15
UNIVERSITI PUTRA MALAYSIA EVALUATING THE POTENTIAL OF BANK INFILTRATION AS A SOURCE OF WATER SUPPLY IN JENDERAM HILIR, SELANGOR, MALAYSIA MOHD KHAIRUL NIZAR BIN SHAMSUDDIN FPAS 2014 3

UNIVERSITI PUTRA MALAYSIA EVALUATING THE POTENTIAL OF … · menggunakan tanah (akuifer) untuk merawat air sungai dan pada masa yang sama menggunakan air tanah. Oleh kerana keupayaan

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

UNIVERSITI PUTRA MALAYSIA

EVALUATING THE POTENTIAL OF BANK INFILTRATION AS A SOURCE OF WATER SUPPLY IN JENDERAM HILIR, SELANGOR, MALAYSIA

MOHD KHAIRUL NIZAR BIN SHAMSUDDIN

FPAS 2014 3

© COPYRIG

HT UPM

EVALUATING THE POTENTIAL OF BANK INFILTRATION AS A

SOURCE OF WATER SUPPLY IN JENDERAM HILIR, SELANGOR,

MALAYSIA

By

MOHD KHAIRUL NIZAR BIN SHAMSUDDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfillment of the Requirements for the Master of Science

July 2014

© COPYRIG

HT UPM

All material contained within the thesis, including without limitation text, logos,

icons, photographs and all other artwork, is copyright material of Universiti Putra

Malaysia unless otherwise stated. Use may be made of any material contained within

the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of

Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the

requirement for the degree of Master of Science

EVALUATING THE POTENTIAL OF BANK INFILTRATION AS A SOURCE OF

WATER SUPPLY IN JENDERAM HILIR, SELANGOR, MALAYSIA

By

MOHD KHAIRUL NIZAR BIN SHAMSUDDIN

July 2014

Chairman : Wan Nor Azmin Sulaiman, PhD

Faculty : Environmental Studies

ABSTRACT

This study was inspired by the Klang Valley water crisis, for which Bank Infiltration (BI)

was considered as a potential solution. Higher incidences of pollution to the rivers in

Malaysia has lead to the decrease in resources for drinking water. Many developing countries

like Malaysia, are faced with a big challenge to provide safe drinking water to the ever-

increasing population. Currently, the treatment of river water uses chemicals to reduce

several contaminants due to pollution. The chemical contents could give long term effects to

the health of the consumers. However, there is hope in a more effective, but low-cost

technology, known as Bank Infiltration (BI) or Riverbank Filtration (RBF). BI is a natural

process using natural soil (aquifer) to treat river water and at the same time utilizes

groundwater. Moreover, due to its ability to remove even the most persistent contaminants

and microbes, BI can enhance treatment steps in a water treatment facilities, especially in a

conventional water treatment. BI is a method that has long been known but it is still new and

has not been practiced in Malaysia. Nevertheless, BI is site specific and requires thorough site

investigations to assess its feasibility based on the local site characteristics. The study area

was located in the southwest state of Selangor within the Langat Basin which covered an area

of 10 km2.

Besides, this study was specifically conducted to explore the possibility of using the BI

systems to source the polluted surface water with groundwater. Three major factors were

considered for evaluation: (i) an investigation on the contribution of surface water through

BI, (ii) the input of local groundwater, and (iii) the water quality characteristics of water

supply. In the earlier part of the investigations, the geophysical method was employed to

define the subsurface geology and hydrogeology of the area. Isotope techniques were

performed to identify the source of groundwater recharge and interaction between the surface

water and the groundwater. A total of 25 monitoring wells and 2 test wells (DW1 and DW2)

were constructed to circumscribe the BI system. The physicochemical and microbiological

parameters of the local surface water bodies and groundwater were analysed before and

during the water abstraction. The abstraction of water revealed a 5–98% decrease in turbidity,

as well as HCO3-, SO4

-, NO3-, Al, As and Ca concentrations reduction compared to the

© COPYRIG

HT UPM

ii

Langat River water. However, the water samples from test wells during pumping showed

high concentrations of Fe2+ and Mn2+. In addition, the amounts of E. coli, total coliform, and

Giardia were significantly reduced (99.9%).The pumping test results indicated that the two

test wells (DW1 and DW2) were able to sustain yields of 15.9 and 128 m3/hr, respectively.

