hardware and software. Most

    of its software requirements are in real time. EMCCA, software intensive navel ships

    control and command system is probably one of the first projects of its nature in India

    and Asia.

    BEL has won a number of national and international awards for Import

    Substitution, Productivity, Quality, Safety, Standardization etc. BEL was ranked No. 1

    in the field of Electronics and 46th overall among the top 1000 private and public

    sector undertakings in India by the Business Standard in its special supplement The

    BS 1000 (1997-98). BEL was listed 3rd among the Mini Ratanas (Category II) by the

    Government of India, 49th among Asias top 100 worldwide Defence Companies by

    the Defence News, USA.

    CORPORATE MOTTO , MISSION

  • 7/31/2019 UPT Project 2008 SRE

    9/123

    AND OBJECTIVES:

    The passionate pursuit of excellence at BEL is reflected in a reputation with its

    customers that can be described in its motto, mission and objectives:

    CORPORATE MOTTO

    Quality, Technology and Innovation.

    CORPORATE MISSION

    To be the market leader in Defence Electronics and in other chosen fields and

    products.

    CORPORATE OBJECTIVES

    To become a customer-driven company supplying quality products at competitive

    prices at the expected time and providing excellent customer support.

    To achieve growth in the operations commensurate with the growth of professional

    electronics industry in the country.

    To generate internal resources for financing the investments required for

    modernization, expansion and growth for ensuring a fair return to the investor.

    In order to meet the nations strategic needs, to strive for self-reliance by

    indigenization of materials and components.

    To retain the technological leadership of the company in Defence and other chosen

    fields of electronics through in-house research and development as well as through

    Collaboration/Co-operation with Defence/National Research Laboratories,

    International Companies, Universities and Academic Institutions.

    To progressively increase overseas sales of its products and services.

    To create an organizational culture which encourages members of the

    organization to realize their full potential through continuous learning on the

    job and through other HRD initiatives.

  • 7/31/2019 UPT Project 2008 SRE

    10/123

    MANUFACTURING UNITS

    BANGALORE (KANARATAKA)

    BEL started its production activities in Bangalore on 1954 with 400W high

    frequency (HF) transmitter and communication receiver for the Army. Since then, the

    Bangalore Complex has grown to specialize in communication and Radar/Sonar

    Systems for the Army, Navy and Air-force.

    BELs in-house R&D and successful tie-ups with foreign Defence companies

    and Indian Defence Laboratories has seen the development and production of over 300

    products in Bangalore alone. The Unit has now diversified into manufacturing of

    electronic products for the civilian customers such as DoT, VSNL, AIR and

    Doordarshan, Meteorological Dept., ISRO, Police, Civil Aviation and Railways. As an

    aid to Electorate, the unit has developed Electronic Voting Machines that are produced

    at its Mass Manufacturing Facility (MMF).

    GHAZIABAD (UTTER PRADESH)

    The second largest Unit at Ghaziabad was set up in 1974 to manufacture special

    types of radar for the Air Defence Ground Environment Systems (Plan ADGES). The

    Unit provides Communication Systems to the Defence Forces and Microwave

    Communication Links to the various departments of the State and Central Govt. and

    other users. The Units product range included Static and Mobile Radar, Tropo scatter

    equipment, professional grade Antennae and Microwave components.

    PUNE (MAHARASHTRA)

    This Unit was started in 1979 to manufacture Image Converter Tubes.

    Subsequently, Magnesium Manganese-dioxide Batteries, Lithium Sulphur Batteries and

    X-ray Tubes/Cables were added to the product range. At the present the Laser Range

    Finders for the Defence services.

    MACHILIPATNAM (ANDHRA PRADESH)

    The Andhra Scientific Co. at Machilipatnam, manufacturing Optics/Opto-

  • 7/31/2019 UPT Project 2008 SRE

    11/123

    electronic equipment was integrated with BEL in 1983. the product line includes

    passive Night Vision Equipment, Binoculars and Goggles, Periscopes, Gun Sights,

    Surgical Microscope and Optical Sights and Mussel Reference Systems for tank fire

    control systems. The Unit has successfully diversified to making the Surgical

    Microscope with zoom facilities.

    PANCHKULA (HARYANA)

    To cater the growing needs of Defence Communications, this Unit was established in

    1985. Professional grade Radio-communication Equipment in VHF and UHF ranges

    entirely developed by BEL and required by the Defence services are being met from

    this Unit.

    CHENNAI (TAMIL NADU)

    In 1985, BEL established another Unit at Chennai to facilitate manufacture of

    Gun Control Equipment required for the integration and installation and the Vijay anta

    tanks. The Unit is now manufacturing Stabilizer Systems for T-72 tanks, Infantry

    Combat Vehicles BMP-II, Commanders Panoramic Sights & Tank Laser Sights are

    among others.

    KOTDWARA (UTTER PRADESH)

    In 1986, BEL STARTED A unit at Kotdwara to manufacture

    Telecommunication Equipment for both Defence and civilian customers. Focus is

    being given on the requirement of the Switching Equipment.

    TALOJA (MAHARASHTRA)

    For the manufacture of B/W TV Glass bulbs, this plant was established in

    collaboration with coming, France in 1986. The Unit is now fully mobilized to

    manufacture 20 glass bulbs indigenously.

    HYDERABAD (ANDHRA PRADESH)

    To coordinate with the major Defence R&D Laboratories located in Hyderabad,

    DLRL, DRDL and DMRL, BEL established a Unit at Hyderabad in 1986. Force

    Multiplier Systems are manufactured here for the Defence services.

  • 7/31/2019 UPT Project 2008 SRE

    12/123

    JOINT VENTURES

    BE-Delft Electronics Limited

    BE-Delft Electronics Limited, Pune, the first joint venture of the company with Delft

    Instruments, Holland and UTI was established in the year 1990 for conducting

    research, development and manufacture of Image Intensifier Tubes and associated high

    voltage power supplies for use in military, security and commercial systems. Its

    products include night vision goggles and binoculars, night vision weapon sights and

    low light level input applications.

    GE BE Private Limited

    GE BE Private Limited, Bangalore, a JV with General Electric Medical Systems, USA

    has been established in 1997-98 for manufacture of High End Routing Anode Medical

    Diagnostic X-ray tube called CT MAX, which is used in CT Scanners. The joint

    venture unit will also establish a reloading facility for X-ray tubes and will also market

    the conventional X-ray tubes made at Pune Unit of BEL. South East Asia market are

    addressed by this joint venture.

    BEL- Multitone Private Limited

    A joint venture between Bharat Electronics and Multitone Electronics Plc, UK has also

    been established in Bangalore in 1997-98 to manufacture state-of-art Mobile

    Communication for the workplace. Multitone invented paging in 1956 when it

    developed the worlds first system to serve the life or death environment of St.

    Thomas Hospital, London. With the strength of Bharat Electronics in the Radio

    Communications fields and the technology of Multitone, in the field of Radio Paging,

    the joint venture company is in a position to offer tailor made solution to the Mobile

    Communication needs at workplace in various market segments.

  • 7/31/2019 UPT Project 2008 SRE

    13/123

    CUSTOMER PROFILE & BEL

    PRODUCT RANGEEquipments:

    DEFENCE

    ARMY Tactical and Strategic Communication Equipment and

    Systems, Secrecy Equipment, Digital Switches, Battlefield

    Surveillance Radar, Air Defence and Fire Control Radar, Opto-Electronic Instruments, Tank Fire Control Systems, Stabilizer

    Systems, Stimulators and Trainers.

    NAVY Navigational, Surveillance, Fire Control Radar, IFF, SONARSystems, Torpedo Decoys, Display Systems, EW Systems,

    Simulators, Communication Equipment and Systems.

    AIR FORCE Surveillance and Tracking Raiders, Communication Equipment

    and Systems, IFF and EW Systems.

    NON-DEFENCE

    PARA-MILITARY Communication Equipment and Systems.

    SPACE DEPARTMENT Precision Tracking Radar, Ground Electronics, Flight and On-board Sub-Systems.

    ALL INDIA RADIO MW, SW &FM Transmitters.

    DOORDARSHAN

    (TV NETWORK)

    Low, Medium and High Power Transmitters, Studio

    Equipment, OB Vans, Cameras, Antennae, Mobile and

    Transportable Satellite Uplinks.

    NCERT TV Studios on turnkey Basis for Educational Programs.

