37
University of Groningen Enrichment of planetary surfaces by asteroid and comet impacts Frantseva, Kateryna DOI: 10.33612/diss.100695383 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Frantseva, K. (2019). Enrichment of planetary surfaces by asteroid and comet impacts. [Groningen]: Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.100695383 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 09-03-2020

University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

University of Groningen

Enrichment of planetary surfaces by asteroid and comet impactsFrantseva, Kateryna

DOI:10.33612/diss.100695383

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Frantseva, K. (2019). Enrichment of planetary surfaces by asteroid and comet impacts. [Groningen]:Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.100695383

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 09-03-2020

Page 2: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Aarseth, S. J. 2003, Gravitational N-Body Simulations (CambridgeUniversity Press), 430

Acke, B., Min, M., Dominik, C., et al. 2012, A&A, 540, A125

Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 2015, Science, 347, 1261952

Armitage, P. J. 2007, ArXiv Astrophysics e-prints

Asphaug, E. 2009, Annual Review of Earth and Planetary Sciences, 37, 413

Atreya, S., Wong, M., Owen, T., et al. 1999, Planetary and Space Science,47, 1243

Baines, E. K., White, R. J., Huber, D., et al. 2012, ApJ, 761, 57

Bertini, I. 2011, Planet. Space Sci., 59, 365

Binzel, R. P. 2003, Nature, 425, 131

Blank, J. G., Liu, B. T., Lomov, I. N., & Antoun, T. H. 2008, in Lunarand Planetary Science Conference, Vol. 39, Lunar and Planetary ScienceConference, 2237

Booth, M., Jordan, A., Casassus, S., et al. 2016, MNRAS, 460, L10

Borin, P., Cremonese, G., Marzari, F., & Lucchetti, A. 2017, A&A

Bottke, W. F., Broz, M., O’Brien, D. P., et al. 2015, The Collisional Evolutionof the Main Asteroid Belt (University of Arizona Press), 701–724

Bottke, W. F., Durda, D. D., Nesvorny, D., et al. 2005, Icarus, 175, 111

Bottke, W. F., Morbidelli, A., Jedicke, R., et al. 2002, Icarus, 156, 399

Bouvier, A. & Wadhwa, M. 2010, Nature Geoscience, 3, 637

129

Page 3: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Bowell, E., Hapke, B., Domingue, D., et al. 1989, in Asteroids II, ed. R. P.Binzel, T. Gehrels, & M. S. Matthews, 524–556

Brown, M. E. 2012, Annual Review of Earth and Planetary Sciences, 40,467

Butler, B. J. 1997, J. Geophys. Res., 102, 19283

Butler, B. J., Muhleman, D. O., & Slade, M. A. 1993, J. Geophys. Res., 98,15

Carrillo-Sanchez, J. D., Nesvorny, D., Pokorny, P., Janches, D., & Plane,J. M. C. 2016, Geophys. Res. Lett., 43, 11

Carry, B. 2012, Planet. Space Sci., 73, 98

Cavalie, T., Billebaud, F., Lellouch, E., et al. 2007a, in European PlanetaryScience Congress 2007, 609

Cavalie, T., Billebaud, F., Lellouch, E., et al. 2007b, in Bulletin of theAmerican Astronomical Society, Vol. 39, AAS/Division for PlanetarySciences Meeting Abstracts #39, 414

Cavalie, T., Feuchtgruber, H., Lellouch, E., et al. 2013, A&A, 553, A21

Ceplecha, Z., Borovicka, J., Elford, W. G., et al. 1998, Space Sci. Rev., 84,327

Ceplecha, Z. & Revelle, D. O. 2005, Meteoritics and Planetary Science, 40,35

Chabot, N. L., Ernst, C. M., Denevi, B. W., et al. 2012, Geophys. Res. Lett.,39, L09204

Chambers, J. E. 2001, Icarus, 152, 205

Chambers, J. E. 2009, Annual Review of Earth and Planetary Sciences, 37,321

Chen, J. & Kipping, D. 2017, ApJ, 834, 17

Chesley, S. R., Farnocchia, D., Pravec, P., & Vokrouhlicky, D. 2016, in IAUSymposium, Vol. 318, Asteroids: New Observations, New Models, ed.S. R. Chesley, A. Morbidelli, R. Jedicke, & D. Farnocchia, 250–258

Chesley, S. R., Ostro, S. J., Vokrouhlicky, D., et al. 2003, Science, 302,1739

130

Page 4: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Ciesla, F. J., Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 804, 9

Close, L. 2010, Nature, 468, 1048

Contro, B., Horner, J., Wittenmyer, R. A., Marshall, J. P., & Hinse, T. C.2016, MNRAS, 463, 191

Contro, B., Wittenmyer, R. A., Horner, J., & Marshall, J. P. 2015, Origins ofLife and Evolution of the Biosphere, 45, 41

Cotten, T. H. & Song, I. 2016, ApJS, 225, 15

Crider, D. & Killen, R. M. 2005, Geophys. Res. Lett., 32, L12201

Crismani, M. M. J., Schneider, N. M., Plane, J. M. C., et al. 2017, NatureGeoscience, 10, 401

D’Angelo, M., Cazaux, S., Kamp, I., Thi, W.-F., & Woitke, P. 2018, arXive-prints

de Leon, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N., & Campins,H. 2011, in Highlights of Spanish Astrophysics VI, ed. M. R. ZapateroOsorio, J. Gorgas, J. Maız Apellaniz, J. R. Pardo, & A. Gil de Paz, 555–569

de Pater, I. & Lissauer, J. J. 2015, Planetary Sciences (Cambridge UniversityPress)

Dehnen, W. & Read, J. I. 2011, European Physical Journal Plus, 126, 55

DeMeo, F. E. & Carry, B. 2013, Icarus, 226, 723

DeMeo, F. E. & Carry, B. 2014, Nature, 505, 629

Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. 2012, Science, 338,246

Denevi, B. W., Ernst, C. M., Meyer, H. M., et al. 2013, Journal ofGeophysical Research (Planets), 118, 891

Dobrica, E., Engrand, C., Duprat, J., & Gounelle, M. 2010, Meteoritics andPlanetary Science Supplement, 73, 5213

Dohnanyi, J. S. 1969, J. Geophys. Res., 74, 2531

Duncan, M. J., Levison, H. F., & Lee, M. H. 1998, AJ, 116, 2067

Eigenbrode, J. L., Summons, R. E., Steele, A., et al. 2018, Science, 360,1096

131

Page 5: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Eke, V. R., Lawrence, D. J., & Teodoro, L. F. A. 2017, Icarus, 284, 407

Engrand, C., Deloule, E., Hoppe, P., et al. 1996, in Lunar and PlanetaryScience Conference, Vol. 27, Lunar and Planetary Science Conference

Engrand, C., Deloule, E., Robert, F., Maurette, M., & Kurat, G. 1999,Meteoritics and Planetary Science, 34, 773

Ertel, S., Absil, O., Defrere, D., Augereau, J. C., & Mennesson, B. 2018a,Experimental Astronomy, 46, 401

Ertel, S., Defrere, D., Hinz, P., et al. 2018b, AJ, 155, 194

Everhart, E. 1985, in Dynamics of Comets: Their Origin and Evolution,Proceedings of IAU Colloq. 83, held in Rome, Italy, June 11-15, 1984.Edited by Andrea Carusi and Giovanni B. Valsecchi. Dordrecht: Reidel,Astrophysics and Space Science Library. Volume 115, 1985, p.185, ed.A. Carusi & G. B. Valsecchi, 185

Fassett, C. I., Head, J. W., Baker, D. M. H., et al. 2012, Journal ofGeophysical Research (Planets), 117, E00L08

Fletcher, L. N., Orton, G. S., de Pater, I., et al. 2010, in Bulletin of theAmerican Astronomical Society, Vol. 42, AAS/Division for PlanetarySciences Meeting Abstracts #42, 1010

Flynn, G. J. 1996, Earth Moon and Planets, 72, 469

Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., & Giuranna, M. 2004,Science, 306, 1758

Frantseva, K., Mueller, M., ten Kate, I. L., van der Tak, F. F. S., &Greenstreet, S. 2018, Icarus, 309, 125

Frantseva, K., Nesvorny, D., Mueller, M., van der Tak, F. F. S., & ten Kate,I. L. 2019, Icarus

Freissinet, C., Glavin, D. P., Buch, A., et al. 2016, in Lunar and PlanetaryScience Conference, Vol. 47, Lunar and Planetary Science Conference,2568

Freissinet, C., Glavin, D. P., Mahaffy, P. R., et al. 2015, Journal ofGeophysical Research (Planets), 120, 495

Geiler, F., Krivov, A. V., Booth, M., & Lohne, T. 2019, MNRAS, 483, 332

132

Page 6: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Gicquel, A., Bockelee-Morvan, D., Zakharov, V. V., et al. 2012, A&A, 542,A119

Gilmour, I. & Sephton, M. A. 2004, An Introduction to Astrobiology(Cambridge University Press)

Gilmour, I., Sephton, M. A. Spohn, T., Breuer, D., & Johnson, T. 2014,Encyclopedia of the Solar System (ELSEVIER Inc.)