The BI method looks closely at surface water and groundwater interaction. The water quality

interaction was assessed through multivariate statistical analyses based on analytical

quantitative data. Multivariate statistical analyses were used, including discriminant analysis

(DA) and principal component analysis (PCA), based on 36 water quality parameters from

the rivers, lakes, and groundwater sites at Jenderam Hilir, which were collected from 2009 to

2011 (56 observations). The DA identified six significant parameters (pH, NO2, NO3, F, Fe,

and Mn) from 36 variables to distinguish between the river, lake, and groundwater groups

(classification accuracy = 98%). The PCA confirmed and identified 10 possible causes of

variation in the groundwater quality with an eigenvalue greater than 1, which explained

82.931% of the total variance in the water quality data set: hydrochemistry; redox conditions;

groundwater flow; surface runoff; groundwater contact with rock or weathered rock (Kenny

Hills Formation); river water and groundwater interaction, discharge of untreated sewage and

industrial wastes into the river; interaction between the river, lake, and groundwater; heavy

metal pollution from past mining activities; and industrial pollution, such as dye or paint

operations. Hence, in order to evaluate the effects of groundwater pumping and BI operation

on the operations of wells, as well as to determine the effects of pumping rate on flow paths,

travel time, size of pumping, and to capture zone delineation and groundwater mixing in a

pumping well, numerical modelling simulation using MODFLOW and MODPATH were

used. The simulation involved trying different scenarios by changing the variables to perform

infiltration safely and to achieve the ideal pumping rate. The results indicated that the

migration of river water into the aquifer has been generally slow and depended on the

pumping rate and the distance from the pumping well to the river. Most water arrived at the

well by the end of the pumping period of 1 to 5 days at 3072 m3/day for test wells of DW1

and DW2, and during the simultaneous pumping for DW2 and PW1 for a well located 40 m

and 20 m, respectively, from the river. During the 9.7-day pumping period, 33% of the water

pumped from the DW1 well was river water, and 38% percent of the water pumped from

DW2 throughout 4.6 days was river water. The models provided necessary information to

water operators in the design, and the construction of pumping and sampling schedules of the

BI practices. The detailed field investigation programmes obtained from this study can be

used for preliminary BI system design and pilot construction by stakeholders, water operator

or related agencies in Malaysia, as the study provided good methods and investigation

(geophysical, isotope, grain size analysis, colloidal borescope systems and water quality

analysis). The statistical and numerical methods to study the BI may also be used in other

areas of similar hydrological characteristics and climate conditions.

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi

keperluan untuk ijazah Master Sains

MENILAI POTENSI SUSUPAN TEBING SEBAGAI SUMBER BEKALAN AIR DI

JENDERAM HILIR, SELANGOR, MALAYSIA

Oleh

MOHD KHAIRUL NIZAR BIN SHAMSUDDIN

Julai 2014

Pengerusi : Wan Nor Azmin Sulaiman , PhD

Fakulti : Pengajian Alam Sekitar

ABSTRAK

Kajian ini diilhamkan oleh krisis air Lembah Klang, yang mana Susupan Tebing (BI) adalah

dianggap sebagai penyelesaian yang berpotensi. Insiden yang lebih tinggi daripada

pencemaran sungai di Malaysia boleh membawa kepada pengurangan dalam sumber untuk

air minuman. Banyak negara-negara membangun, seperti Malaysia, berhadapan dengan

cabaran yang besar untuk menyediakan air minuman yang selamat kepada penduduk yang

semakin meningkat. Pada masa ini, rawatan air sungai menggunakan bahan kimia untuk

mengurangkan beberapa bahan cemar akibat pencemaran. Kandungan kimia boleh memberi

kesan jangka panjang kepada kesihatan pengguna. Bagaimanapun, teknologi terkini yang

lebih berkesan yang menggunakan kos yang lebih rendah dikenali sebagai Susupan Tebing

(BI) atau Sistem Penapisan Tebingan Sungai (RBF). BI adalah proses semulajadi

menggunakan tanah (akuifer) untuk merawat air sungai dan pada masa yang sama

menggunakan air tanah. Oleh kerana keupayaan untuk menyingkirkan bahan-bahan pencemar

dan mikrob, BI sebagai sokongan kepada sebahagian skim rawatan air terutamanya dalam

rawatan air secara konvensional. BI adalah kaedah yang telah lama diketahui tetapi masih

baru dan tidak diamalkan di Malaysia. Walau bagaimanapun, BI adalah bergantung kepada

kawasan yang spesifik dan memerlukan penyiasatan tapak secara terperinci bagi menilai

kebolehkesanan ciri-ciri setempat. Kawasan kajian ini terlatak di baratdaya Negeri Selangor

di dalam lembangan Sungai Langat yang meliputi kawasan seluas 10 km2.

