Univ Los Andes Bogota 2005

Embed Size (px)

Citation preview

  • 8/22/2019 Univ Los Andes Bogota 2005

    1/29

    Los

    LosAndes

    AndesUniversid

    ad

    Universid

    adBogot

    2005

    Bogot

    2005

    Bauhaus-Universitt Weimar / Germany

    Seismic Site Investigations

    for the Application in Geotechnical and

    Earthquake Engineering

    Dr.-Ing. Hans - Gottfried Schmidt

    Bauhaus - University WeimarLaboratory of Soil Mechanics

    Content:

    Site investigations tasks

    and goals

    Site specifics in seismic

    affected areas

    Requirements of the design

    Use of strain-dependent

    parameters

    Strain dependence and

    Investigation methods

    Use of the Seismic site

    investigation methods

    Seismic field tests

    borehole and surfacemeasurements

    Spectral analysis of surface

    waves SASW

    Inversion of surface wave

    data

    Examples

  • 8/22/2019 Univ Los Andes Bogota 2005

    2/29

    Los

    LosAndes

    AndesUniversid

    ad

    Universid

    adBogot

    2005

    Bogot

    2005

    Site investigations tasks and goals

    Investigation of the variously varying soil structures

    Characterization of the natural or reclaimed soildeposits with all uncertainties

    + geometryof soils strata and their spatial variability

    + groundwater conditions+ geostatic stresses and related stress histories

    + characteristics of hydraulic conductivity+ deformation and damping characteristics assessedin the strain range of interest (!)

    + drained and undrained monotonis and cyclic shearstrength for cohesionless and cohesive strata

    + liquefaction potential of the soil deposits

    + direkte Aufschlsse eingeschrnkt einsetzbar

    + ergnzende geophysikalische /seismische Messungen

    mglich/notwendig (zerstrungsfrei)

    Investigation of disturbances in site conditions: holes,

    stones, waste deposits, parts of old buildings

  • 8/22/2019 Univ Los Andes Bogota 2005

    3/29

    Los

    LosAndes

    AndesUniversid

    ad

    Universid

    adBogot

    2005

    Bogot

    2005

    Site Investigations in seismic affected zones

    Site investigations related to the Geotechnical Earthquake

    Engineering (GEE) aspects

    + depth-dependent velocity- or stiffness profiles, generally for

    small strains+ characteristics of the amplification and filter effects of the

    sediment layers >>site dependent input motions+ statements to the dominant site frequencies

    >> different during main and after shocks ?+ deformation / damping characteristics in a wide range of strains+ shear strength by various conditions+ assessment of the land slides, liquefactions

    In GEE:

    + investigation of great affected areas

    + fast and effective investigations

    + use of geophysics to receive realistic soil

    parameters, additionally with lab-tests

    + use of all these investigation methods with

    consideration of the requirements of thedesign and the risk assessment

  • 8/22/2019 Univ Los Andes Bogota 2005

    4/29

    Los

    LosAndes

    AndesUniversid

    ad

    Universid

    adBogot

    2005

    Bogot

    200

    5

    Requirements of the design

    Current development: Adjustment of the material parametersCurrent development: Adjustment of the material parameters

    to the current strain level of the task of design (see Tatsuoka,to the current strain level of the task of design (see Tatsuoka,

    Fahay, Mayne, Burland, Atkinson)Fahay, Mayne, Burland, Atkinson)

    10-6 10-5 10-4 10-3 10-2 10-1

    G

    G0

    Earthquakes

    Foundations

    M achines

    Tunnels

    Roads

  • 8/22/2019 Univ Los Andes Bogota 2005

    5/29

    Los

    LosAndes

    AndesUniversid

    ad

    Universid

    adBogot

    2005

    Bogot

    200

    5

    Use of the strain-dependent soil parameter in the Soil

    Dynamics / Geotechnical Earthquake Engineering

    Use of a visco-elasto-plastic constitutive law with a definition of one ormore yield surfaces and>> non linear - elastic computations within the yield surface

    into a wide range of strains (Tatsuoka, Hamburg 1997)

    large acceptance for practical computations in the Dynamics:

    >> equivalent linear iteration cycles with the adjustment to thecurrent strain level

    >> that means: Hypoelasticity - incremental linear

    Hyperbolic law (u.a. Kondner) for the

    mean curve (skeleton curve) and the

    Masing-Rule for the Hysteretic slope

    r

    f

  • 8/22/2019 Univ Los Andes Bogota 2005

    6/29

    Los

    LosAndes

    AndesUniversid

    ad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Use of the strain-dependent soil parameter in the Soil

    Dynamics / Amplification Functions

    In = Rock motion

    Amplificationfunction

    Out = Responseof the layer (top)