Gladman, B., Duncan, M., & Candy, J. 1991, Celestial Mechanics andDynamical Astronomy, 52, 221

Glavin, D. P., Freissinet, C., Miller, K. E., et al. 2013, Journal of GeophysicalResearch (Planets), 118, 1955

Goesmann, F., Rosenbauer, H., Bredehoft, J. H., et al. 2015, Science, 349

Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435,466

Gotberg, Y., Davies, M. B., Mustill, A. J., Johansen, A., & Church, R. P.2016, A&A, 592, A147

Gozdziewski, K. & Migaszewski, C. 2014, MNRAS, 440, 3140

Gozdziewski, K. & Migaszewski, C. 2018, ArXiv e-prints

Granvik, M., Morbidelli, A., Jedicke, R., et al. 2016, Nature, 530, 303

Granvik, M., Morbidelli, A., Vokrouhlicky, D., et al. 2017, A&A, 598, A52

Gray, R. O., Corbally, C. J., Garrison, R. F., McFadden, M. T., & Robinson,P. E. 2003, AJ, 126, 2048

Gray, R. O. & Kaye, A. B. 1999, AJ, 118, 2993

Greenstreet, S., Ngo, H., & Gladman, B. 2012, Icarus, 217, 355

Grun, E., Zook, H. A., Fechtig, H., & Giese, R. H. 1985, Icarus, 62, 244

Haghighipour, N. 2013, Annual Review of Earth and Planetary Sciences,41, 469

Harmon, J. K. & Slade, M. A. 1992, Science, 258, 640

Harmon, J. K., Slade, M. A., Velez, R. A., et al. 1994, Nature, 369, 213

133

Page 7: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessonsfrom Shoemaker-Levy 9 about Jupiter and planetary impacts, Vol. 1(Cambridge University Press), 159–184

Head, J. W., Murchie, S. L., Prockter, L. M., et al. 2009, Earth and PlanetaryScience Letters, 285, 227

Hendrix, A. R., Hurley, D. M., Farrell, W. M., et al. 2019, Geophys. Res. Lett.,46, 2417

Holsapple, K. A. & Housen, K. R. 2007, Icarus, 187, 345

Huebner, W. F. 2002, Earth Moon and Planets, 89, 179

Iglesias-Groth, S., Cataldo, F., Ursini, O., & Manchado, A. 2011, MNRAS,410, 1447

Jessberger, E. K., Christoforidis, A., & Kissel, J. 1988, Nature, 332, 691

Jewitt, D. C. 2004, From cradle to grave: the rise and demise of the comets(The University of Arizona Press), 659–676

Jutzi, M., Holsapple, K., Wunneman, K., & Michel, P. 2015, ArXiv e-prints

Kenyon, S. J. & Bromley, B. C. 2008, ApJS, 179, 451

Kirkwood, D. 1866, in Proceedings of American Association for theAdvancement of Science, 8–14

Kokubo, E. & Ida, S. 1996, Icarus, 123, 180

Lacerda, P. 2009, in The Next-Generation Infrared Space Mission: SPICA,ed. A. M. Heras, B. M. Swinyard, K. G. Isaak, & J. R. Goicoechea, 02004

Lagrange, A.-M., Bonnefoy, M., Chauvin, G., et al. 2010, Science, 329, 57

Lawrence, D. J., Feldman, W. C., Goldsten, J. O., et al. 2013, Science, 339,292

Lellouch, E., Bezard, B., Moses, J., et al. 2002, Icarus, 159, 112

Leshin, L. A., Mahaffy, P. R., Webster, C. R., et al. 2013, Science, 341,1238937

Levison, H. F. & Duncan, M. J. 1994, Icarus, 108, 18

Levison, H. F. & Duncan, M. J. 2000, AJ, 120, 2117

134

Page 8: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Levison, H. F. & Duncan, M. J. 2013, SWIFT: A solar system integrationsoftware package, Astrophysics Source Code Library

Li, S., Lucey, P. G., Milliken, R. E., et al. 2018, Proceedings of the NationalAcademy of Sciences

Lisse, C., Orton, G., Yanamandra-Fisher, P., et al. 2010, in EGUGeneral Assembly Conference Abstracts, Vol. 12, EGU General AssemblyConference Abstracts, 12186

Love, S. G. & Brownlee, D. E. 1993, Science, 262, 550

Mahaffy, P. R., Webster, C. R., Cabane, M., et al. 2012, Space ScienceReviews, 170, 401

Marchi, S., Bottke, W. F., Kring, D. A., & Morbidelli, A. 2012, Earth andPlanetary Science Letters, 325, 27

Marois, C., Macintosh, B., Barman, T., et al. 2008, Science, 322, 1348

Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., & Barman, T.2010, Nature, 468, 1080

Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2011, ApJ, 741, 68

Matthews, B., Kennedy, G., Sibthorpe, B., et al. 2014, ApJ, 780, 97

Maurette, M., Brack, A., Kurat, G., Perreau, M., & Engrand, C. 1995,Advances in Space Research, 15, 113

Maurette, M., Duprat, J., Engrand, C., et al. 2000, Planet. Space Sci., 48,1117

Mayor, M. & Queloz, D. 1995, Nature, 378, 355

Milani, A. & Knezevic, Z. 1990, Celestial Mechanics and DynamicalAstronomy, 49, 347

Ming, D. W., Archer, P. D., Glavin, D. P., et al. 2014, Science, 343, 1245267

Mitrofanov, I. G., Kozyrev, A. S., Konovalov, A., et al. 2010,Planet. Space Sci., 58, 116

Moor, A., Abraham, P., Kospal, A., et al. 2013, ApJ, 775, L51

Moore, C. B. & Lewis, C. F. 1967, Journal of Geophysical Research, 72

135

Page 9: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Moores, J. E. & Schuerger, A. C. 2012, Journal of Geophysical Research(Planets), 117, E08008

Morbidelli, A., Chambers, J., Lunine, J. I., et al. 2000, Meteoritics andPlanetary Science, 35, 1309

Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. 2005, Nature, 435,462

Morbidelli, A., Nesvorny, D., Laurenz, V., et al. 2018, Icarus, 305, 262

Morbidelli, A. & Wood, B. J. 2015, Washington DC American GeophysicalUnion Geophysical Monograph Series, 212, 71

Moses, J. I., Rawlins, K., Zahnle, K., & Dones, L. 1999, Icarus, 137, 197

Murray, C. D. & Dermott, S. F. 2000, Solar System Dynamics (CambridgeUniversity Press)

National Research Council. 2007, Exploring Organic Environments in theSolar System

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

Nesvorny, D. & Bottke, W. F. 2004, Icarus, 170, 324

Nesvorny, D., Janches, D., Vokrouhlicky, D., et al. 2011a, ApJ, 743, 129

Nesvorny, D., Jenniskens, P., Levison, H. F., et al. 2010, ApJ, 713, 816

Nesvorny, D., Vokrouhlicky, D., Pokorny, P., & Janches, D. 2011b, ApJ, 743,37

Neumann, G. A., Cavanaugh, J. F., Sun, X., et al. 2013, Science, 339, 296

Nittler, L. R., Chabot, N. L., Grove, T. L., & Peplowski, P. N. 2017, arXive-prints, arXiv:1712.02187

Noguchi, T., Nakamura, T., & Nozaki, W. 2002, Earth and Planetary ScienceLetters, 202, 229

O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., & Mandell,A. M. 2014, Icarus, 239, 74

Orton, G., Fletcher, L., Lisse, C., et al. 2011, Icarus, 211, 587

Ostrach, L. R., Robinson, M. S., Whitten, J. L., et al. 2015, Icarus, 250, 602

136

Page 10: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Paige, D. A., Siegler, M. A., Harmon, J. K., et al. 2013, Science, 339, 300

Palmer, E. M., Heggy, E., & Kofman, W. 2017, Nature Communications, 8

Pavlov, A. A., Pavlov, A. K., Ostryakov, V. M., et al. 2014, Journal ofGeophysical Research (Planets), 119, 1390

Pavlov, A. A., Vasilyev, G., Ostryakov, V. M., Pavlov, A. K., & Mahaffy, P.2012, Geophys. Res. Lett., 39, L13202

Perryman, M. 2018, The Exoplanet Handbook (Cambridge UniversityPress), 952

Pokorny, P., Sarantos, M., & Janches, D. 2017, ApJ, 842, L17

Pokorny, P., Sarantos, M., & Janches, D. 2018, ApJ, 863, 31

Potter, A. E. 1995, Geophys. Res. Lett., 22, 3289

Pravec, P. & Harris, A. W. 2007, Icarus, 190, 250

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.1992, Numerical recipes in FORTRAN. The art of scientific computing(Cambridge University Press)

Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. 2012, Science,338, 242

Prialnik, D. 2002, Earth Moon and Planets, 89, 27

Prockter, L. M., Ernst, C. M., Denevi, B. W., et al. 2010, Science, 329, 668

Raymond, S. N., Izidoro, A., & Morbidelli, A. 2018, arXiv e-prints,arXiv:1812.01033

Read, M. J., Wyatt, M. C., Marino, S., & Kennedy, G. M. 2018, MNRAS,475, 4953

Rein, H., Hernandez, D. M., Tamayo, D., et al. 2019, arXiv e-prints

Rein, H. & Liu, S.-F. 2012, A&A, 537, A128

Rein, H. & Spiegel, D. S. 2015, MNRAS, 446, 1424

Rein, H. & Tamayo, D. 2015, MNRAS, 452, 376

Ren, B., Choquet, E., Perrin, M. D., et al. 2019, arXiv e-prints,arXiv:1908.00006

137

Page 11: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Rieke, G. H., Wright, G. S., Boker, T., et al. 2015, PASP, 127, 584

Rivkin, A. 2013, An Overview of the Asteroids and Meteorites (Springer),376

Rivkin, A. S., Howell, E. S., Emery, J. P., & Sunshine, J. 2017, Icarus,

Rubin, A. E. & Grossman, J. N. 2010, Meteoritics and Planetary Science,45, 114

Sagan, C. & Pollack, J. B. 1974, Icarus, 21, 490

Sandford, S. A., Aleon, J., Alexander, C. M. O. ., et al. 2006, Science, 314,1720

Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J., & McKay,C. P. 2003, Icarus, 165, 253

Schwarz, R., Bazso, A., Georgakarakos, N., et al. 2018, MNRAS

Sephton, M. A. 2014, Organic Geochemistry of Meteorites, Vol. 12.1(ELSEVIER Inc), 1–31

Sephton, M. A., Wright, I. P., Gilmour, I., et al. 2002, Planetary and SpaceSciences Research Institute, 50, 711

Slade, M. A., Butler, B. J., & Muhleman, D. O. 1992, Science, 258, 635

Speyerer, E. J., Povilaitis, R. Z., Robinson, M. S., Thomas, P. C., & Wagner,R. V. 2016, Nature, 538, 215

Springel, V., Wang, J., Vogelsberger, M., et al. 2008, MNRAS, 391, 1685

Su, K. Y. L. & Rieke, G. H. 2014, in IAU Symposium, Vol. 299, Exploringthe Formation and Evolution of Planetary Systems, ed. M. Booth, B. C.Matthews, & J. R. Graham, 318–321

Su, K. Y. L., Rieke, G. H., Malhotra, R., et al. 2013, ApJ, 763, 118

Su, K. Y. L., Rieke, G. H., Stapelfeldt, K. R., et al. 2009, ApJ, 705, 314

Svetsov, V. 2011, Icarus, 214, 316

Svetsov, V. V. & Shuvalov, V. V. 2015, Planet. Space Sci., 117, 444

Swamy, K. S. K. 2010, Physics of Comets (3rd Edition) (World ScientificPublishing Co)

138

Page 12: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Taylor, M. G. G. T., Altobelli, N., Buratti, B. J., & Choukroun, M. 2017,Philosophical Transactions of the Royal Society of London Series A, 375,20160262

Taylor, P. A., Margot, J.-L., Vokrouhlicky, D., et al. 2007, Science, 316, 274

ten Kate, I. L. 2010, Astrobiology, 10, 589

ten Kate, I. L. 2018, Science, 360, 1068

ten Kate, I. L., Garry, J. R. C., Peeters, Z., et al. 2005, Meteoritics andPlanetary Science, 40, 1185

Tholen, D. J. 1989, in Asteroids II, ed. R. P. Binzel, T. Gehrels, & M. S.Matthews, 1139–1150

Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435,459

Turrini, D. 2014, Planet. Space Sci., 103, 82

Turrini, D., Combe, J.-P., McCord, T. B., et al. 2014, Icarus, 240, 86

Turrini, D., Svetsov, V., Consolmagno, G., Sirono, S., & Pirani, S. 2016,Icarus, 280, 328

van Dishoeck, E. F., Bergin, E. A., Lis, D. C., & Lunine, J. I. 2014, Protostarsand Planets VI, 835

Vokrouhlicky, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler,T. S. 2015, The Yarkovsky and YORP Effects (The Univesity of ArizonaPress), 509–531

Vokrouhlicky, D. & Milani, A. 2000, A&A, 362, 746

Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell,A. M. 2011, Nature, 475, 206

Wang, J. J., Graham, J. R., Dawson, R., et al. 2018, AJ, 156, 192

Webster, C. R., Mahaffy, P. R., Atreya, S. K., & Flesch, G. 2015, AGU FallMeeting Abstracts

Weisberg, M. K., McCoy, T. J., & Krot, A. N. 2006, Systematics andEvaluation of Meteorite Classification (University of Arizona Press), 19–52

139

Page 13: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

BIBLIOGRAPHY

Welsh, B. Y. & Montgomery, S. 2013, PASP, 125, 759

Welsh, B. Y. & Montgomery, S. L. 2018, MNRAS, 474, 1515

Wilson, L. & Head, J. W. 2008, Geophys. Res. Lett., 35, L23205

Winn, J. N. & Fabrycky, D. C. 2015, ARA&A, 53, 409

Wisdom, J. & Holman, M. 1991, AJ, 102, 1528

Wray, J. J. 2013, International Journal of Astrobiology, 12, 25

Wright, E. L., Mainzer, A., Masiero, J., Grav, T., & Bauer, J. 2016, AJ, 152,79

Zhang, J. A. & Paige, D. A. 2009, Geophys. Res. Lett., 36, L16203

Zieba, S., Zwintz, K., Kenworthy, M. A., & Kennedy, G. M. 2019, arXive-prints, arXiv:1903.11071

Zolensky, M. E. & Lindstrom, D. J. 1992, in Lunar and PlanetaryScience Conference Proceedings, Vol. 22, Lunar and Planetary ScienceConference Proceedings, ed. G. Ryder & V. L. Sharpton, 161–169

Zuckerman, B., Rhee, J. H., Song, I., & Bessell, M. S. 2011, ApJ, 732, 61

140

Page 14: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SAMENVATTING

Figuur 1: Uittreksels van populaire nieuwsportalen.

Asteroıden zijn bij ons het best bekend als de helden van angstaanja-gende krantenhoogtepunten (Figuur 1). Kometen zijn in het verleden vrijbeangstigend geweest en staan vandaag de dag vooral bekend om hunmooie staarten. Maar ze zijn allebei zoveel meer dan dat!

Asteroıden en kometen zijn brokken steen, stof en ijs die overblijfselenzijn van de fase van planeetvorming. Onze eigen aarde, Mars, Jupiter enalle andere planeten van het zonnestelsel zijn gevormd uit soortgelijkeobjecten. Daarom kunnen we door het bestuderen van Asteroıden en

141

Page 15: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SAMENVATTING

kometen leren hoe planeten ontstaan en wat er aan het begin van hetzonnestelsel gebeurde.

Kometen zijn al sinds de oudheid bekend bij de mensen. Door hunkenmerkende heldere staarten, die verschijnen wanneer ze dicht bij dezon passeren, zijn kometen door de hele geschiedenis van de mensheidwaargenomen. Tot de zestiende eeuw werden kometen beschouwd alsslechte voortekenen die vernietiging en dood veroorzaakten. Aan hetbegin van de zeventiende eeuw heeft ons begrip van astronomie eenheel nieuw niveau bereikt dankzij Johannes Kepler en zijn wetten vanplanetaire beweging, die stellen dat de planeten zich in elliptische banenom de zon bewegen. Het heeft nog honderd jaar geduurd voordatastronomen zich realiseerden dat kometen, net als de planeten, in banendie veel langgerekter zijn rond de zon bewegen. De belangrijkste rol indeze ontdekking speelde Edmond Halley, die voorspelde dat een eerderwaargenomen komeet terug zou komen. De komeet kwam terug en werdbekend als de komeet van Halley. Als je hem in 1986 niet gezien hebt,zorg er dan voor dat je hem in 2061, tijdens zijn volgende nadering vande aarde en de zon ziet! De negentiende eeuw begon met Giuseppe Piazzidie de allereerste asteroıde, Ceres, ontdekte. Tegenwoordig wordt Ceresbeschouwd als een dwergplaneet, net als Pluto.