Di samping itu, kajian ini dijalankan khusus untuk mengkaji keupayaan penggunaan sistem

BI sebagai penapis sumber air permukaan yang tercemar bersama-sama dengan air tanah.

Tiga faktor utama yang telah dipertimbangkan untuk penilaian: (i) Kajian mengenai kaitan air

permukaan melalui BI (ii) input air tanah tempatan, dan (iii) ciri-ciri kualiti air sebagai

bekalan air. Sebagai permulaan kaijan, kaedah geofizik telah digunakan untuk menentukan

geologi subpermukaan dan hidrogeologi di kawasan kajian. Teknik isotop telah dijalankan

untuk mengenal pasti punca imbuhan air tanah dan interaksi di antara air permukaan dan air

© COPYRIG

HT UPM

iv

tanah. Sejumlah 25 telaga pemantauan dan 2 telaga ujian telah dibina dalam menentukan

sistem BI. Parameter fizikokimia dan mikrobiologi air permukaan dan air tanah setempat

telah dianalisis sebelum dan semasa abstraksi air. Abstraksi air menunjukkan penurunan

kekeruhan sebanyak 5%-98%, serta pengurangan kepekatan HCO3-, SO4

-, NO3-, Al, As, dan

Ca berbanding dengan air Sungai Langat. Walau bagaimanapun, sampel air dari telaga ujian

semasa ujian pengepaman dilakukan, menunjukkan kepekatan Fe2+ dan Mn2+ yang tinggi. Di

samping itu, jumlah E. coli, koliform dan Giardia telah berkurangan dengan ketara (99.9 %).

Keputusan ujian pengepaman menunjukkan bahawa kedua-dua telaga (DW1 dan DW2)

mampu mencapai kadar mampan abstraksi air sebanyak 15.9 dan 128 m3/jam.

Kaedah BI adalah interaksi yang begitu rapat antara air permukaan dan interaksi air tanah.

Interaksi kualiti air telah dinilai melalui analisis statistik multivariat berdasarkan data

kuantitatif analisis. Analisis statistik multivariat telah digunakan, termasuk analisis

diskriminan (DA) dan analisis komponen utama (PCA), berdasarkan 36 parameter kualiti air

dari sungai, tasik, dan air tanah di Jenderam Hilir yang dilakukan dari tahun 2009-2011 (56

cerapan). DA telah mengenal pasti enam parameter penting (pH, NO2, NO3, F, Fe dan Mn)

daripada 36 pembolehubah untuk membezakan di antara sungai, tasik, dan air tanah

(ketepatan pengelasan = 98%). PCA mengesahkan dan mengenal pasti sepuluh kemungkinan

punca perubahan dalam kualiti air tanah dengan nilai eigen yang lebih besar daripada 1 yang

menjelaskan 82.931 % daripada jumlah perbezaan dalam set data kualiti air: hidrokimia;

keadaan redoks; aliran air tanah; air larian permukaan, sentuhan air tanah dengan batuan atau

batuan terluluhawa (Formasi Kenny Hills); interaksi air sungai dan air tanah, serta pelepasan

air kumbahan yang tidak dirawat dan sisa industri ke dalam sungai; interaksi antara sungai,

tasik dan air tanah, pencemaran logam berat daripada aktiviti perlombongan; dan pencemaran

industri seperti daripada aktiviti pembuatan cat atau pewarna. Dalam usaha untuk menilai

kesan pengepaman air tanah dan operasi BI terhadap keupayaan telaga dan juga untuk

menentukan kesan kadar pengepaman keatas arah aliran, masa pergerakan aliran air, kesan

pengepaman didalam zon sempadan pemerangkapan dan zon campuran air tanah, simulasi

numerikal menggunakan MODFLOW dan MODPATH digunakan. Simulasi ini terdiri

daripada pelbagai senario yang berbeza dengan mengubah pembolehubah untuk menentukan

nilai penyusupan yang selamat dan mencapai kadar pengepaman yang sesuai. Keputusan

menunjukkan bahawa migrasi air sungai ke dalam akuifer umumnya perlahan dan bergantung

kepada kadar pengepaman dan jarak dari telaga pengepaman ke sungai. Kebanyakan air

sampai di telaga pada akhir tempoh pengepaman 1 hingga 5 hari pada kadar 3072 m3/hari