  • 7/31/2019 UPT Project 2008 SRE

    14/123

    DEPARTMENT OF

    TELECOMMUNICATION

    Transmission Equipment (Microwave and UHF) and PCM

    Multiplex, Rural and Main Automatic Exchanges, FlyawaySatellite Terminals, Solar Panels for Rural Exchanges.

    VIDESH SANCHAR

    NIGAMAND OTHER

    CORPORATE BODIES

    MCPC VSAT, SCPC VSAT, Flyaway Earth Stations. Hub

    Stations, Up/Down Converters, LNA Modems.

    CIVIL AVIATION Airport Surveillance Radar, Secondary Surveillance Radar.

    METEOROLOGICAL

    DEPARTMENT

    Cyclone Warning and Multipurpose Meteorological Radar.

    POWER SECTOR Satellite Communication Equipment.

    OIL INDUSTRY Communication Systems, Radar.

    FOREST DEPARTMENTS,

    IRRIGATION &ELECTRICITY BOARDS

    Communication Systems.

    MEDICAL & HEALTH

    CARE

    Clinical and Surgical Microscope with Zoom, Linear

    Accelerators.

    RAILWAYS Communication Equipment for Metros, Microwave RadioRelays and Digital Microwave Radio Relays.

    Components:

    DEFENCE Transmitting Tubes, Microwave Tubes, Lasers,

    Batteries, Semiconductors-Discrete, Hybrid and

    Circuits.

    NON-DEFENCE

    All India Radio,

    Doordarshan

    (TV Network),

    Telecommunications and

    Civil Industries

    Transmitting Tubes, Microwave Tubes, andVacuum Tubes.

    Entertainment Industry B/W TV Tubes, Silicon Transistors, Integrated

    Circuits, Bipolar and CMOS, Piezo-Electric

    Crystals, Ceramic Capacitors and SAW Filters.

    Telephone Industry Integrated Circuits, Crystals.

    Switching Industry Vacuum Interrupters.

  • 7/31/2019 UPT Project 2008 SRE

    15/123

    Instrumentation Industry Liquid Crystal Displays.

    Medical & Health Care X-ray Tubes.

    System/Networks:

    Identity Card Systems Software, Office Automation Software, LCD On-line Public

    Information Display Systems and Communication Networks / VSAT Networks.

    FINANCIAL PERFORMANCE

    BEL has a unique history of profit making Public Sector Enterprise right from itsinception. There have been events of decrease in turnover and profit after Tax due to

    reasons beyond reasonable control of the company. But the companys strength lies in

    its capability to combat the threats, for example US Embargo on exports to BEL.

    BEL hopes to generate 25 per cent increase in turnover with a 15 per cent rise

    in net profit in the current fiscal year over the previous. Corrective measures against

    western sanctions have been undertaken, which are likely to translate into higher

    turnover and profitability. The company is putting all efforts to minimize the effect of

    the restrictions by early establishments of alternative arrangements. The Defence

    Research Laboratories and Academic Institutions are also being persuaded with for

    indigenisation of certain special category of devices and components. The company is

    also opening an office in Singapore to procure components from Asian markets. Thus

    in the long run the restrictions will prove as blessings resulting in self-dependence and

    better profit margins.

    Also several R&D projects with long gestation periods will go into commercial

    production during the current fiscal.

  • 7/31/2019 UPT Project 2008 SRE

    16/123

    BEL GHAZIABAD UNIT

    Formation

    In the mid 60s, while reviewing the Defence requirement of the country,the government focused its attention to strengthen the Air Defence system, in particular

    the ground electronics system support, for the air Defence network. This led to the

    formulation of a very major plan for an integrated Air Defence Ground Environment

    System known as the plan ADGES with Prime Minister as the presiding officer of the

    apex review committee .At about the same time, Public attention was focused on the

    report of the Bhabha committee on the development and production of electronic

    equipment. The ministry of Defence immediately realized the need to establish

    production capacity for meeting the electronic equipment requirements for its plan

    ADGES.

    BEL was then inserted with the task of meeting the development and

    production requirement for the plan ADGES and in view of the importance of the

    project it was decided to create additional capacity at a second unit of the company.

    In December 1970 the Govt. sanctioned an additional unit for BEL. In 1971,

    the industrial license for manufacture of radar and microwave equipment was obtained,

    1972 saw the commencement of construction activities and production was launched in

    1974.

    Over the years, the unit has successfully manufactured a wide variety of

    equipment needed for Defence and civil use. It has also installed and commissioned a

    large number of systems on turnkey basis. The unit enjoys a unique status as

    manufacture of IFF systems needed to match a variety of primary raiders. More than 30

    versions of IFFs have already been supplied traveling the path from vacuum

    technology to solid-state to latest Microwave Component based system.

  • 7/31/2019 UPT Project 2008 SRE

    17/123

    PRODUCT RANGES

    The product ranges today of the company are:

    RADAR SYSTEMS

    3-Dimensional High Power Static and Mobile Radar for the Air Force.

    Low Flying Detection Radar for both the Army and the Air force.

    Tactical Control Radar System for the Army.

    Battlefield Surveillance Rader for the Army.

    IFF Mk-X Radar systems for the Defence and export.

    ASR/MSSR systems for Civil Aviation.

    Radar & allied systems Data Processing Systems.

    COMMUNICATIONS

    Digital Static Tropo scatter Communication Systems for the Air Force.

    Digital Mobile Tropo scatter communication System for the Air Force and

    Army.

    VHF, UHF & Microwave Communication Equipment.

    Bulk Encryption Equipment.

    Turnkey communication Systems Projects for Defence & civil users.

    Static and Mobile Satellite Communication Systems for Defence.

    Telemetry /Tele-control Systems.

    ANTENNA

    Antennae for Radar, Terrestrial & Satellite Communication Systems.

    Antennae for TV Satellite Receive and Broadcast applications.

    Antennae for Line-of-sight Microwave Communication Systems.

    MICROWAVE COMPONENT

  • 7/31/2019 UPT Project 2008 SRE

    18/123

    Active Microwave components like LNAs, Synthesizer, Receivers etc.

    Passive Microwave components like Double Balanced Mixers,etc.

    Most of these products and systems are the result of a harmonious combination

    of technology absorbed under ToT from abroad, Defence R&D Laboratories

    and BELs own design and development efforts.

    THE ORGANIZATION

    The operations at BEL Ghaziabad are headed by General Manager with

    Additional / Deputy General Manager heading various divisions as follows:

    1. DESIGN & ENGINEERING DIVISIONS

    Development and Engineering-R

    Development and Engineering-C

    Development and Engineering-Antenna.

    2. EQUIPMENT MANUFACTURING DIVISIONS

    Radar

    Communication

    Antenna

    Systems

    Microwave Components

    3. SUPPORT DIVISIONS

    Material management

    Marketing & Customer Co-ordination

    Quality Assurance & Torque

    Central Services

    PCB & Magnetics

    Information Systems

    Finance & Accounts

    Personnel & Administration

    Management Services.

  • 7/31/2019 UPT Project 2008 SRE

    19/123

    DESIGN & ENGINEERING

    The pace of development and technological obsolescence in their field of

    electronics necessitates a strong Research and Development base. This is moreimportant on the area of Defence Electronics. BEL Ghaziabad has since its inception

    laid a heavy emphasis on indigenous research and development. About 70% its of

    manufacture today relate to items developed in-house. For the development and

    production of the Mobile Torpo scatter System and the equipment, BEL was awarded

    the Gold Shield for Import Substitution.

    Design facilities are also constantly being modernized and substantial

    computer-aided design facilities are being introduced including installation of mini-

    and microcomputers and dedicated design application. About 170 graduate and post-

    graduate engineers are working on research and indication of the importance R&D has

    in BELs growth.

    Three Design and Engineering group are product based viz. Communication, Radar and

    Antenna. These divisions are further divided into different departments to look after

    products of a particular nature. each of them has a drawing office attached to them,

    which are equipped with latest drafting and engineering software. The PCB layout and

    PCB master making is done at CADD Center. A central Records & Printing section

    takes care of the preserving the engineering documents and distribution thereof. Most

    of the engineering documents are available online.

    EQUIPMENT MANUFACTURING DIVISIONS

    As a supplier of equipment to the Defence services and professional users, strict

    adherence to specifications and tolerances, has to be in-built into the design and

    manufacturing process. For this BEL Ghaziabad has well defined standards and

    processes for as well as manufacturing and testing activities. Activities are divided into

    various departments like Production Control, Works Assembly, and QC WORKS. The

    manufacture and control of production is through a central systems, BELMAC, BELs

  • 7/31/2019 UPT Project 2008 SRE

    20/123

    own homegrown ERP system.