Tweehonderd jaar later, in augustus 2019, hebben we 794.832asteroıden en 4.111 kometen ontdekt. We hebben deze kleine objectenuitgebreid kunnen bestuderen vanaf de aarde en vanuit de ruimte. Dankzijdeze studies hebben we veel geleerd over de samenstelling van asteroıdenen kometen. We weten dat ze water en organische verbindingen bevatten(deze laatste zijn koolstofdragende moleculen behalve CO en CO2) - tweeessentiele ingredienten voor het leven zoals we het kennen, dat gebaseerdis op koolstof.

Van tijd tot tijd botsen asteroıden en kometen met de aarde en andereplaneten. In de begintijd van ons zonnestelsel was dit bombardementveel sterker. Sommige theorieen suggereren dat in die tijd asteroıden enkometen het water naar onze planeet hebben gebracht, die droog gevormdwerd door de relatieve nabijheid van de zon. De alternatieve theoriesuggereert dat de rotsen, waaruit de aarde gevormd is water bevatten datdoor vulkanische processen aan de oppervlakte is gekomen. We wetenechter dat asteroıden en kometen insloegen op onze planeet, dus zelfs alsze niet al onze oceanen brachten, speelden ze nog steeds een rol in hetproces.

Planeten, asteroıden en kometen bestaan niet alleen in ons zonnestelsel,maar ook rond andere sterren, wat ons aanwijzingen geeft dat er

142

Page 16: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

mogelijk water en organische verbindingen rond andere sterren wordengetransporteerd.

Dit proefschrift onderzoekt de rol van asteroıden en kometen in hetproces van het leveren van water en organische stoffen aan planeten.Om dit te onderzoeken, hebben we een computermodel gemaakt vangravitationele interacties in ons zonnestelsel met honderdduizendenasteroıden en kometen. Vervolgens hebben we Peregrine, de supercomputervan de Rijksuniversiteit Groningen gebruikt om het computermodel te latendraaien, wat weken in beslag neemt.

Figuur 2: Organische stoffen worden aan Mars geleverd door middel vaninterplanetaire stofdeeltjes, asteroıden en kometen. Stofdeeltjes leveren hetmeeste, terwijl asteroıden en kometen een derde daarvan leveren. Dicht bijde plaatsen van inslag, zijn organische stoffen afkomstig van asteroıden enkometen duidelijk te onderscheiden van diegene die afkomstig zijn van stofdeeltjes.Afbeelding door Nickolas Oberg.

In Hoofdstuk 3 bestuderen we de planeet Mars, waarop de Mars roverCuriosity van NASA in 2015 de resten van organische moleculen ontdekte.Deze moleculen zijn ontdekt in 3.6 miljard jaar oude gesteenten, waar zeal die tijd beschermd en ingebed geweest zijn. In oppervlaktemonsters zijnechter geen organische stoffen gevonden. Door de dunne atmosfeer opMars, die geen bescherming biedt tegen de krachtige ultraviolette stralingen kosmische straling, kunnen de organische moleculen niet lang bestaan

143

Page 17: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SAMENVATTING

op het oppervlak van de planeet. Maar als de moleculen recentelijk vanbuitenaf zijn geleverd, dan is er een kans dat we ze kunnen detecteren.

Tot enkele jaren geleden gingen astronomen ervan uit dat de orga-nische stoffen op Mars voornamelijk afkomstig waren van stofdeeltjes(interplanetaire stofdeeltjes) uit de ruimte. Die deeltjes bevinden zichoveral in het zonnestelsel. Rondom onze aarde zien we bijvoorbeeld destofdeeltjes wanneer ze onze atmosfeer binnendringen en ’vallende sterren’veroorzaken. Maar hoe zit het met asteroıden en kometen die af en toein botsing komen met planeten? Wij hebben ontdekt dat asteroıden enkometen een veel belangrijkere leverancier van organische moleculen opMars lijken te zijn dan verwacht - een derde van het organische materiaalis afkomstig van hen.

Onze berekeningen in Hoofdstuk 3 laten zien dat 192 ton koolstof perjaar op Mars terechtkomt. Dat is vergelijkbaar met 8 vrachtwagenladingen.Ongeveer 129 ton (67%) van de koolstof is afkomstig van interplanetairestofdeeltjes. Maar de asteroıden leveren ook nog eens 50 ton per jaar (26%)en kometen leveren ongeveer 13 ton (7%) van het organische materiaal.

Onze resultaten hebben gevolgen voor toekomstige Marsmissies. Marsrovers moeten goed kijken rond de inslagkraters van asteroıden. Wijvoorspellen dat er op die plaatsen veel meer organisch materiaal te vindenis dan ver weg van de kraters.

In Hoofdstuk 4 richten we ons op de planeet Mercurius, hoewelMercurius zo dicht bij de Zon staat, is er verrassend genoeg waterijsgevonden. Met behulp van radarobservaties van Mercurius vanaf deaarde en waarnemingen met de MErcury Surface, Space ENvironment,GEochemistry, and Ranging (MESSENGER) ruimtevaartuig van de NASA,die van 2011 tot 2015 in werking was, ontdekte men heldere gebieden inde buurt van de polen van de planeet binnenin de kraters, die permanentin de schaduw liggen. De waarnemingen toonden aan dat deze gebiedenhoogstwaarschijnlijk bestaan uit waterijs met een totale massa gelijk aaneen miljoenste van de watermassa in onze oceanen.

Met behulp van de meest actuele catalogi van asteroıden en kometen enhet nieuwste model van interplanetaire stofdeeltjes schatten we in hoeveelwater op Mercurius kan worden geleverd door deze drie bronnen. Wehebben bepaald dat 90% wordt geleverd door stof, 5% door asteroıdenen 5% door kometen. Alle drie de bronnen samen zijn in staat om dewaargenomen hoeveelheid ijs over een tijdsbestek van 1200 miljoen jaar televeren, wat betekent dat al het waterijs op Mercurius kan worden geleverddoor asteroıden, kometen en stof. Andere bronnen van water op de planeetzijn mogelijk, maar zijn volgens onze berekeningen niet nodig.

144

Page 18: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Figuur 3: Interplanetaire stofdeeltjes, asteroıden en kometen zijn mogelijkebronnen van ijs, verborgen in de permanente schaduw van kraters op de polen vanMercurius. Stofdeeltjes leveren het meeste, gevolgd door asteroıden en kometenhet minst. Alle drie de bronnen samen zouden de waargenomen hoeveelheidwaterijs kunnen leveren. Afbeelding door Nickolas Oberg.

Hoofdstuk 5 behandelt het laaste deel van dit proefschrift, waarinwe ons onderzoek hebben uitgebreid naar planetaire systemen rondandere sterren. We richten ons op het exoplanetaire systeem HR 8799,waarvan bekend is dat het vier reuzenplaneten herbergt, die elk bijna10 Jupitermassa’s bevatten. De planeten zijn zo groot en helder datze allemaal ontdekt zijn door middel van directe waarnemingen, dat inwezen neerkomt op het maken van een foto van een exoplaneet. Hetsysteem bevat ook twee gordels van kleinere objecten. De binnenstegordel bevindt zich binnen de baan van de binnenste planeet en lijkt opde asteroıdengordel van ons zonnestelsel, waar zich de meeste asteroıdenbevinden. De buitenste gordel bevindt zich buiten de baan van de buitensteplaneet en is vergelijkbaar met de Kuipergordel. De huidige telescopen zijnniet gevoelig genoeg om mogelijke aardse planeten binnen het HR 8799systeem te zien, mochten ze bestaan.

De structuur van dit planetenstelsel lijkt sterk op die van het Zonne-stelsel: twee gordels en vier reuzenplaneten daartussen. We wilden deinteractie tussen de planeten en de gordels onderzoeken: botsen kleine

145

Page 19: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SAMENVATTING

Figuur 4: Schets van de aanlevering van stoffen in het exoplanetaire systeemHR 8799. Beide gordels leveren verschillende materialen, zoals water, organischestoffen, mineralen en metalen aan de gigantische planeet van het systeem.Afbeelding door Nickolas Oberg.

objecten met de planeten? Zo ja, hoeveel materiaal leveren ze dan aan deplaneten?

We ontdekten dat alle vier de planeten worden beınvloed doorde gordels, en door deze interactie worden water, organische stoffen,mineralen en metalen aan de planeten geleverd. Gedurende de levensduurvan dit planetaire systeem zal elke planeet een hoeveelheid water enorganische stoffen ontvangen die twee keer zo groot is als de watermassavan de oceanen op aarde, en dezelfde hoeveelheid mineralen en metalen.De geleverde hoeveelheid is klein, maar kan voldoende zijn, zodathet met grote telescopen waarneembaar is. Volgens de theorieenvan planeetvorming zullen de reuzenplaneten gevormd worden metaanzienlijke hoeveelheden water en organische stoffen. De detectie vanwater en organische stoffen op de planeten zal daarom niet betekenen datdeze materialen door asteroıden en kometen zijn geleverd. Echter, hetopsporen van grote hoeveelheden mineralen en metalen kan betekenen datze door asteroıden en kometen aan de exoplaneten worden geleverd. Detoekomstige James Webb Space Telescope kan in staat zijn om de nodigewaarnemingen uit te voeren.