bagi telaga ujian DW1 dan DW2, dan semasa pengepaman serentak bagi DW2 dan PW1

yang terletak kira-kira 40m dan 20m dari sungai. Semasa tempoh pengepaman selama 9.7

hari, 33% daripada air yang dipam dari DW1 adalah air sungai, dan 38% peratus air yang

dipam selama 4.6 hari bagi DW2, adalah air sungai. Pemodelan ini menyediakan maklumat

yang diperlukan untuk operator air dalam mereka bentuk dan merancang jadual pengepaman

dan persampelan ke atas sistem BI. Siasatan terperinci hasil yang diperolehi dari kajian ini boleh

digunapakai untuk merekabentuk sistem BI dan pembinaan perintis ini oleh pihak

berkepentingan seperti operator air atau agensi-agensi yang berkaitan di Malaysia, seperti

kaedah kajian yang dilakukan ini amat sesuai digunakan dalam penyelidikan (geofizik,

isotop, analisis saiz butiran, boroskopi koloid sistem dan analisis kualiti air). Kaedah statistik

dan berangka untuk mengkaji BI boleh juga digunakan di kawasan-kawasan lain yang

mempunyai ciri-ciri hidrologi dan keadaan iklim yang sama.

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENTS

I would to take this opportunity to thank Prof Dr Wan Azmin Sulaiman, Prof Dr Mohammad

Pauzi, Dr Saim Suratman and Dr. Kamarudin Samuding for giving me valuable suggestions

and continuous encouragement during the preparation of this thesis. I wish to thank all other

staff of the Faculty of Environment, University of Putra Malaysia who has helped me during

the years of the study here.

I would like to thank a number of research officer at the National Hydraulic Research

Institute of Malaysia (NAHRIM) especially Mr. Azrul Normi, Mr. Anuar Sefie, Mr. Huzaifah

Wahab, Mr. Ali Sarudin and Mr. Syaiful Bahren Saadudin who has helped me in getting all

the related data on Bank Infiltration study and who has helped and accompanying me in the

field works.

Thanks also to the staff of the Minerals and Geoscience Malaysia (JMG), Selangor who have

directly or indirectly helped me during data collection.

I would also like to thank the Malaysian Meteorological Department (JMM), Drainage and

Irrigation Department (DID) and Department of Environment (DOE) for allowing me access

to essential hydrological and environmental data which they hold.

Lastly, the warmest thank to my dearest wife, Mrs Zurina Salleh and my lovely daughters Ms

Nur Damia Husna who have been very supportive during the preparation of this thesis.

© COPYRIG

HT UPM

vi

APPROVAL

I certify that a Thesis Examination Committee has met on (17 July 2014) to conduct the final

examination of Mohd Khairul Nizar Bin Shamsuddin on his thesis entitled "Evaluating the

Potential of Bank Infiltration as A Source Of Water Supply In Jenderam Hilir, Selangor,

Malaysia" in accordance with the Universities and University Colleges Act 1971 and the

Constitution of the Universiti Putra Malaysia [P.U(A) 106] 15 March 1998. The Committee

recommends that the student be awarded the Master of Science

Members of the Examination Committee were as follows:

Mohd Rusli bin Yacob, PhD

Associate Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Chairman)

Shaharin bin Ibrahim, PhD

Associate Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Internal Examiner)

Abdul Halim bin Ghazali, PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Internal Examiner)

Mohd Nordin bin Adlan, PhD

Professor/Ir

School of Civil Engineering

Universiti Sains Malaysia

(External Examiner)

NORITAH OMAR, PhD

Assoc. Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 19 September 2014

© COPYRIG

HT UPM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as

fulfilment of the requirement for the degree of Master of Science. The members of the

Supervisory Committee were as follows:

Wan Nor Azmin Sulaiman, PhD

Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Chairman)

Mohammad Pauzi Zakaria, PhD Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Member)

Saim Suratman, PhD

Deputy Director

National Hydraulic Research Institute of Malaysia

(Member)

Kamaruding Samuding, PhD

Environmental Division,

Malaysian Nuclear Agency

(Member)

(BUJANG BIN KIM HUAT, PhD)

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

© COPYRIG

HT UPM

viii

Declaration By Graduate Student

I hereby confirm that:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree at

any other institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and Innovation) before thesis is published (in the form of

written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture

notes, learning modules or any other materials as stated in the Universiti Putra

Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules

2012.The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: ________________________________________

© COPYRIG

HT UPM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:

The research conducted and the writing of this thesis was under our supervision;

Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) are adhered to.