    Apart from conventional machines, BEL Ghaziabad has been equipped with

    several repeat occurrences and increased throughput. A separate NC programming cell

    has been set up to develop the programs for execution on the CNC machines.

    MICROWAVE COMPONENT GROUP

    Frequencies greater than 1 GHz are termed as Microwaves. Microwaves Integrated

    Circuits (MIC) used extensively in the production of subsystems for Radar and

    Communication equipment constitutes a very vital part of the technology for these

    systems and is generally imported. Owing to the crucial and building block nature of

    the technology involved, BEL is currently setting up a modern MIC manufacturingfacility at a planned expenditure of Rs. 2 crore. When in full operation, this facility will

    be the main center for the MIC requirements of all the units of the company.

    The manufacturing facilities of hybrid microwave components available at

    BEL, Ghaziabad includes facility for preparation of substrates, assembly of

    miniaturized component viz. directional couplers, low noise amplifiers, phase shiftier,

    synthesizers etc. involves scalar as well as vector measurements. For this state of the

    network analysis are used.

    MATERIAL MANAGEMENT

    Material Management division is responsible for procurement, storage

    handling, issue of purchased parts as well as raw materials required to manufacture

    various equipment and spares. It also takes care of disposal of unused or waste

    material.

    The division is divided into purchase, Component store, Raw material store,

    Chemical store, Custom Clearance Cell, Inventory management & disposal.

    MARKETING AND CUSTOMER CO-ORDINATION

    This division is responsible foe acquisition and execution of customer orders

  • 7/31/2019 UPT Project 2008 SRE

    21/123

    and customer services. Marketing department looks after order acquisition. Commercial

    department looks after order execution. Shipping takes care of packing and dispatch of

    material to customer.

    QUALITY ASSURANCE & TORQUE

    In the area of professional Defence electronics, the importance of Quality and

    Reliability is of utmost importance. BEL has therefore established stringent processes

    and modern facilities and systems to ensure product quality- from the raw material to

    the finished product. IGQA, Environmental Labs, Test Equipment Support and QA

    departments are grouped under this division.

    All material for consumption in the factory passes through stringent inward

    goods screening in IGQA department before being accepted for use.

    Subsequent to manufacture and inspection, the end product is again put through

    a rigorous cycle of performance and environmental checks in Environmental Labs.

    The testing, calibration and repair facility of test Instruments used in the factory

    is under the control of Test Equipment Support. All the instruments come to this

    department for periodic calibration.

    Quality Assurance department facilitates ISO 9000 certification of various

    divisions. All production divisions of BEL Ghaziabad are ISO9000 certified. The

    microwave division is ISO9001 certified whereas the remaining three division viz.

    Radar, Communication and Antennae are also ISO9002 certified.

    CENTRAL SERVICES

    Central services Division looks after plant and maintenance of the estate

    including electrical distribution, captive power generation, telephones, transport etc.

    PCB FABRICATION & MAGNETICS

    PCB Fabrication, Coil and Magnetics, Technical Literature, Printing Press and

    Finished Goods are the areas under this division.

  • 7/31/2019 UPT Project 2008 SRE

    22/123

    Single sided PCB blanks- having circuit pattern on one side of the board and

    double sided- having circuit pattern on both sides of the board are manufactured in

    house. However, Multi-layered PCBs, having many layers of circuit, are obtained from

    other sources.

    Magnetic department makes all type of transformers & coils that are used in

    different equipment. Coils and transformers are manufactured as per various

    specifications such as number of layers, number of turns, types of windings, gap in

    core, dielectric strength, insulation between layers, electrical parameters, impedance

    etc. laid down in the documents released by the D&E department.

    INFORMATION SYSTEMS

    IS Department is responsible for BELs own home grown manufacturing and

    control systems called BELMAC.it comprises of almost all modules a modern ERP

    systems but is Host and dumb terminal based.

    FINANCE & ACCOUNTS

    The F&A division is divided into Budget & Compilation, Cost and Material

    Accounts, Bills Payable, Bill Receivable, Payrolls, Provident Fund, Cash Sections.

    PERSONAL & ADMINISTRATION DEPARTMENT

    There are at present about 2300 employees at BEL Ghaziabad, of which more

    than 400 are graduate and postgraduate engineers.

    P&A Division is divided into various departments like Recruitment,

    Establishment, HRD, Welfare, Industrial Relations, Security and MI Room.

    MANAGEMENT SERVICESThis department deals with the flow of information to or from the company. It

    is Broadly classified into three major sub-sections Management Information System,

    Industrial Engineering Department and Safety.

  • 7/31/2019 UPT Project 2008 SRE

    23/123

    TEST EQUIPMENT AND

    AUTOMATION :This department deals with the various instruments used in BEL. There are 300

    equipments and they are of 16 types.

    Examples of some test equipments are:

    Oscilloscope(CRO)

    Multimeter

    Signal Analyzer

    Logical Pulsar

    Counter

    Function Generator etc.

    Mainly the calibration of instruments is carried out here. They are compared

    with the standard of National Physical Laboratory (NPL). So, it is said to be one setdown to NPL. As every instrument has a calibration period after which the accuracy of

    the instrument falls from the required standards. So if any of the instruments is not

    working properly, it is being sent here for its correct calibration. To calibrateinstruments software techniques are used which includes the program written in any

    suitable programming language. So it is not the calibration but programming that takes

    time .For any industry to get its instrument calibrated by NPL is very costly, so it is thebasic need for every industry to have its own calibration unit if it can afford it.

    Test equipment and automation lab mainly deals with the equipment that is used

    for testing and calibration .The section calibrates and maintains the measuring

    instruments mainly used for Defense purpose.

    A calibration is basically testing of equipment with a standard parameter. It is

    done with the help of standard equipment should be of some make, model and type.

    The national physical laboratory (NPL) ,New Delhi provides the standard values

    yearly. BEL follows International Standard Organization (ISO) standard. The test

    equipments are

    calibrated either half yearly or yearly.

    After testing different tags are labeled on the equipment according to the observations.

  • 7/31/2019 UPT Project 2008 SRE

    24/123

    Green O.K , Perfect

    Yellow Satisfactory but some trouble is present.

    Red Cant be used, should be disposed off.

    The standard for QC, which are followed by BEL are:

    WS 102

    WS 104

    PS 520

    PS 809

    PS 811

    PS 369

    Where, WS = Workmanship & PS = Process Standard

    After the inspection of cables, PCBs and other things the defect found are given

    in following codes.

    A --- Physical and Mechanical defects.

    B --- Wrong Writing

    C --- Wrong Component / Polarity

    D --- Wrong Component / Mounting

    E --- Bad Workmanship/ Finish

    F --- Bad Soldering

    G --- Alignment Problem

    H --- Stenciling

    I --- Others (Specify)

    J --- Design & Development

    After finding the defect, the equipment is sent to responsible department

    which is rectified there.

  • 7/31/2019 UPT Project 2008 SRE

    25/123

    MAGNETICS

    In this department different types of transformers and coils are manufactured ,

    which are used in the various defense equipments i.e. radar , communication

    equipments.

    This department basically consists of three sections:

    1.) PRODUCTION CONTROL :- Basic function of production control is to plan

    the production of transformer and coils as per the requirement of respective

    division (Radar and Communication). This department divided into two groups:

    (a) Planning and (b) Planning store.

    2.) WORKS (PRODUCTION) :- Production of transformers and coils are being

    carried out by the works departments.

    3.) QUALITY CONTROL :- After manufacturing the transformer/coils the item

    is offered to the inspection department to check the electrical parameters(DCR ,

    No load current , full load current , dielectric strength , inductance , insulation

    resistance and mechanical dimension as mentioned in the GA drawing of the

    product.

    The D&E department provides all the information about manufacturing a coil

    and the transformer.

    The various types of transformers are as follows :

    i) Air cored transformers

    ii) Oil filled transformers

    iii) Moulding type transformers

    iv) P.C.B Mounting transformers :-

    (a) Impedance matching transformers

    (b) RF transformers

    (c) IF transformers

  • 7/31/2019 UPT Project 2008 SRE

    26/123

    The various types of cores are as follows :

    i) E type

    ii) C type

    iii) Lamination

    iv) Ferrite core

    v) Toroidal core

    Steps involved in the process of manufacturing of transformer/coils:

    a.) Preparation of former : Former is made of plastic bakelite comprising a

    male and female plates assembled and glued alternately to form a hollow

    rectangular box on which winding is done.

    b.) Winding : It is done with different material and thickness of wire. The

    winding has specified number of layers with each layers having a specified

    number of turns. The distance between the two turns should be maintained

    constantly that is there should be no overlapping. The plasatic layer is

    inserted between two consecutive layers.