    On the basis of the sufficient knowledge of theOn the basis of the sufficient knowledge of the

    material parameters there is a good agreement ofmaterial parameters there is a good agreement of

    the dominant site frequencies of various methods:the dominant site frequencies of various methods:

    (1) amplification function(1) amplification function (matrix(matrix--reductionreduction--algorithm)algorithm)

    (2) H/V(2) H/V technology (Nakamura)technology (Nakamura) (comparing of the(comparing of the

    displacements at the ground surface)displacements at the ground surface)

    (3) Dispersion curves of the surface waves(3) Dispersion curves of the surface waves

    11

    22

    33

  • 8/22/2019 Univ Los Andes Bogota 2005

    7/29

    Los

    Los

    Andes

    AndesUniversid

    ad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Use of the strain-dependent soil parameter in the Soil

    Dynamics / Amplification Functions

    GoodGood agreementagreement betweenbetween amplificationamplification

    functionfunction (1) and H/(1) and H/VV--ratioratio (3)(3) byby usingusing

    thethe samesame soilsoil parameterparameter

    Change inChange in thethe frequenciesfrequencies and inand in thethe

    sizesize ofofamplitudesamplitudes duedue toto thethe variationvariation ofof

    thethe soilsoil stiffnessstiffness// velocitiesvelocities causedcaused byby

    differentdifferent inducedinduced strainsstrains ((seesee 1 and 2)!1 and 2)!

    11

    33

    22

  • 8/22/2019 Univ Los Andes Bogota 2005

    8/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Soil Mechanics - Settlement control

    and realistic soil parameters

    Measurement of the strains in the soils (relativsettlements)beneath a foundation (Kriegel/Wiesner 1973); Burland 1989

    MeasuredSettlements invarious depth z

    (e.g. withExtensiometers)

    Calculation of thestrains (relative

    settlements):* in wide soil regionswe have local strainsunderneath 0,1%

    * max. values areabout 0,3%

    Reason for differencesof the observed andcalculated settlements

    > the most soil deforma-tionen are in the rangelower than 0,1%

    > there is a strict nonlinearsoil behaviour over awide range of strains

    Consequence:

    use of the strain

    dependent soil stiffness

    and improved

    computional algorithm

  • 8/22/2019 Univ Los Andes Bogota 2005

    9/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Use of strain-dependent Soil Parameters in Routine

    Designs of the Soil Mechanics

    Increasing tendency: Consideration of the pronounced non-linearity

    within the range of small strains (-> WCSMFE 2001)

    Goal realistic computations e.g for Settlements(Atkinson 2000, Mayne 2000)>> thatmeans non-linear - elastic computations with strain-dependent

    parameters analogue to the Soil Dynamics

    LinearLinear

    computationcomputation

    NonNon--linearlinearcomputationcomputation

    FoundationFoundation settlementsettlement:: ComparisonComparison PredictionPrediction (non(non--linear)linear) -- MeasurementMeasurement

    S

    Qfs

    BE=

    0,3

    0 ult

    Qfs

    BE 1 (Q /Q )=

  • 8/22/2019 Univ Los Andes Bogota 2005

    10/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Use of the strain-dependent soil parameter in the Soil

    Mechanics / Geotechnical Engineering

    Use in routine computations in the soil mechanicse.g. Settlement calculation after Berardi (Diss. 1992)

    (Janbu)

    (Settlement)

    (Loads)

    (SPT)Modul factor KE

    strain 0,1%

    Here arepossibe actualcurves ofmeasurements!

    GoalGoal

    ::

    reductionreduction

    ofof

    thethe

    oftenoften

    largelarge

    differencesdifferences

    betweenbetween

    thethe

    prognosisprognosis

    andand

    thethe

    observationobservation ofofsettlementssettlements!!

  • 8/22/2019 Univ Los Andes Bogota 2005

    11/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Strain-dependent soil parameter in the Soil Mechanics /

    Soil Dynamics / Geotechnical Earthquake Engineering

    Degradation ofDegradation ofthethe StiffnessStiffness:: forforstaticstatic loadingsloadings

    dehnungsabhdehnungsabhngigngig

    beanspruchungsabhbeanspruchungsabhngigngig

    Proposals of the Degradation curves for the non-linear Soil Stiffness (after Fahay)

    0 r

    G 1

    G 1=

    Degradation ofDegradation ofthethe StiffnessStiffness::

    forfordynamicdynamic loadingsloadings

    ((e.ge.g.. seesee Kramer:Kramer:

    GeotechnicalGeotechnical EarthquakeEarthquake Engineering)Engineering)

    g

    0

    G 1 f( )G max

    =

  • 8/22/2019 Univ Los Andes Bogota 2005

    12/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Strain-dependent soil parameter in the Soil Mechanics /

    Soil Dynamics / Geotechnical Earthquake Engineering

    G0

    Static degradation

    Dynamic degradation

    10-6 10-1

    failure

    MainMain tasktask forforthatthat descriptionsdescriptions::

    ++ realisticrealistic maximummaximum valuevalue ofofstiffnessstiffness GmaxGmax ororGG00 forforveryvery smallsmall strainsstrains

    ++ Adjustment of the stiffness to the current stress / strain of thAdjustment of the stiffness to the current stress / strain of the soile soil

    WhatWhat areare thethe possibilitiespossibilities ofofthethe sitesite investigationinvestigation and laband lab methodsmethods??