146

Page 20: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Резюме

Рис. 1: Витяги з популярних порталiв новин.

Астероїди найбiльше вiдомi як герої заголовкiв моторошних новин(Рис. 1). Комети навiювали жах на людей в минулому, а сьогоднiпереважно вiдомi своїми красивими хвостами. Але, насправдi, i комети,i астероїди — це набагато бiльше!

Астероїди i комети, або, коротко кажучи, малi тiла — це сумiшкам’яних уламкiв, пилу та льоду, що залишилися з часiв формуванняпланет Сонячної системи. Наша Земля, Марс, Юпiтер та всi iншiпланети Сонячної системи утворилися з подiбних тiл. Тому дослiдженняастероїдiв i комет допомагає поглянути в минуле, дiзнатися, як утво-

147

Page 21: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Резюме

рюються планети, i що саме вiдбувалось на раннiх етапах формуванняСонячної системи.

Малi тiла, зокрема комети, були вiдомi людям з давнiх часiв.Протягом усiєї своєї iсторiї людство спостерiгало комети завдяки їхнiмхарактерним яскравим хвостам, якi з’являються при наближеннi доСонця. До XVI сторiччя комети вважалися поганими месниками, щоприносять руйнування та смерть. На початку XVII сторiччя нашерозумiння астрономiї сягло абсолютно нового рiвеня завдяки ЙоганнесуКеплеру та його законам планетарних рухiв, якi стверджують, щопланети рухаються навколо Сонця по елiптичних орбiтах. Минулоще сто рокiв перед тим, як астрономи зрозумiли, що комети, як iпланети, рухаються навколо Сонця, але на значно бiльш витягнутихорбiтах. Провiдну роль у цьому вiдкриттi вiдiграв Едмонд Галлей,який передбачив повернення комети, що вже спостерiгали у минулому.Комета повернулася i отримала назву Комети Галлея. Якщо ви немали можливостi бачити її в 1986 роцi, пiд час її останнього тiсногозближення з Землею та Сонцем, переконайтесь, що побачите кометупiд час наступного зближення у 2061 роцi! ХIХ сторiччя розпочалося зтого, що Джузеппе Пiаццi вiдкрив перший астероїд — Церера. НаразiЦерера належить до класу карликових планет, як i Плутон.

За двiстi рокiв, станом на серпень 2019 року, ми виявили 794 832астероїди та 4111 комет. Науковцям вдалося широко вивчити цi малiтiла iз Землi та в космосi. Завдяки цим дослiдженням ми дiзналися просклад астероїдiв i комет. Ми знаємо, що вони мiстять воду та органiчнiсполуки (останнi є молекулами, в основi яких лежить вуглець, окрiмСО та СО2) — два невiд’ємних iнгредiєнти єдиної вiдомої нам формижиття, основаної на вуглецi.

Астероїди та комети час вiд часу зiштовхуються iз Землею та iншимипланетами. У минулому цi зiткнення вiдбувались набагато частiше.Деякi теорiї припускають, що саме пiд час цього бомбардування уминулому астероїди i комети могли принести воду на нашу планету,що, ймовiрно, утворилася сухою через вiдносну близькiсть до Сонця.Альтернативна теорiя припускає, що гiрськi породи, з яких утвориласяЗемля, мiстили воду, що у свою чергу вивiльнилася на поверхню вгазоподiбному станi. Проте ми точно знаємо, що астероїди та кометизiштовхувались з нашою планетою, тож навiть якщо вони не доставиливсi нашi океани, то вони все одно брали участь у цьому процесi. Планетий малi тiла iснують не тiльки в нашiй Сонячнiй системi, але й навколоiнших зiрок. Це наводить на думку, що, можливо, малi тiла можутьпереносити воду та органiчнi сполуки навколо iнших зiрок.

148

Page 22: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Ця дисертацiя дослiджує роль малих тiл у процесi доставки водита органiки до планет. Щоб дослiдити це, ми побудували комп’ютернумодель гравiтацiйних взаємодiй у нашiй Сонячнiй системi, включно зсотнями тисяч астероїдiв та комет. Для запуску моделi ми використалиPeregrine, суперкомп’ютер Гронiнгенського Унiверситету.

Рис. 2: Органiчнi молекули доставляються на Марс мiжпланетним пилом,астероїдами та кометами. Пил доставляє найбiльше, а астероїди та комети— третину всiєї органiки. Неподалiк вiд кратерiв, утворених астероїдамита кометами, органiчнi молекули можна чiтко вiдрiзнити вiд органiки,доставленої через пил. Зображення Nickolas Oberg.

У Роздiлi 3 ми вивчаємо планету Марс, на якiй у 2015 роцi марсохiдNASA Mars Curiosity виявив залишки органiчних молекул. Цi молекулибули виявленi у породах вiком 3.6 мiльярдiв рокiв, у яких вони буливесь цей час захищенi. У зразках поверхнi Марсу органiка не булавиявлена. Органiчнi молекули не можуть довго виживати на поверхнiпланети через тонку марсiанську атмосферу, яка не захищає вiд суворихультрафiолетових випромiнювань та космiчних променiв. Але якщомолекули нещодавно були доставленi ззовнi планети, то у нас можебути шанс їх виявити.

Ще кiлька рокiв тому астрономи припускали, що органiка наМарсi переважно доставлена пилом (мiжпланетний пил) з космосу.Цi частинки можна знайти по всiй Сонячнiй системi. Наприклад,

149

Page 23: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Резюме

навколо Землi ми бачимо частинки пилу, коли вони потрапляють внашу атмосферу i виглядають як зiрки, що падають. Але як щодоастероїдiв i комет, якi час вiд часу зiштовхуються з планетами? Миз’ясували, що астероїди та комети набагато важливiшi постачальникиорганiчних молекул на Марсi, нiж очiкувалося — третина органiчногоматерiалу походить вiд них.

Нашi пiдрахунки в Роздiлi 3 показують, що 192 тонни органiки нарiк доставляється на Марс. Це можна порiвняти з 8 вантажiвками.Приблизно 129 тонн (67%) органiки надходить з мiжпланетного пилу.Астероїди постачають ще 50 тонн на рiк (26%), а комети забезпечуютьблизько 13 тонн (7%) органiчного матерiалу.

Нашi результати важливi для майбутнiх мiсiй на Марсi. Марсоходимають уважно шукати бiля кратерiв, утворених пiсля падiння астероїдiвта комет. Ми прогнозуємо, що в цих мiсцях можна знайти значно бiльшеорганiчного матерiалу, нiж у вiддалених вiд кратерiв мiсцях.

У Роздiлi 4 ми зупинились на планетi Меркурiй, де було виявленоводний лiд, незважаючи на те, що Меркурiй знаходиться близькодо Сонця. Наземнi радiолокацiйнi спостереження за Меркурiєм таспостереження за допомогою мiжпланетної станцiї MESSENGER(MErcury Surface, Space ENvironment, GEochemistry and Ranging —апарат для дослiдження поверхнi, навколишнього середовища, геохiмiїМеркурiя i його зондування), що функцiонував з 2011 по 2015 рiк,виявили яскравi дiлянки бiля полюсiв планети всерединi кратерiв, якiпостiйно знаходяться в тiнi. Цi спостереження показали, що виявленiрегiони, швидше за все, складаються з водного льоду iз загальноюмасою, що дорiвнює мiльйоннiй частцi водної маси всього Земногоокеану.

Використовуючи найсучаснiшi каталоги астероїдiв i комет разомз моделлю пилу, ми пiдрахували, скiльки води на Меркурiй можутьдоставити цi три джерела. Ми виявили, що 90% буде доставлено пилом,5% — астероїдами i 5% — кометами. Усi три джерела разом здатнiзабезпечити нижню межу виявленого льоду за 1000 мiльйонiв рокiв.Це означає, що весь водний лiд на Меркурiї може бути доставленийастероїдами, кометами та пилом. Iншi джерела води на планетi можливi,але не обов’язковi за нашими розрахунками.

В останньому Роздiлi 5 ми розширили наше дослiдження допланетних систем навколо iнших зiрок. Ми зосередили увагу наекзопланетнiй системi HR 8799, яка, як вiдомо, має чотири планети-гiганти, кожна з яких важить майже як 10 Юпiтерiв. Цi планетинастiльки великi та яскравi, що їх всiх було виявлено методом прямогоспостереження, яке по сутi є фотографуванням екзопланети. Система

150

Page 24: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Рис. 3: Мiжпланетний пил, астероїди та комети є можливими джереламильоду, що захований у постiйно затiнених кратерах на полюсах Меркурiя. Пилпостачає найбiльше, астероїди та комети — найменше. Усi три джерела разоммогли доставити достатньо води, щоб пояснити нижню межу спостереженьводи. Зображення Nickolas Oberg.