    The various types of windings are as follows :

    i) Layer Winding

    ii) Wave Winding

    iii) Bank Winding

    c.) Insulation : For inter-winding and inter layer , various types of insulation

    sheets viz. Craft paper , paper , leather , oil paper , polyester film are being

    used.

    d.) Protection : To protect the transformer from the external hazards , moisture ,

    dust and to provide high insulation resistance , they are impregnated.

    MICROWAVE LABORATORY

  • 7/31/2019 UPT Project 2008 SRE

    27/123

    Microwave lab deals with very high frequency measurements or very short

    wavelength measurements. The testing of microwave components is done with

    the help of various radio and communication devices. Phase and magnitude

    measurements are done in this section. Power measurements are done for

    microwave components because current and voltage are very high at such

    frequencies.

    Different type of waveguides is tested in this department like rectangular

    waveguides, circular waveguides. These waveguides can be used to transmit TE

    mode or TM mode. This depends on the users requirements. A good waveguide

    should have fewer loses and its walls should be perfect conductors.

    In rectangular waveguide there is min. distortion. Circular waveguides are usedwhere the antenna is rotating. The power measurements being done in

    microwave lab are in terms of S- parameters. Mainly the testing is done on

    coupler and isolators and parameters are tested here.

    There are two methods of testing:

    1. Acceptance Test Procedure(ATP)

    2. Production Test Procedure(PTP)

    Drawing of various equipments that are to be tested is obtained and testing is

    performed on manufactured part. In the antenna section as well as SOHNA site

    various parameters such as gain ,bandwidth ,VSWR , phase ,return loss,

    reflection etc. are checked. The instruments used for this purpose are as follow:

    1. Filters

    2. Isolators

    3. Reflectors

    4. Network Analyzers

    5. Spectrum Analyzers

    6. Amplifiers and Accessories

    P.C.B. FABRICATION

  • 7/31/2019 UPT Project 2008 SRE

    28/123

    P.C.B. stands for Printed Circuits Board. Its an integral part of the Electronics equipment as well as

    all the components are mounted on it. It Consists of the fiberglass sheet having a layer of copper on

    both sides.

    TYPES OF PCBs1. Single Sided Board : Circuits on one side.

    2. Double Sided Board : Circuit on Both side.

    3. Muti-layer Board : Several layers are interconnected

    through hole metalization.

    Raw material for PCBs

    Most common raw material used for manufacturing of PCBs is copper cladded glass epoxy resin sheet.

    The thickness of the sheet may vary as 1.2, 2.4 and 3.2mm and the standard size of the board is610mm to 675mm.

    Operation in process

    Following steps are there for PCB manufacturing :-

    CNC Drilling

    Drill Location

    Through Hole Plating

    Clean Scrub and Laminate

    Photo Print

    Develop

    Cu electroplate

    Tin electroplate

    Strip

    Etching and cleaning

    Tin Stripping

    Gold plating

    Liquid Photo Imageable Solder Masking (LPISM)

    Photo print

  • 7/31/2019 UPT Project 2008 SRE

    29/123

    Develop

    Thermal Baking

    Hot Air leaving

    Non Plated Hole Drilling

    Reverse Marking

    Sharing & Routing

    Debarring & Packing

    P.C.B. is a non-conducting board on which a conductive board is made. The base material, which isused for PCB plate are Glass Epoxy, Bakelite and Teflon etc.

    Procedure for through hole metallization

    Loading-Cleaner-Water Rinse-Spray Water-Rinse-Mild Etch-Spray Water-Rinse-Hydrochloric Acid-Actuator-Water Rinse-Spray Water-Rinse-Accelerator Dip-Spray Water- Rinse- Electrolyses Copper-

    Plating-Plating- Spray water-Rinse-Anti Tarnish Dip-Hot Air Drying- Unloading.

    After through hole metallization, photo tool generation is done which is followed by photo

    printing. In this the PCB is kept b/w two blue sheets and the ckt. is printed on it. A negative and apositive of a ckt. are developed. To identify b/w the negative and positive, following observation is

    done. If the ckt. is black and the rest of the sheet is white, it is positive otherwise negative.

    Next, pattern plating is done. The procedure for pattern plating follows :

    Loading- Cleaner- Water rings- Mild etch- Spray- Water Rinse-Electrolytic- Copper plating-

    Water rinse- Sulfuric acid-Tin plating- Water rinse- Antitarnic dip- Hot air dry- Unloading.

    To give strength to the wires so that they can not break. This is done before molding. Varnishing isdone as anti fungus prevention for against environmental hazard.

    After completion of manufacturing proceeds it is sent for testing. This is followed by resist

    striping and copper etching. The unwanted copper i.e. off the tracks is etched by any of the followingchemicals. After this, tin is stripped out from the tracks.

    After this solder marking is done. Solder marking is done to mark the tracks to get oxidized &

    finally etch. To prevent the copper from getting etched & making the whole circuit functionally done.

  • 7/31/2019 UPT Project 2008 SRE

    30/123

    There are three types of solder marking done in BEL:

    Wet solder mask: Due to some demerits this method is totally ruled out. The demerit was

    non- alignment, which was due to wrong method applied or wrong machine.

    Dry pin solder mask: Due to wastage of films about 30% this method is also not used now.

    Liquid photo imaginable solder mask (LPISM): In this first presoaking is at 80 degree Celsius

    for 10 to 20 minutes. Next, screen preparation is done. The board is covered by a silk cloth whosemesh is T-48. The angle to tilt of the board is 15 degree to 22.5 degree.

    The next is ink preparation:

    Ink + Hardener

    71 % : 29 %

    (150 gms.) : (300gms.)

    +Butyrate solo solve 50gms/kg.

    Ink preparation-

    It uses :-

    Ink-----100gm

    Catalyst----10% of total weight

    Reducer-----10% of total weight

    The catalyst is used as binder and prevents the following, while reducer is used as thinner. The three

    things are then fully mixed.

    For wash out, following procedure takes place.

    Water-Lactic acid-Water-Bleaching power-Water-caustic Soda-Water-Air dry-TCE.

    After wash out, final baking for one hour at the temt. of 20degree C is done. After this shearing or

    routing is done which is followed by debarring and packing.

  • 7/31/2019 UPT Project 2008 SRE

    31/123

    QUALITY CONTROL

    (WORK ASSEMBLY)

    According to some laid down standards, the quality control department ensures thequality of the product. The raw materials and components etc. purchased and inspected

    according to the specifications by IG department. Similarly QC work department

    inspects all the items manufactured in the factory. The fabrication department checks

    all the fabricated parts and ensures that these are made according to the part drawing,

    painting , plating and stenciling etc are done as per BEL standards.

    The assembly inspection departments inspects all the assembled parts such as PCB ,cable assembly ,cable form , modules , racks and shelters as per latest documents and

    BEL standards .

    The mistakes in the PCB can be categorized as:

    1. D & E mistakes

    2. Shop mistakes

    3. Inspection mistakes

    The process card is attached to each PCB under inspection. Any error in the PC is

    entered in the process card by certain code specified for each error or defect.

    After a mistake is detected following actions are taken:

    1. Observation is made.

    2. Object code is given.

    3. Division code is given.

    4. Change code is prepared.

    5. Recommendation action is taken

  • 7/31/2019 UPT Project 2008 SRE

    32/123

    WORK ASSEMBLY

    This department plays an important role in the production. Its main function is to

    assemble various components, equipments and instruments in a particular procedure.

    It has been broadly classified as:

    WORK ASSEMBLY RADARe.g. INDRA II, REPORTER.

    WORK ASSEMBLY COMMUNICATION e.g EMCCA, MSSR, MFC.

    EMCCA:EQUIPMENT MODULAR FOR COMMAND CONTROL

    APPLICATION. MSSR: MONOPULSE SECONDARY SURVEILLANCE RADAR.

    MFC: MULTI FUNCTIONAL CONSOLE.

    The stepwise procedure followed by work assembly department is:

    1. Preparation of part list that is to be assembled.

    2. Preparation of general assembly.

    3. Schematic diagram to depict all connections to be made and brief idea

    about all components.