    DifferentDifferent

    curvescurves

    forfor

    differentdifferent loadload regimesregimes !!

    There is not only theThere is not only the

    one characteristicone characteristic

    parameter for a soil.parameter for a soil.

  • 8/22/2019 Univ Los Andes Bogota 2005

    13/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Geotechnical Site Investigation Methods

    How much can material parameters be derivedHow much can material parameters be derived

    from a number punch?from a number punch? ((MayneMayne 2001)2001)Is this procedure rational?Is this procedure rational?

    What can we begin with seismicWhat can we begin with seismic

    measurements?measurements?

    Indirect explanations: ProbesDirect explanations (drillings) and samplings: disturbed / undisturbed ?

  • 8/22/2019 Univ Los Andes Bogota 2005

    14/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Strain Dependence and Investigation Methods

    ShearShearstrainstrain

    SeismicSeismic boreholeboreholemethodsmethods

    SeismicSeismic surfacesurface

    methodsmethods

    PossibilitiesPossibilities andand limitationslimitations of differentof different investigatioionsinvestigatioions methodsmethods

    Advantages of Seismicmeasurements: clear

    mechanical relations to othersoil parameters- Schubmodul G0=.vs

    2

    - Hooke-Modul E0=2(1+)..vs2

    (Steifezahl Es=.vp2

    - Querdehnzahl =(vp2-2vs

    2)/2(vp2-vs

    2)

    - GeschwindigkeitsverhltnisvR/vs(0862+1,14)/(1+).

  • 8/22/2019 Univ Los Andes Bogota 2005

    15/29

    Los

    Los

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Main focuses for this concept: + determination of the maximal value Go or Eo

    + degradation curve for the non-linear stiffness

    Strain Dependence and Investigation Methods

    0=0,001%

    Main Problem: Conventional Lab- and Field tests cannot provide soil parameters in the demanded lowstrain range (e.g. Burland, Atkinson, Fahay, Tatsuoka)

    Consequently we use in the present time

    -> Seismic field tests in undisturbed conditions and in a very small strain range

    (see 1: < 10-5 )

    characteristicalvalue

    We focus: In situ - soil parameter should be measured in situ

  • 8/22/2019 Univ Los Andes Bogota 2005

    16/29

    Los

    Los

    Andes

    AndesUniversidad

    Universi

    dadBogot

    200

    5

    Bogot

    200

    5

    TheoreticalTheoretical backgroundbackground:: wavewave propagationpropagation theorytheory in ain a layeredlayered halfspacehalfspace

    Seismic Field Measurements

    DifferentDifferent fieldfield measurementmeasurement methodsmethods::

    ++ BoreholeBorehole measurementsmeasurements:: directdirect measurementmeasurement ofofthethe wavewave velocitiesvelocities

    ++ MeasurementMeasurement ofofthethe groundground surfacesurface wavewave fieldfield withwith manymany differentdifferentevaluationevaluation methodsmethods:: noninstrusivenoninstrusive indirectindirect measurementmeasurement ofofthethe wavewave velocitiesvelocities

    -- Reflexion andReflexion and RefractionRefraction ofofseismicseismic waveswaves -- onlyonly bodybody waveswaves areare usedused

    -- DispersionDispersion MethodsMethods dominantdominant surfacesurface waveswaves areare usedused

    DispersionDispersion thatthat meansmeans frequencyfrequency dependentdependent wavewave velocitiesvelocities!!