також має два пояси малих тiл: внутрiшнiй i зовнiшнiй пояс. Внутрiшнiйпояс розташований всерединi орбiти планети, найближчої до зорi,i нагадує Головний Пояс Астероїдiв у нашiй Сонячнiй системi, дезнаходиться бiльшiсть астероїдiв. Зовнiшнiй пояс розташований позаорбiтою найвiддаленiшої планети i схожий на Пояс Койпера. Сучаснiтелескопи недостатньо чутливi, щоб виявити планети схожi на Землю,якщо такi планети iснують в системi HR 8799.

Будова цiєї екзопланетної системи дуже схожа на Сонячну систему:два пояси i чотири планети-гiганти мiж ними. Ми хотiли дослiдитивзаємодiю планет i поясiв: чи зiштовхуються малi тiла з планетами;якщо так, то скiльки матерiалу вони доставляють на планети?

Ми виявили, що всi чотири планети впливають на пояси i завдякицiй взаємодiї вода, органiка, мiнерали та метали доставляються напланети. Протягом життя цiєї планетарної системи кожна планетаотримає кiлькiсть води та органiки, яка вдвiчi бiльша за масу води

151

Page 25: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Резюме

Рис. 4: Збагачення планет в екзопланетнiй системi HR 8799. Обидва поясидоставляють рiзнi матерiали, такi як вода, органiка, мiнерали та метали, напланети-гiганти. Зображення Nickolas Oberg.

Свiтового океану, i стiльки ж мiнералiв та металiв. Доставлена кiлькiстьневелика, але може бути достатньою для спостереження великимителескопами. Вiдповiдно до теорiй формування планет, планети-гiганти формуватимуться iз значною кiлькiстю води та органiки. Томувиявлення води та органiчних речовин на планетах не означатиме, щоцi матерiали були доставленi малими тiлами. Однак виявлення великоїкiлькостi мiнералiв i металiв може означати їх доставку малими тiламина екзопланети. Майбутнiй космiчний телескоп iм. Джеймса Вебба(James Webb Space Telescope, JWST), можливо, буде здатний провестинеобхiднi спостереження.

152

Page 26: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SUMMARY FOR NON-EXPERTS

Figure 1: Excerpts from popular news portals.

Asteroids are best known to us as heroes of frightening newspaperhighlights (Figure 1). Comets have been quite frightening in the past andtoday are mostly known for their beautiful tails. However, both of themare so much more than that!

Asteroids and comets, together called minor bodies, are chunks of rock,dust and ice that are left over from the days when the Solar System wasformed. Our own Earth, Mars, Jupiter and all other planets of the SolarSystem have formed from similar bodies. Therefore by studying asteroids

153

Page 27: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SUMMARY FOR NON-EXPERTS

and comets we can learn how planets form and what was happening at thebeginning of the Solar System.

Comets, were known to people since ancient times. Due to theirdistinctive bright tails, which appear when passing close to the Sun, cometshave been observed by humans throughout the entire history of humanity.Until the sixteenth century comets were considered bad omens bringingdestruction and death. At the beginning of the seventeenth century ourunderstanding of astronomy has reached a whole new level thanks toJohannes Kepler and his laws of planetary motion, which state that theplanets move about the Sun in elliptical orbits. It took a hundred moreyears for astronomers to realise that comets, like the planets, move aboutthe Sun but in much more elongated orbits. The main role in this discoveryplayed Edmond Halley, who predicted that a previously observed cometwould come back. The comet did come back and became known as Halley’sComet. If you have not seen it in 1986, during its latest close approachto the Earth and the Sun, make sure to see it in 2061! The nineteenthcentury started with Giuseppe Piazzi discovering the very first asteroid,Ceres. Today, Ceres is actually considered a dwarf planet, just like Pluto.

Two hundred years later, as of August 2019, we have discovered794,832 asteroids and 4,111 comets. We have been able to extensivelystudy these minor bodies from Earth and in space. Thanks to these studieswe have learnt about the composition of asteroids and comets. We knowthat they contain water and organic compounds (the latter are carbon-bearing molecules except CO and CO2) - two essential ingredients for lifeas we know it, which is based on carbon.

Asteroids and comets collide with the Earth and other planets fromtime to time. In the past this bombardment was much stronger. Sometheories suggest that during that time asteroids and comets brought waterto our planet, which was formed dry because of its relative proximity tothe Sun. The alternative theory suggests that the rocks from which theEarth formed contained water which was released onto the surface throughoutgassing. However, we know that asteroids and comets were impactingout planet, so even if they did not bring all our oceans they still had theirpart in the process.

Planets and minor bodies exist not only in our Solar System but alsoaround other stars, which gives us hints that maybe water and organiccompounds are being transported around some other stars.

This thesis investigates the role of minor bodies in the process ofdelivering water and organics to planets. To investigate this, we built acomputer model of gravitational interactions in our Solar System includinghundreds of thousands of asteroids and comets. Then we used Peregrine,

154

Page 28: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

the supercomputer of the University of Groningen, to run the computermodel which takes weeks to finish.

Figure 2: Organics are delivered to Mars by interplanetary dust particles, asteroidsand comets. Dust particles deliver the most, while asteroids and comets deliverone third of that. Close to the impact sites asteroid and comet organics can beclearly distinguished from dust organics. Image by Nickolas Oberg.

In Chapter 3, we study the planet Mars on which in 2015, NASA’s Marsrover Curiosity discovered remnants of organic molecules. These moleculeshave been detected in 3.6 billion year old rocks, where they have beenembedded and protected all that time. In surface samples however noorganics have been detected. Because of the thin Martian atmosphere thatdoesn’t protect from the harsh ultra-violet radiation and cosmic rays, theorganic molecules cannot survive for long on the surface of the planet.But if the molecules have been recently delivered from outside then therewould be a chance for us to detect them.

Until a few years ago astronomers assumed that the organics on Marsmainly came from dust particles (interplanetary dust particles) from space.Those particles are all over the Solar system. For example, around ourEarth we see the dust particles when they enter our atmosphere and cause’shooting stars’. But what about asteroids and comets that impact withplanets from time to time? We have found that asteroids and comets appear

155

Page 29: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SUMMARY FOR NON-EXPERTS

to be a much more important supplier of organic molecules on Mars thanexpected - one third of the organic material comes from them.

Our calculations in Chapter 3 show that 192 tons of carbon per year endup on Mars. That is comparable to 8 truckloads. Approximately 129 tons(67%) of carbon come from interplanetary dust particles. But asteroidsalso deliver another 50 tons per year (26%) and comets provide about 13tons (7%) of the organic material.

Our results have consequences for future Mars missions. Mars roversshould look closely at the impact craters of asteroids. We predict that inthose places much more organic material can be found than far away fromcraters.

Figure 3: Interplanetary dust particles, asteroids and comets are possible sourcesof ice hidden in the permanently shadowed craters on poles of Mercury. Dustparticles deliver the most, followed by asteroids and comets deliver the least. Allthree sources together could deliver the observational lower limit of water ice.Image by Nickolas Oberg.

In Chapter 4 we focus on the planet Mercury, where surprisingly waterice has been found, although Mercury is so close to the Sun. Ground-basedradar observations of Mercury and observations with the NASA’s MErcurySurface, Space ENvironment, GEochemistry, and Ranging (MESSENGER)

156

Page 30: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

spacecraft, operating from 2011 till 2015, detected bright regions near thepoles of the planet inside of the craters that are permanently shadowed.The observations showed that these regions most likely consist of water icewith total mass equal to one millionth of water mass in the Earth oceans.

Using the most up-to-date catalogues of asteroids and comets togetherwith the latest model of dust particles we estimated how much water onMercury can be delivered by these three sources. We found that 90% willbe delivered by dust, 5% by asteroids and 5% by comets. All three sourcestogether are able to deliver the observational lower limit on the ice-layerthickness in 1200 million years, which means that all water ice on Mercurycan be delivered by asteroids, comets and dust. Other sources of water onthe planet are possible but not needed according to our calculations.

Figure 4: Sketch of delivery in the exoplanetary system HR 8799. Both beltsdeliver different materials, such as water, organics, minerals and metals, to thegiant planet of the system. Image by Nickolas Oberg.

The thesis concludes in Chapter 5 were we extend our research toplanetary systems around other stars. We focus on the exoplanetary systemHR 8799 which is known to host four giant planets, each of which is almost10 Jupiter masses. The planets are so big and bright that all of them have

157

Page 31: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

SUMMARY FOR NON-EXPERTS

been discovered by direct imaging which essentially is taking a pictureof an exoplanet. The system also contains two belts of minor bodies: aninner and an outer belt. The inner belt is located inside of the orbit of theinnermost planet and resembles the Main Asteroid Belt of our Solar System,the home of most asteroids. The outer belt is located outside the orbit ofthe outermost planet and is similar to the Kuiper Belt. Current telescopefacilities are not sensitive enough to see possible terrestrial planets withinthe HR 8799 system, should they exist.