    4. Writing lists of all components.

    In work assembly following things are done :

    Material Receive:

    Preparation- This is done before mounting and under takes two procedures.

    Tinning- The resistors ,capacitors and other components are tinned with the help of

    tinned lead solution .The wire coming out from the components is of copper and it is

    tinned nicely by applying flux on it so that it does not tarnished and soldering becomes

    easy.

  • 7/31/2019 UPT Project 2008 SRE

    33/123

    Bending- Preparation is done by getting the entire documents , part list drawing and

    bringing all the components before doing the work.

    Mounting- It means soldering the components of the PCB plate with the help of

    soldering tools. The soldering irons are generally of 25 W and are of variable

    temperature, one of the wires of the component is soldered so that they dont move

    from their respective places on the PCB plate. On the other hand of the component is

    also adjusted so that the PCB does not burn.

    Wave Soldering- This is done in a machine and solder stick on the entire path, which

    are tinned.

    Touch Up- This is done by hand after the finishing is done.

    Cleaning:

    Inspection- This comes under quality work.

    Heat Ageing- This is done in environmental lab at temperature of 40 degree C for 4

    hrs and three cycles.

    Testing:

    Lacquering- This is only done on components which are not variable.

    Storing- After this variable components are sleeved with Teflon. Before Lacquering

    mounted plate is cleaned with isopropyl alcohol. The product is then sent to store.

  • 7/31/2019 UPT Project 2008 SRE

    34/123

  • 7/31/2019 UPT Project 2008 SRE

    35/123

    RADAR(RADIO DETECTION AND RANGING)

    INTRODUCTIONRadar is an electromagnetic system for the detection and location of reflecting objects

    such as aircrafts, ships, spacecraft, vehicles, peoples and the natural environment. It

    operates by radiating energy into space and detecting the reflected echo signal from an

    object, or target. The reflected energy to the radar not only indicates the presence of a

    target, but by comparing the received echo signal with the signal that was transmitted,

    its location can be determined along with other target related information. Radar can

    perform its function at long or short distances and under conditions impervious to

    optical and infrared sensors. It can operate in darkness, haze, fog, rain and snow. Its

    ability to measure the distance with high accuracy and in all weather is one of its most

    important attributes. Although most of the radar units use microwave frequencies, the

    principle of radar is not confine to any particular frequency range. There are some radar

    units that operate on frequencies well below 100 MHz and others that operate in the

    infra-red range and above.

    RADAR DEVELOPMENT

    Although the development of radar as a full-fledged technology did not occur until

    World War-II, the basic principle of radar detection is almost as old as the subject of

    electromagnetism itself. Heinrich Hertz, in 1886, experimentally tested the theories of

    Maxwell and demonstrated the similarity between radio and light waves. Hertz showed

    that radio waves could be reflected by metallic and dielectric bodies. It is interesting to

    know that although Hertzs experiments were performed with relatively short

    wavelength radiation (66 cm), later work in radio engineering was almost entirely at

    longer wavelengths. The shorter wavelengths were not actively used to any extent until

    the late thirties.One of the biggest advocators of radar technology was Robert Watson-

    Watt, a British scientist.

  • 7/31/2019 UPT Project 2008 SRE

    36/123

    Several inventors, scientists, and engineers contributed to the development of radar.

    The use of radio waves to detect "the presence of distant metallic objects via radio

    waves" was first implemented in 1904 by Christian Hlsmeyer, who demonstrated the

    feasibility of detecting the presence of ships in dense fog and received a patent for radar

    as Reichspatent Nr. 165546. Another of the first working models was produced by

    Hungarian Zoltn Bay in 1936 at the Tungsram laboratory.

    While radar development was pushed because of wartime concerns, the idea first

    came about as an anti-collision system. After the Titanic ran into an iceberg and sank in

    1912, people were interested in ways to make such happenings avoidable.

    The term RADARwas coined in 1941 as an acronym forRadio Detection and

    Ranging. The name reflects the importance placed by the workers in this field on the

    need for a device to detect the presence of a target and to measure its range. This

    acronym of American origin replaced the previously used British abbreviation RDF

    (Radio Direction Finding).

    Although modern radar can extract more information from a targets echo signal

    than its range, the measurement of range is still one of its most important functions.

    There are no competitive techniques that can accurately measure long ranges in bothclear and adverse weather as well as can radar.

    BASIC PRINCIPLE

    An elementary form of radar consists of a transmitting antenna emitting

    electromagnetic radiation generated by an oscillator of some sort, a receiving antenna,

    and an energy-detecting device, or receiver. A transmitter generates an electromagnetic

    signal (such as a short pulse of sine wave) that is radiated into space by an antenna. A

    portion of the transmitted energy is intercepted by the target and reradiated in many

    directions. The reradiation directed back towards the radar is collected by the radar

    antenna, which delivers it to a receiver. There it is processed to detect the presence of

    the target and determine its location. A single antenna is usually used on a time-shared

    basis for both transmitting and receiving when the radar waveform is a repetitive series

    http://en.wikipedia.org/wiki/Inventorhttp://en.wikipedia.org/wiki/Scientisthttp://en.wikipedia.org/wiki/Engineerhttp://en.wikipedia.org/wiki/History_of_radarhttp://en.wikipedia.org/w/index.php?title=Christian_H%C3%BClsmeyer&action=edithttp://en.wikipedia.org/wiki/Zolt%C3%A1n_Bayhttp://en.wikipedia.org/wiki/Tungsramhttp://en.wikipedia.org/wiki/Acronym_and_initialismhttp://en.wikipedia.org/wiki/Inventorhttp://en.wikipedia.org/wiki/Scientisthttp://en.wikipedia.org/wiki/Engineerhttp://en.wikipedia.org/wiki/History_of_radarhttp://en.wikipedia.org/w/index.php?title=Christian_H%C3%BClsmeyer&action=edithttp://en.wikipedia.org/wiki/Zolt%C3%A1n_Bayhttp://en.wikipedia.org/wiki/Tungsramhttp://en.wikipedia.org/wiki/Acronym_and_initialism
  • 7/31/2019 UPT Project 2008 SRE

    37/123

    of pulses. The range, or distance, to a target is found by measuring the time it takes for

    the radar signal to travel to the target and return back to the radar. (Radar engineers use

    the term range to mean distance) The targets location in angle can be found from the

    direction the narrow -beamwidth radar antenna points when the received echo signal is

    of maximum amplitude. If the target is in motion, there is a shift in the frequency of

    the echo signal due to the Doppler effect. This frequency shift is proportional to the

    velocity of the target relative to the radar (also called the radial velocity). The Doppler

    frequency shift is widely used in radar as the basis for separating desired moving

    targets from fixed (unwanted) clutter echoes reflected from the natural environment

    such as land, sea, or rain. Radar can also provide information about the nature of the

    target being observed.

    ECHO AND DOPPLER SHIFT

    Echo is something you experience all the time. If you shout into a well or a canyon, the

    echo comes back a moment later. The echo occurs because some of the sound waves in

    your shout reflect off of a surface (either the water at the bottom of the well or the

    canyon wall on the far side) and travel back to your ears. The length of time between

    the moments you shout and the distance between you and the surface that creates theecho determines the moment that you hear the echo.

    Doppler shift is also common. You probably experience it daily (often without

    realizing it). Doppler shift occurs when sound is generated by, or reflected off of, a

    moving object. Doppler shift in the extreme creates sonic booms (see below). Here's

    how to understand Doppler shift (you may also want to try this experiment in an empty

    parking lot). Let's say there is a car coming toward you at 60 miles per hour (mph) and

    its horn is blaring. You will hear the horn playing one "note" as the car approaches, but

    when the car passes you the sound of the horn will suddenly shift to a lower note. It's

    the same horn making the same sound the whole time. The change you hear is caused

    by Doppler shift.

  • 7/31/2019 UPT Project 2008 SRE

    38/123

    TYPES OF RADAR

    Based on function radar can be divided into two types:

    PRIMARY OR SIMPLE RADAR

    SECONDARY RADAR

    Primary radar or the simple radar locates a target by procedure described in section. But

    in cases as controlling of air traffic, the controller must be able to identify the aircraft

    and find whether it is a friend or foe. It is also desired to know the height of aircraft.