Signature; __________________ Signature; __________________

Name of Chairman

of Supervisory

Committee: __________________

Name of Member of

Supervisory

Committee: __________________

Signature; __________________

Signature; __________________

Name of Member of

Supervisory

Committee: __________________

Name of Member of

Supervisory

Committee: __________________

© COPYRIG

HT UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION BY GRADUATE STUDENT viii

DECLARATION BY MEMBERS OF SUPERVISORY COMMITTEE ix

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1

1.1 Background of the study 1

1.2 Problem Statement 2

1.3 Needs of the study 3

1.4 Objectives of this study 4

1.5 Scope of the study 4

1.6 Significance of the study 5

1.7 Research Framework of the study 5

1.8 Layout of the Thesis 6

2 LITERATURE REVIEW 9 2.1 Introduction 9

2.2 Concepts of Bank Infiltration 10

2.3 The History Development of Bank Infiltration 11

2.4 Factors Affecting the Siting and Design 12

2.5 The Performance of BI Systems 14

2.5.1 Attenuation Processes during BI 14

2.5.2 Contaminant Removal During BI 15

2.6 BI Limitations 18

2.7 Concept of Groundwater Flow 20

2.8 Historical Review of Modeling In BI 20

2.9 Summary 21

3 PERFORMANCE OF BANK INFILTRATION METHOD 23

3.1 Introduction 23

3.2 Study area 24

3.3 Geology 25

3.4 Methodology 25

3.4.1 Establishment of the BI site 25

3.4.2 Geophysical Investigation 27

3.4.3 Construction of Monitoring Wells and Test Wells 28

3.4.4 Sieve Analysis for Aquifer Material 28

© COPYRIG

HT UPM

xi

3.4.5 Pumping test 29

3.4.6 Stable Isotope study to identify interaction between surface 29

and groundwater

3.4.7 Groundwater Flow in the Study Site 30

3.4.8 Water Sampling and analysis 30

3.5 Results and Discussion 32

3.5.1 The BI system 32

3.5.2. Water Quality 42

3.5.3 Water Quality characteristic during BI (pumping test) 47

3.5.4 Microorganism Removal 51

3.5.5 Effectiveness and Performance of BI 51

3.6 Conclusion 55

4 MULTIVARIATE ANALYSES OF RIVER, LAKE, AND 57

GROUNDWATER INTERACTION IN BANK INFILTRATION

SITE 4.1 Introduction 57

4.2 Materials and methods 59

4.2.1 Sample Collection and Analytical Procedure 59

4.2.2 Data analyses 60

4.2.3 Discriminant Analysis (DA) 60

4.2.4 Principle Component Analysis (PCA) 61

4.3 Results and discussion 62

4.3.1 Hydrochemical Characteristics 62

4.3.2 Surface and Ground Water Classification 63

4.3.3 Surface and Groundwater Spatial Pattern Discrimination 64

4.3.4 Correlation between Variables 67

4.3.5 Source Identification Using PCA and Factor Analysis (FA) 67

4.4 Conclusion 70

5 PARTICLE TRACKING ANALYSIS OF RIVER-AQUIFER 72

INTERACTIONS VIA BANK INFILTRATION TECHNIQUES

5.1 Introduction 72

5.2 Materials and method 73

5.2.1 Conceptual model 73

5.2.2 Numerical modelling 75

5.2.3 Model parameters 76

5.2.4 Steady-state (no pump well is activated) groundwater 80

flow model and calibration

5.2.5 Transient groundwater flow simulation and calibration 81

5.2.6 Particle tracking simulation 81

5.3 Result and Discussion 82

5.3.1 Calibration Results for Groundwater Flow Simulation 82

5.3.2 Forward tracking from the river travel times and 83

pathline determination

5.3.3 Varied pumping rates and river pumping simulations 84

5.3.4 Riverbank infiltration influence zone 84

5.3.5 Backward tracking of particles: delineation of capture 85

© COPYRIG

HT UPM

xii

zone analysis

5.3.6 Mixture of groundwater, river water, and pond at the 94

pumping well

5.4 Conclusion 99

6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE 101

RESEARCH 6.1 Conclusion 101

6.2 Recommendations 103

6.3 Future Research 104

REFERENCES 105

Appendices A 118

Appendices B 144

Appendices C 166

BIODATA OF STUDENTS 177

LIST OF PUBLICATIONS 178