The structure of this planetary system is very similar to the SolarSystem’s: two belts and four giant planets in between. We wanted toinvestigate the interaction between the planets and the belts: do minorbodies collide with the planets; if so, how much material do they deliver tothe planets?

We found that all four planets are affected by the belts and throughthis interaction water, organics, minerals and metals are delivered to theplanets. Over the lifetime of this planetary system each planet will receivean amount of water and organics that is twice larger than the water massof Earth’s oceans, and the same amount of minerals and metals. Thedelivered amount is small, but may be enough to be observable with largetelescopes. According to planet formation theories the giant planets will beformed with appreciable amounts of water and organics. Therefore waterand organic detection in the planets will not mean that these materialshave been delivered by minor bodies. However, detecting large amounts ofminerals and metals may imply their delivery by the minor bodies to theexoplanets. The upcoming James Webb Space Telescope may be able toperform the needed observations.

158

Page 32: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

ACKNOWLEDGEMENTS

The best and most beautiful things in the world cannot be seen oreven touched - they must be felt with the heart.

– Helen Keller

It feels like just yesterday I was on my way to catch a plane in Kyiv andmove to the Netherlands. I think that, perhaps, my parents remember me lookingincredibly happy but as a matter of fact I was awfully scared, even terrified. I wasleaving behind everything that I knew and everyone I loved. Nevertheless, thereare not enough words to describe how happy I am that I found the courage tomove. In fact, I did not leave anyone behind. My family and my friends has beenalways there for me despite the 2000 km distance. In these years, I discoveredbeautiful Netherlands and cosy Groningen. I met so many interesting and fantasticpeople who I am proud to call my friends. The main treasure of my life are peopleand this PhD journey would not be so marvellous without them. I love you1.

This thesis would not have happened without my supervisors, who gave methe opportunity to work on such a great project. Thank you for believing in meand for guiding me through these years. Moreover, thank you for lots of patiencein correcting missing articles in my writings!

Migo, this was quite an adventure for both of us - I have never done a PhDand you have never supervised a PhD student. I believe we both did great! Thankyou for always sharing your excitement and curiosity for science. Thank you foralways being there for me, answering on tens of my questions per day and neverjudging me no matter how stupid my questions were. You cheered me up in everydifficult situation and helped me to go through it. Thank you for encouraging meto participate in conferences, for listening to all my talks and for being the mainconnoisseur of my not always funny ice-breaking jokes. I enjoyed our regularchats about academia, outreach, travelling, society and many other countlesstopics. I am honoured to be your first PhD student.

Floris, this thesis would not be possible without your experience and leadinghand. Thank you for directing me and sharing your extensive knowledge. Also,I would like to thank you for teaching me how to be more organised and moreeffective.

Inge Loes, I could not have dreamt about a more kind supervisor. You alwaysfound time to provide me with feedback and advise as well as listen to my

1There is no particular order in which people are mentioned below. Because there is noorder for love.

159

Page 33: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

ACKNOWLEDGEMENTS

complaints or just have a friendly chat. Thank you for showing me on your ownexample that it is possible to be a successful scientist and a loving mom.

Thank you to the reading committee. Amina, Alan and Nader, I am gratefulthat you found time to read this thesis and provided comments which significantlyimproved the thesis. Amina, you are a brilliant scientist and a role model forwomen in science. Thank you for demonstrating that everything is possible. Alan,you created such an amazing scientific family and I am honoured to be part it.Nader, thank you for the interesting discussions. I am looking forward to ourupcoming projects.

Thank you to my co-authors. Sarah, David and Petr, thank you for yourcrucial contribution to my papers. Thank you to Lucie Jilkova, David E.Kaufmann and Hanno Rein for answering on tonnes of my emails and helpingwith N-body integrators.

Scott, thank you for giving me an opportunity to realise myself as a scientistand as a teacher at the same time. Your encouragement, especially during thelast year, has been essential. Inga, thank you for agreeing to be my scientificsupervisor and for your immense support. You are such a kind person and a greatteacher, and I am grateful that I can learn from you. Rien, thank you for alwaysfinding time to help me and give me an advise. Gijs, I enjoyed working togetherand supervising Jasper and Ylse. You taught me how to listen and guide thestudents. I cannot wait for the next steps of our Solar System projects. Specialthanks to my mentor Mariano. Thank you for your advises, and especially forhelping me with the FameLab speeches. I would not have succeeded without yourhelp. Reynier, thank you for always taking care of me and being kind. Peter,it has been great working together on the Introduction Astronomy and on theAstrobiology. Paul, I admire your love for Astrobiology. Mark and Rien, the newedition of the Astrobiology course would not be possible without your advises andsupport. Amina, Eline, Inga, Karina, thank you for being inspiring examples foryoung women in science. Frank and Rens thank you for stimulating discussionsand your valuable suggestions.

I would like to thank all secretaries of both Kapteyn and SRON as well as bothcomputer groups who helped me countless times during these years. Lucia, thankyou for helping me anytime I needed help and for encouraging me to learn Dutch.

Thanks to the current and former ISM group members: Aaron, Andres,Bayron, Bertrand, Christian, Evgenia, Inga, Frank, Fred, Floris, Lingyu, Maja,Migo, Nick, Russ, Stefano, Stephanie, Umit, Veronica, Will. Thank you all forinteresting discussions and acquired knowledge. Bertrand, thanks for all theraccoons. Russ, I enjoyed a lot our organisation of the SRON Young Minds. Ithas been really fun! You supported me in difficult situations and I will be forevergrateful to you for that. Will, thank you for countless English proofreads and foryour sense of humour. Nick, thank you for your beautiful illustrations. You areso smart, talented and creative. I will keep reminding this to you until the daywhen you will embrace the truth. I enjoyed teaching together, supervising Rensand having chats about everything in the world. I am very happy that you are myfriend.

160

Page 34: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Rens, Jasper, Ylse, it has been a pleasure to supervise you. I could not haveasked for better students. I wish you all the best in your future.

Thanks to everyone who participated in the organisation of the Asteroid Day:Marlies, Teymur, Enrico, Nika, Luca. Thank you for sharing my love for spacerocks and outreach.

This PhD project was a part of the PEPSci network, the best network ever!Vincent, Claudia, Kaustubh, Lucas, Loıc, Bram, Christian, Andrew, Yue, Lucia,Teresa, Edgar, Eva, thank you for the fun meetings. Every time I travelled southto meet with you guys, it was like a breath of fresh air.

Inge Loes’ kids: Claudia, Lucas, Nina, Vincent, Arjen, Dario, Eloi (Eloi, Ihope that one day we will meet). It is great to have a scientific family, especiallywhen it is a wonderful family like ours. Claudia, you are a great leader and acaring friend. Your support over these years helped me to reach this point. I amincredibly happy to have you as my friend.

Georgi, I am so lucky that after approaching you in Russian you still talked tome afterwords :) Our Amsterdam and Groningen explorations have been lots offun. Rosita, every year I am looking forward to a conference or a meeting that wecould attend together. It is always fun with you and we can talk about everythingin the world. I could not have done it without you. You always support and cheerme up no matter how close or far we are. Your cute animal pictures make mydays, and I am trying my best to make your conference days more fun with a bit ofprosecco. Thank you for agreeing to be my paranymph, it means the world to me!

Over these years I shared my office with three wonderful officemates. Evgenia,Lenka and Anastasia, this one is for you. Evgenia, I was so lucky to have you asmy officemate from the very first day in Kapteyn. You had to go through timesof my bad English, my continuous complaining (I do it too often sometimes :D )and you would always take care of me. I admire your kindness and love for thenature. I wish every seal on this planet could get a bit of your love. There is notenough words to express how happy I am to have you as my dear friend, and I amimmensely honoured to have you as my paranymph! Lenka, you saved me fromgoing nuts all by myself in the office :) You are an extremely friendly, open andkind person. Even though your internship in Groningen was short, we becamegood friends and there are no time and distance limits for it. Anastasia, we cantalk in Russian, English or even in our particular version of Italian and we willalways understand each other perfectly. Thank you for always being my greatestfan! You celebrated all my wins even more than I did and taught me to believein myself. Your appreciation for Ukrainian music melts my heart every time. Iam extremely happy that we had a chance to share an office and luckily we bothtravelled quite a lot, otherwise our endless chats would have never allowed us tohave any work done :) And last but not least, thank you for telling me about yourhandsome officemate - it made my life!