    To give controller this information second radar called the SECONDARY

    SURVEILLANCE RADAR, (SSR) is used. This works differently and need the help

    of the target aircraft it sance out a sequence of pulses to an electronic BLACK BOX

    called the TRANSPONDER, fitted on the aircraft. The transponder is connected to the

    aircrafts altimeter (the device which measures the planes altitude) to transmit back the

    coded message to the radar about its status and altitude. Military aircrafts uses a similar

    kind of radar system with secrete code to make sure that it is friend or foe, a hostileaircraft does not know what code to transmit back to the ground station for the

    corresponding receiver code.

    IFF UNIT

    IFF is basically a radar bacon system employed for the purpose of general

    identification of military targets .The bacon system when used for the control of civil

    air traffic is called as SECONDARY SURVEILLANCE RADAR (SSR).

    Primary radarlocates an object by transmitting signal and detecting the

    reflected echo. A secondary radar system is basically very similar to primary

    radar system except that the returned signal is radiated from the transmitter on

    board the target rather then by reflection, i.e. it operates with a cooperative

    active target while the primary radar operates with passive target.

  • 7/31/2019 UPT Project 2008 SRE

    39/123

    Secondary radarsystem consists of an interrogative and a transponder. The

    interrogator transmitter in the ground station interrogates transponder equipped aircraft,

    providing two way data communication on different transmitter and receiver frequency.

    The transponder on board the aircraft on receipt of a chain of pulses from ground

    interrogator, automatically transmit the reply, coded for the purpose of identification, is

    received back to the ground interrogator where it is decoded and displayed on a radar

    type presentation.

    ADVANTAGES OF SSR OVER PRIMARY RADAR

    Separate transmitting and receiving frequencies eliminate ground and whiter

    return problems.

    Reply pulses are stronger then echo signal of primary radar.

    Reply signal is independent of the target cross section.

    Interrogation and reply path coding provide discrete target identification and

    altitude.

    The interrogate and reply mode works on the L band at 1030 MHz and the airborne

    transponder works at 1090 MHz.

    The SSR operates on the same frequency channel for both military and civil air traffic

    control by using compatible airborne aircraft

  • 7/31/2019 UPT Project 2008 SRE

    40/123

    Basic Radar System

    A basic radar system is spilt up into a transmitter, switch, antenna, receiver, data

    recorder, processor and some sort of output display. Everything starts with the

    transmitter as it transmits a high power pulse to a switch, which then directs the pulse

    to be transmitted out an antenna. Just after the antenna is finished transmitting the

    pulse, the switch switches control to the receiver, which allows the antenna to receive

    echoed signals. Once the signals are received the switch then transfers control back to

    the transmitter to transmit another signal. The switch may toggle control between the

    transmitter and the receiver as much as 1000 times per second.

    Any received signals from the receiver are then sent to a data recorder for

    storage on a disk or tape. Later the data must be processed to be interpreted into

    something useful, which would go on a Pulse Width and Bandwidth:

    Some radar transmitters do not transmit constant, uninterrupted electromagnetic

    waves. Instead, they transmit rhythmic pulses of EM waves with a set amount of time

    in between each pulse. The pulse itself would consist of an EM wave of several

    wavelengths with some dead time after it in which there are no transmissions. The time

    between each pulse is called the pulse repetition time (PRT) and the number of pulses

    transmitted in one second is called the pulse repetition frequency (PRF). The time

  • 7/31/2019 UPT Project 2008 SRE

    41/123

    taken for each pulse to be transmitted is called the pulse width (PW) or pulse duration.

    Typically they can be around 0.1 microseconds long for penetrating radars or10-50

    microseconds long for imaging radars (a display. microsecond is a millionth of a

    second).

    Mathematically,

    PRT = 1 / PRF

    or

    PRF = 1 / PRT

    WORKING OF A SIMPLE RADAR

    A radar system, as found on many merchants ships, has three main parts:

    The antenna unit or the scanner

    The transmitter receiver or transceiver and

    The visual display unit

    The antenna is two or three meter wide and focuses pulses off very high frequency

    radio energy into a narrow vertical beam. The frequency of the radio waves is

    basically about 10,000 MHz. The antenna is rotated at the rate of 10 to 25 rpm so

    that radar beam swaps through 300degree Celsius all around the ship out to a range

    of about 90 kms.

    In all radar it is vital that the transmitting and the receiving in a transceiver

    are in close harmony. Every thing depends on accurate measurement of the time

    that passes between the transmission of pulse and the return of the echo. About

    1000, pulses per second are transmitted. Though it is varied to suit the

    requirements. Short pulses are best for short-range work, longer pulses are best for

    longer-range work.

  • 7/31/2019 UPT Project 2008 SRE

    42/123

    An important part of transceiver circuit is modular circuit. This keys the

    transmitter so that it oscillates, or pulses for the right length of time. The pulses so

    designed are video pulses. These pulses are short range pulses hence cant serve out

    the purpose of long range work .In order to modify these pulses to long range pulses or

    the RF pulses, we need to generate thepower. The transmitted power is generated in a

    device called the magnetron which can handle all these short pulses and very high

    oscillations.

    Between these pulses, the transmitter is switched off and isolated. The weak

    echoes from the target are picked up by the antenna and fed into the receiver. To avoid

    overlapping of these echoes with the next transmitted pulse, another device called

    duplexer is used. Thus by means of the duplexer, undisturbed two-way

    communication is established. The RF echoes emerging from the duplexer are now fed

    to the mixer where they are mixed with the RF energy. These pulses are generated by

    the means of a local oscillator. Once two are mixed, a signal is produced in the output

    which is of intermediate frequency range or IF range .The IF signal is received by the

    receiver by the receiver where it is demodulated to video frequency signal range,

    amplified, and then passed to the display system.

    The display system usually carried out the control necessary for the operation of

    whole radar .It has a cathode ray gun, which consists of a electron gun in its neck. The

    gun shouts electron to the phosphorescent screen at the far end. Phosphorescent screen

    glows when hit by an electron and the resulting spot can be seen through the glass face.

    The screen is circular in shape and I calibrated in the edges .The electron beam travels

    from the center of the edge. This radio motion of the electron is known as trace is

    matched with the rotation of the antenna. So when the calibration is at zero degree on

    the tube calibration, the antenna is pointing to the dead ahead. The beginning of each

    trace corresponds exactly which the moment at which the suppression radar energy is

    transmitted.

    The basic idea behind radar is very simple: a signal is transmitted, it bounces off an

    object and some type of receiver later receives it. They use certain kinds of

    electromagnetic waves called radio waves and microwaves. This is where the name

  • 7/31/2019 UPT Project 2008 SRE

    43/123

    RADAR comes from (Radio Detection And Ranging). Sound is used as a signal to

    detect objects in devices called SONAR (Sound Navigation Ranging). Another type of

    signal used that is relatively new is laser light that is used in devices called LIDAR

    (Light Detection And Ranging).

    Once the radar receives the returned signal, it calculates useful information from

    it such as the time taken for it to be received, the strength of the returned signal, or the

    change in frequency ofthe signal.

    RADAR EQUATION

    The amount of powerPr returning to the receiving antenna is given by the radar

    equation:

    where

    Pt = transmitter power

    Gt

    = gain of the transmitting antenna Ar = effective aperture (area) of the receiving antenna

    = radar cross section, or scattering coefficient, of the target

    F= pattern propagation factor

    Rt = distance from the transmitter to the target

    Rr = distance from the target to the receiver.

    In the common case where the transmitter and the receiver are at the same location, Rt =

    Rr and the termRt2Rr2 can be replaced byR4, whereR is the range. This yields:

    http://en.wikipedia.org/wiki/Radar_cross_sectionhttp://en.wikipedia.org/wiki/Radar_cross_section
  • 7/31/2019 UPT Project 2008 SRE

    44/123

    This shows that the received power declines as the fourth power of the range,

    which means that the reflected power from distant targets is very, very small.

    The equation above withF= 1 is a simplification forvacuumwithout

    interference. The propagation factor accounts for the effects ofmultipath and

    shadowing and depends on the details of the environment. In a real-world situation,

    pathloss effects should also be considered.

    APPLICATIONS OF RADAR

    Radar has been employed on the ground, in the air, on the sea and in space. Ground

    based radar has been applied chiefly to the detection, location, and tracking of the

    aircraft or space target. Shipboard radar is used as a navigation aid and safety device to

    locate buoys, shorelines and other ships as well as for observing aircraft. Airborne radar

    may be used to detect other aircraft, ships, or land vehicles or it may be used for

    mapping of land, storm avoidance, terrain avoidance and navigation. In space, radar has

    assist in the guidance of spacecraft and for remote sensing of the land and sea.

    The major use of radar, and contributor of the cost of almost all of its

    development, has been the military; although there has been increasingly important

    civil application, chiefly for marine and air navigation. The major areas of radar

    application are briefly described below:

    Air Traffic Control (ATC): Radar is employed throughout the world

    for the purpose of safely controlling air traffic route and in the vicinity of

    Airport. Aircraft and ground vehicular traffic at large airport are monitored by

    means of high - resolution radar. Radar has been used with GCA (groundcontrol approach) system to guide aircraft to a safe landing in bad weather.

    Ship Safety: Radar is used for enhancing the safety of ship travel by

    warning of ship potential collision with other ships, and for detecting navigation

    buoys, especially in poor visibility. Automatic detection and tracking equipment

    http://en.wikipedia.org/wiki/Vacuumhttp://en.wikipedia.org/wiki/Vacuumhttp://en.wikipedia.org/wiki/Multipathhttp://en.wikipedia.org/wiki/Pathlosshttp://en.wikipedia.org/wiki/Vacuumhttp://en.wikipedia.org/wiki/Multipathhttp://en.wikipedia.org/wiki/Pathloss
  • 7/31/2019 UPT Project 2008 SRE

    45/123

    are commercially available for use with radar for the purpose of collision

    avoidance. Shore based radar of moderately high resolution is also used for

    the surveillance of harbors as an aid to navigation.

    Space: Space vehicles have used radar for rendezvous and docking and for

    landing on the moon. Some of the largest ground based radar is for the detection

    and tracking of satellite.

    Remote Sensing: All radar is a remote sensor. Radar has been used as a

    remote sensor of the weather. It is also used to probe the moon and planets. The

    ionospheric sounder, an important adjunct for HF (short wave)

    communications, is radar. Remote sensing with radar is also concerned with

    earth resources, which include the measurement and mapping of sea condition,

    water resources, ice cover, agriculture, forestry condition, geological

    information and environmental pollution.

    Law Enforcement: In addition to the wide use of radar to measure the

    speed of automobile traffic by highway police, radar has also been employed as

    a means for the detection of intruders.

    Military: Many of the civilian application of the radar are also employed by

    the military. The traditional role of radar for military application has been for

    surveillance, navigation and for the control and guidance of weapon.

  • 7/31/2019 UPT Project 2008 SRE

    46/123

    SRE

    RADAR ELECTRONIC CABINET (REC)

    The REC cabinet contains at the right side in suitable comportment the first board

    withall strips of the RF exciter assembly, a second board, contains instead the IF assembly

    strips;

    and the IF SLB Assembly.A control panel is mounted on top of the cabinet containing breakers commands and

    controls. A multi-voltage power supply is situated in the cabinet.

    A view of the REC is given in figure 4.2.3; it contains the following subassemblies:- Power Control Panel;

    - Power Supplies;- RF Exciter Assembly;

    - IF Assembly;- Blowers and Fans Control Bite modules,

    - Digital Receiver Unit,

    - Two RSP assemblies,- Two RDP assemblies.

    Power SuppliesThe REC power supply section receives 220V/380V a.c. 50 Hz three phase mainsupply and produces all the a.c. and d.c. voltages necessary to the REC unit, FER units

    and the

    REC cooling blowers.

    D.c. voltages are produced by switching regulators and are protected against transientsand surge currents.

    Overload, overvoltages and overtemperature protections are also implemented; in case

    of overtemperature the Power Supply section interrupts the output voltages.

    RF ExciterThe aim of the RF exciter is to generate the RF signal to drive the Transmitter and the

  • 7/31/2019 UPT Project 2008 SRE

    47/123

    TTG.

    With this objective, it accepts one of the signals generated by either Stalo Synthesizer

    (10 frequencies each) that is, therefore, amplified by the STALO MEDIUM POWERAMPLIFIER and finally it is divided, in power, by four with one hybrid Power Divider.

    Three of the outputs of the Power Divider are sent to the FER units, the fourth to the

    STALO Mixer inside the RF Driver Amplifier and the others are terminated with a 50OHM

    load. .

    The Medium Power RF amplifiers and the High Power RF amplifiers amplify thesignal and send it to the TRANSMITTER.

    An output with coupler is sent to the DIGITAL ATTENUATOR from the MEDIUM

    POWER RF AMPLIFIER to generate the TTG signal (Test Target).

    IF Receiver AssemblyThe IF Assembly contains many strips that carries out various tasks.

    All circuits dedicated to frequency generation are inside this assembly, the PRE-IFamplification, phase detection, the signal processors selection and the interface with the

    BITEcircuits.

    The redundant frequency generation section is comprised of:

    -two Stalo Synthesizers;-one COHO;

    -one DIGITAL Expander;

    -one Generator;-one Distributor.

    The Stalo Synthesizers (ODD and EVEN) produce 20 frequencies that are used by the

    Stalo MPA (A and B) and constitutes the STALO signal distributed to the Hybrid andto twoPower Dividers contained in the Exciter Assembly.

    SLB FunctionThe SLB function is comprised of four strips.The S-BAND omni antenna furnishes the radar with a reception beam dedicated to the

    SLB channel that is then sent , by means of the SLB/FER Assembly, to the IF SLB

    channel.

    The IF SLB channel is the same as the Air Target-IF Receiver (MAIN and AUX).

    FRONT END RECEIVERSThe three front End Receivers are located externally to the REC cabinet and accept in

    input the RF signals coming from the antenna and generate three PRE-IF signals; the

    first and

  • 7/31/2019 UPT Project 2008 SRE

    48/123

    the second (main and auxiliary) are used for target detection (split into air and surface)

    and the

    third for the IF SLB Receiver.The units that make up the group are:

    - One Waveguide Switch;

    - Three Front End Receivers (FER);

    Waveguide SwitchThis switch is used to route the signal received through the MAIN Antenna Beam

    towards the Aux Front End Receiver in case of a malfunction along the Main line. In

    thenormal position, the MAIN beam is sent to the Main FER while the beam coming from

    the

    auxiliary antenna is sent to the AUX FER.

    Front End ReceiverThe Front End Receiver carries out the following tasks:

    - it protects the receiver during the transmission of high power leakage signals;- it attenuates the signals received (STC);

    - it filters the signals in input that are outside of the useful band;

    - it amplifies the signal received with a L.N.A.;- it converts (down) the signals received to IF signals (mixer);

    - it checks malfunctions of the TR tube by means of the BITE.

    Every Front End Receiver contains the following assemblies:- Receiver Protector Spec.- Band Pass Filters

    - Low Noise Amplifier

    - RF Isolator- Mixer

    - Low Pass Filter

    - Band-Pass Filter

    Radar Signal Processor General Description

    The Radar Signal Processor (RSP) conducts some basic functions of the radar such as

  • 7/31/2019 UPT Project 2008 SRE

    49/123

    target detection, disturbance filtering AGC of receivers, STC control. It is comprised of

    three

    ATCR-33S INDIA Receiver Unit

    Functional Technical Description

    - Air Target Signal Processor (ATSP), dedicated to the detection of aircraft;- Surface Target Signal Processor (STSP), dedicated to the detection of targets on the

    sea surface;

    - Side Lobe Blanking Signal Processor (SLBSP), dedicated to the blanking ofdetections

    generated by signals entering the sidelobes of the antenna, and the detection of

    jamming on the main lobe (Jammer Strobe).

    The three signal processing sections above listed provide to the Radar Data Processor(RDP) the plots of the detected Air Targets, the detected Surface Targets and the

    jamming

    messages that can affect the post processing of both the air and the surface targets. The

    plotsare supplied together with information about the detection conditions (strength and

    number ofthresholds passing).

    The ATSP and the SLBSP perform a coherent signal processing, working on I & Q

    signals coming from the phase detectors of the corresponding receiver channels. TheSTSP

    processes incoherently the input signal, which has been envelope detected with a

    logarithmic

    characteristics in the Surface Target Reception Channel.

    Operative Modes

    There are two main modes of operation of the signal processors:

    - Coherent Processing (mode 1);

    - Incoherent Processing (mode 2).

    The mode 1 is the normal mode, and it is related to the use of constant radio frequency

    during a coherent processing interval (CPI) cycle (6 pulses). When this is the active

    mode, allthe signal processors work normally, i.e. ATSP performs the AMTD function, the

    SLBSP is

    inserted, and the STSP is active.