Thanks to Bruce Willis for saving the planet from an asteroid!Kapteyn and SRON are amazing places to work at. Every time I meet people

from other institutes I catch myself telling them about our scientific, outreach andfun activities, and keep wondering after discovering that other institutes do not

161

Page 35: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

ACKNOWLEDGEMENTS

have even half of that. The great Kapteyn’s and SRON’s atmosphere exists thanksto wonderful people. Jorrit, Pavel, Pranav, Valentina, Georg, Hyoyin, Helmer,Tirna, Sara, Eduardo, Ruslan, Kirill, Anne, Kostas, Bram, Samira - the currentand new generation of Kapteyn. Thank you for keeping the institute warm andsweet. Joost, Andrey Baryshev, Andrey Khudchendo, Jan, Ronald, thank youfor always making happy hours, borrels, lunches and dinners fun.

I would like to acknowledge the previous generations of Kapteyn: Wouter,Davide Punzo, Stefano, Jack, Cristiana, Davide Massari, Laura, Antonino,Dorota, Elaheh, Manolis, Evandro, Hannah. Thank you for all the fun, food,conversations and stories we shared over the past years. Thanks to you myPhD went so easy and warmly. Mustafa, thank you for being a great friend. Iappreciate your open-minded and warm heart. Sampath, it has been a pleasureto go through a PhD journey in parallel with you, and to share fun and “cloud ofsadness” moments, when we were so close to submission. Saikat, Bharat, Avanti,Pooja, thanks to you guys I feel like I have been to India countless times. Thankyou for the food, stories, fun and a bit of partying we shared. Filippo, I have toadmit this has not been easy. However, I am very happy that thanks to Enrico youare a part of my life. Thank you for bringing lots of craziness and fun! DavidePunzo, thank you for your computational advises, culinary knowledge and bigheart. Marisa and Francesco, thank you for trusting and letting me into yourlives. We had lots of fun (Fra, I agree with you!) and I hope we will have evenmore in the years to come. I admire the friendship you have, it is one of a kind.Mpati, thank you for your good vibes. I always carry them with me.

Random Outing people, thank you for the parties! Each and every of themhas been le-gen-da-ry. Giulio, thank you for random fun chats and tranquillitythat you carry around. Jonas Bremer, you are one of the kindest people I haveever met. Thank you for helping me with the plants and the Dutch translationof the Summary. Andrea, I will pay all the money in the world to see everydayyour happy smile and a tiny fire in your eyes. Keep it burning :) Smaran, thankyou for loving me for my dark side. Your heart is kind and full of love. I wishyou and Tadeja to carry your love through hundreds of kilometres and take careof each other no matter what. Teymur, thank you for your ability to find beautyin everything and your tenderness. You are like one of your own scarfs - wrapsaround and warms up body and heart. Daniel, I wanted to say something smartbut the only thing that comes to my mind is “po po pooooo”. I miss you a lot.Simon, thank you for telling me that I am great every time I started complaining.Thank you for your craziness. So much craziness! And confetti. Laurent, you areso young, yet so mature and wise. I loved our Belgium weekend and non-stopconversations. And it was so cool to bring you to parties and festivals with Enrico.I felt like I have the best and the coolest teenager kid! Nika, oh Nika, it is so fun,crazy and unpredictable with you. Keep this fire going! I love your random storiesand how easy going you are. No one will ever appreciate my ugly shoes as muchas you do.

162

Page 36: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

Vaggelis and Jonas Lohse, guys, quite often I even forget that you are notastronomers. I think you know more about Kapteyn and more Kapteyners thansome Kapteyners do. Vaggelis, thank you for accepting people for what they are(except for Valerio, haha). I always feel welcomed by you. Jonas Lohse, thankyou for always choosing us over a club vacation in Turkey. I enjoyed our chats,parties and festivals. Let there be more! Kristiina and Karlis, I am so lucky thatyou are passionate about cooking and you are my friends. I praise your greenlife style and love for adventures. We share many common Eastern Europeanthings and no one can understand me better than you. Aku, thank you for all theconcerts, festivals, sports and fun. Thank you and Sonja so much for sharing yourbeautiful country and real Finnish experience with us! I appreciate a lot that youguys accept my hugs every time :) Ale, I know that no matter how grumpy I amyou will always love me, and I will always be your sister. Thank you for all thelove, fun, chill, tiny notes on my desk and random “Kachaaaaaa” that I hear rightnow in my head. Olmo, I am so happy that you became a part of our family sincethe very first day you ended up in our kitchen. You are kind, warm and tender. Ieven do not remember anymore how it was before you. Because you are alwaysthere to hug me and listen to all my stories. I found a dear friend in you and Iwish I could pack you in my suitcase and bring everywhere I go.

Марися, дякую за найкращу у свiтi обкладинку! Саша, дякую за те щоприхистив мене i показав Гронiнген таким як ти його любиш. Илья, спасибоза Париж твоими глазами. Настя, спасибо за крутейшие иллюстрации! Женя,Катя, Рита, Юля, Яна, я очень счастлива, что мы есть друг и друга. Пускайкаждый год у нас будет получаться собираться полным составом все чаще ичаще. Надя, Дима, Аня, Игорь, Аня, спасибо за то что расстояние никогда непомеха. Сергiй, дякую за твою незмiнну пiдтримку протягом усiх цих рокiв.Ти завжди був поряд. Машенька, столько лет мы вместе и с каждым годомя люблю тебя все больше! Яночка и Сашенька, ох уже эти Алые Паруса.Кто бы мог подумать, что такой странный лагерь принесет мне две большихлюбви. Яночка, спасибо за любовь на расстоянии, которая никогда не гаснет.И огромное спасибо за вычитывание моего Резюме. Сашенька, спасибо затвою нежность и заботу. Виталина и Артем, спасибо что доверили мне самоеценное что у вас есть, несмотря на то что я так далеко. Данечка, мечтай оновых планетах и они всегда тебя найдут! Соня, продолжай напоминать мнео моем возрасте, а я попробую все молодеть и молодеть. Мой дом всегда ждеттебя. Катя, спасибо за твою поддержку в последний год перед переездом -во время всех интервью и рассуждений о жизни. Я очень рада, что теперьвы с Деном еще ближе к нам. Я верю, что вы найдете идеальную странуи идеальный город, где вы будете влюбляться друг в друга снова и снова.Рустам, спасибо за то что я могу на тебя положиться. Ты всегда прийдешьна помощь без лишних вопросов. Спасибо, за все странные звуки - они всегдасо мной :) Женя, ощущение того что ты была вот тут рядом на расстояниипоезда а не самолета, всегда придавало мне сил. Ты знаешь меня от и до, инесмотря на это все еще любишь. Спасибо! Продолжай искать свое и никогдане сдавайся, я тобой очень горжусь.

163

Page 37: University of Groningen Enrichment of planetary surfaces ...BIBLIOGRAPHY Harrington, J., de Pater, I., Brecht, S. H., et al. 2004, Lessons from Shoemaker-Levy 9 about Jupiter and planetary

ACKNOWLEDGEMENTS

Дима, Анжела, Юра, Туся, Саша, Тхора, Петя, вы моя большая семья.Спасибо за любовь и поддержку.

Giappo, sei intelligente e ti voglio bene! Non dubitarlo mai. Grazieagli amici casertani di Enrico: Alessandra, Roberto, Giovanni, Federica,Matteo, Emanuele, e persino Luigi. Siete persone dolci e calorose. Apprezzoenormemente il fatto che parliate in inglese quando ci sono io. Prometto che ungiorno il mio italiano sara cosı buono che potremo giocare a DiXit in italiano.

Un grazie enorme alla famiglia di Enrico: Carla, Luigi, Chicca, Anto,Ludovica, e Nonna. Grazie per avermi accettato dal primissimo giorno e avermifatto sentire benvenuta e amata. Anto, so che riesci a leggerlo ;)

Дякую моїй родинi за постiйну пiдтримку. Дякую моїм бабусям, дiдусю,дядьку, тiтцi, братам та сестрi за чудове дитинство та безумовну любов. Деда,я знаю что ты там все видишь и очень мной гордишься. Мама i Тато, винайкращi мама i тато на Землi! Ви завжди вiрите в мене i заохочуєте бутинайкращою версiєю мене. Я досi не знаю, як ви наважились вiдпустити менетак далеко вiд вас. В той самий час, я неймовiрно вдячна вам за таку довiру.Я вас дуже сильно люблю i сумую за вами кожен день!

Enrico, you are my partner in crime. This adventure has been special andunforgettable because of you. I never thought that it is possible to be so close withsomeone. There has not been a single day when I would regret taking initiativemany years ago. I admire your curiosity for life, even though sometimes it lookslike it drives me crazy. You are curing my heart every day and remind me to sharemy love with every single person. This acknowledgements would not be so longand full of amazing people if not for you. I am looking forward to our futureadventures and I cannot wait to see where they will bring us - CasaPizza, Aurovilleor any other place - it is going to be unimaginable as long as we have each other.

164