    The mode 2 corresponds to the use of variable radio frequency, changing from pulse to

  • 7/31/2019 UPT Project 2008 SRE

    50/123

    pulse (frequency agility). This condition inhibits the possibility to coherently process

    the radar

    signals and then:

    - The STSP works normally.

    - The ATSP works with non coherent integration

    - The SLBSP is excluded.

    In other words, when in mode 2, the radar has not the capability of:

    - Conveniently filter the clutter;

    - Improve the SNR by the coherent integration;

    - Estimate the target radial velocity and suffers blind speeds.

    - Contrasting the jamming through the sidelobes

    Signal Processors Display

    The Signal Processors provide several signals that can be displayed on the

    Maintenance Monitor; these signals are divided into two categories:

    - VIDEO signals;

    - MAP signals.

    1) VIDEO Signals

    Air and surface target videos can be individually displayed or combined.

    Two types of video signals can be displayed for the resulting combinations, namely:

    Normal Video and Composite Video.

    - Normal Video (multi level, 7 bit) is obtained from the output of the FIR (Finite

    Impulse Response) filters of the ATSP and preset thresholds and shall be used

    to indicate the location and intensity of clutter such as storm, mountains,coastlines and towers; the signal sent to the display is obtained taking the output

    of the filter providing the maximum amplitude, for each range bin, among the

    selected filter. Using the Local Control Panel it is possible to limit the selection

    among a reduced subset of filters, up to a single filter.

    - Composite Video is the operational binary video that indicates all the detections

  • 7/31/2019 UPT Project 2008 SRE

    51/123

    (targets and/or false alarms), eventually filter by filter.

    2) MAPS Signals

    Different types of maps or functional signals, can be displayed (filled area or contours

    only):

    - Jam Strobe Map (JS)

    - Strong Target Adaptive Cancellation (STAC CPI)

    - Fine Doppler Maps (one selected among N-2) (12 bit) (FDM)

    - Weight Selection Map (2 bit) (WSM)

    - False Alarm Normalizer Map (one selected among N) (FANM)

    -Clutter Sensor Map (4 bit) (CLSM)

    The following maps (stored in EEPROM) can be displayed:

    - Censoring Level Map (CLM)

    - Autogate Overriding Map (2 bit) Criteria (ACOM)

    - Detection Overriding Map (3 bit) Criteria (DCOM)

    - Detection Blanking Map (2 bit) (DBM)

    - Second Time Echoes Map (STEM)

    (1 bit= logic AND function in a CPI pair, or not)

    - Main BSTC assigned attenuation (STC1)

    (indicates the regions where the STC attenuation

    is greater than an assigned value, for the main beam) (8bit)

    - Jammer Sector (1 bit = enable Jam Strobe) (JAMM).

    AIR Target Signal Processor (ATSP) CharacteristicsThe ATSP main functions are

    - I & Q analog to digital conversion (12 bits)

    - Long Pulse/short pulse alignment

    - I & Q correction

  • 7/31/2019 UPT Project 2008 SRE

    52/123

    - MTD filtering

    - Magnitude of filter outputs

    - Thresholds control system with:

    - Doppler filters outputs scan by scan averaging thresholds (FDM);

    - fixed thresholds;

    - adaptive CFAR thresholds (autogate);

    - censoring thresholds.

    - STC

    - Interference and Sun strobe detection

    - Automatic Gain Control (AGC)

    - Strong Target Adaptive Control (STAC)

    - Incoherent processing, for pulse to pulse agility

    - Signals for performance display

    - Second time-around echo suppression.

    The above functions are supported by a number of parameters that are programmable

    and adjustable by means of the Local Control Panel.

    The ATSP processes the received signal and sends out the Target Primitive Reports

    with the following contents:

    - magnitude (10 bits)

    - status flags (3 bits).

    The above data are transferred to the RDP.

    The ATSP generates its internal timing starting from fundamental synchronisms

    received from the RDP (System Timing function).

    These synchronisms are:

    - North Reference Pulse

    - CPI trigger

    AMTD Filtering

    The objective of the AMTD is essentially that of detecting targets that are selected on

    the basis of their doppler frequency.

  • 7/31/2019 UPT Project 2008 SRE

    53/123

    It conducts coherent integration and filtering of clutter with a bank of N FIR digital

    filters tuned on a portion of the doppler spectrum.

    Selectivity in doppler is realized, in fact, by these transverse filters in time sharing,

    allowing incoherent integration in groups of n or m sweeps

    Adaptive and Environmental Functions

    Some adaptive functions are contained within the ATSP to filter all unwanted signals

    and to maintain dynamic range and CFAR of the processing system.

    These functions include the real time sensors relative to the environment and they

    memorize in a map (one for each function) the appropriate value to be applied (for

    example,

    threshold level, STC value, etc.).

    These maps are also updated continuously. The circuits being examined are

    represented in the general block diagram of the Signal Processor in figure 4.2.9.

    The functions mentioned above are divided into two groups:

    1) Functions that support detection criteria such as:

    - estimation of the threshold, scan by scan, for the N filters with N-1 (6 at most)

    Fine Doppler Map (FDM);

    - Definition of vehicular traffic areas and fixed strong echoes with the Censoring

    Level Map (CLM, contained in circuit FA);

    - Angel activity detection in output from each doppler filter. For the filters where

    angels are detected, the selected detection threshold is increased by a

    preselectable quantity. This function is carried out with N False Alarm

    Normalizer Maps (FAN, contained in the MO circuit);

    - Adaptive threshold characteristics and spatial selection (CA-CFAR) with theAutogate Criterium Overriding Map (ACOM, contained in the FA circuit);

    - Detection criterium selection with the relative map (DCOM : Detection

    Criterium Overriding Map, contained in the FA circuit);

    - Automatic definition of rainy areas with the clutter map (CLSMAP);

    - Blanking of the Primitive Reports of a filter or of a group of filters in particular

  • 7/31/2019 UPT Project 2008 SRE

    54/123

    areas with the Detection Blanking Map (DBM, contained in the FA circuit).

    2) Environmental and adaptive functions that have the aim of increasing the signal with

    respect to clutter, permitting a high probability of detection over the entire volume

    covered;

    These functions are:

    - FIR filters weight selection with the Weight Selection Map;

    - STC control function that updates the attenuation of the signals received.

    SLB Reception Channel

    The Side Lobe Blanking (SLB) Reception Channel functional area receives the echo

    signal from the Antenna Group in the "S-Band", down converts it into an appropriate IF

    forprocessing, performs pulse compression and phase decoding This functional area is

    made up by the same type of modules used for the Main

    Reception Channel, however few functional differences exist.This functional area is composed of the following parts:

    a) SLB FER (Front End Receiver) including:

    - Receiver Protector- Band Pass Filter- Low Noise Amplifier

    - RF Isolator

    - Mixer- Stalo Band Pass Filter

    -Low Pass Filter

    b) IF Preamplifier and Mixer Modulec) SAW Compressor Module

    d) Phase Detector Module

    Signal Processor BITE

    The BITE system that controls the Signal Processors can be divided into the twofollowing criteria:

    BITE ON LINE:

    1) BITE-ON-LINE of the processing cards conducted by the "BITE 1" card (BA);

    2) BITE-ON-LINE of the Timing cards conducted by the "BITE TIMING" card (BE);

  • 7/31/2019 UPT Project 2008 SRE

    55/123

    3) BITE-ON-LINE of the cards containing maps.

    BITE OFF LINE

    The BITE ON LINE is active during operation of the apparatus.The BITE OFF LINE is activated once the apparatus has been turned off.

    CONCLUSION

    The industrial training at Bharat Electronics Limited, Ghaziabad has

    given us an exposure to the activities at a large public sector-undertaking

    unit. This being a large organization deals with wide spectrum of

  • 7/31/2019 UPT Project 2008 SRE

    56/123

    technologies. The exposure on RECEIVER OF SRE RADAR has given

    us great confidence and knowledge.

  • 7/31/2019 UPT Project 2008 SRE

    57/123

    SRE

    RADAR ELECTRONIC CABINET (REC)

    The REC cabinet contains at the right side in suitable comportment the first board

    with

    all strips of the RF exciter assembly, a second board contains instead the IF assemblystrips and the IF SLB Assembly.

    A control panel is mounted on top of the cabinet containing breakers commands and

    controls. A multi-voltage power supply is situated in the cabinet.

    REC contains the following subassemblies:1.Power Control Panel

    2. Power Supplies3.RF Exciter Assembly

    4. IF Assembly

    5.Blowers and Fans Control Bite modules6. Dig