    -- H/VH/V techniquetechnique:: measurementmeasurement ofofthethe groundground surfacesurface displacementsdisplacements

    andand determinationdetermination ofofthethe dominantdominant sitesite frequencyfrequency

    -- Geotomographie: 3DGeotomographie: 3D--detection ofdetection ofnearnearsurfacesurface disturbancesdisturbances

    + Dispersion+ Dispersion MethodsMethods::-- determinationdetermination ofofthethe experimentalexperimental dispersiondispersion curvescurves byby usingusing ofof

    differentdifferent mathematicalmathematical correlationcorrelation andand convolutionconvolution// transformationtransformation

    techniquestechniques

    -- determinationdetermination ofofthethe depthdepth--dependentdependent velocityvelocity ororstiffnessstiffness profileprofile

    withwith inversioninversion methodsmethods ((comparisoncomparison ofofthethe experimental andexperimental andtheoreticaltheoretical computedcomputed dispersiondispersion curvecurve))

  • 8/22/2019 Univ Los Andes Bogota 2005

    17/29

    LosLos

    Andes

    AndesUniversidad

    Universi

    dadBogot

    200

    5

    Bogot

    200

    5

    Seismic Field Measurements Borehole Methods

    Crosshole-, Downhole-, Uphole-Methods

    relatively simple, but complex measurements

    + importantly: Contact in the borehole > > balloons+ problem: suitable borehole excitation > > S-wave

    further effective developments> Probes with geophones (SCPT)> Pressiometer with geophones

    > dilatometers with geophone

    CH DH

    (Kalinski/Stokoe 2003)

    DilatometerDilatometer

  • 8/22/2019 Univ Los Andes Bogota 2005

    18/29

    LosLos

    Andes

    AndesUniversi

    dad

    Universi

    dadBogot

    200

    5

    Bogot

    200

    5

    Seismic Field Measurements Borehole Methods

    Plot ofPlot ofthethe registeredregistered boreholeboreholetimetime historieshistories

    ExcitationExcitation byby a horizontala horizontal

    polarizedpolarized shearshearwavewave -- ever twoever two

    measurements with oppositemeasurements with opposite

    direction of the excitationdirection of the excitation

    RunningRunning time oftime ofthethe SHSH--wavewave

  • 8/22/2019 Univ Los Andes Bogota 2005

    19/29

    LosLos

    Andes

    AndesUniversi

    dad

    Universi

    dadBogot

    200

    5

    Bogot

    200

    5

    Ground Surface Wave Field Measurement (1)

    SYSCOM / BARTEC

    MR 2002 CE-variant

    Geophone

    Punctual measurements of time historiesPunctual measurements of time histories

    from surface wave fieldsfrom surface wave fields

    a)a) due to active sources (pulsator, hammer):due to active sources (pulsator, hammer):

    usually smaller, linear arraysusually smaller, linear arrays

    b)b) due to passive sources (Noise): twodue to passive sources (Noise): two--

    dimensional arrays with larger receiverdimensional arrays with larger receiver

    distances are possibledistances are possible

    The measured time histories possess theThe measured time histories possess the

    information of the continuous medium! Theinformation of the continuous medium! The

    analysis of these recordings can take placeanalysis of these recordings can take place

    with differently strong methods!with differently strong methods!

    SledgeSledge

    hammerhammer

    -- sourcesource

  • 8/22/2019 Univ Los Andes Bogota 2005

    20/29

    LosLos

    Andes

    AndesUniversi

    dad

    Universi

    dadBogot

    200

    5

    Bogot

    200

    5

    Ground Surface Wave Field Measurement (2)

    Direct wave

    c

    Reflexions / Refraction (only the propagation of P- and S- waves)

    DetectionDetection ofofthethe diferentdiferent runningrunning

    timestimes ofofthethe differentdifferent waveswaves typestypes

    andand derivationderivation ofofthethe wavewavevelocitiesvelocities

    Determination of HDetermination of the wave velocities

    from the time distance - diagram

    linearlinear arrayarray

  • 8/22/2019 Univ Los Andes Bogota 2005

    21/29

    LosLos

    Andes

    AndesUniversi

    dad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    Ground Surface Wave Field Measurement (3)

    Rayleigh wave Dispersion Measurement (conventional)

    linear array of the Geophones / different spacings /harmonic excitation with various frequencies and detectionof phase differences between e.g. 2 Geophones

    PhasePhase velocityvelocity forforeacheach frequencyfrequency

    c(fc(f) = Geophon) = Geophon spacingspacing/ Phase/ Phase differencedifference

    ResultResult:: DispersionDispersion curvecurve :: cc--ff--curvecurve

    vertical particle motion

    layer 1

    layer 2

    half space low freq.high freq

    WaveWave lengthlength andand influenceinfluence depthdepth

    z

    surface

    (1/3 . ) RW,1 cRW(f1) or 0,92 cs

    StiffnessStiffness profileprofile ofofthethe sitesite:: determineddetermined

    velocities arevelocities are

    arranged with thearranged with the

    (0,3(0,3--0,5)0,5)-- wavelengthwavelength

    over the depth!over the depth!

    ( )RW 1 RW,1 1 1 2 1c (f ) s/ t f s 2 f /= = =

    ( )RW,1 2 12 s/ =

  • 8/22/2019 Univ Los Andes Bogota 2005

    22/29

    LosLos

    Andes

    AndesUniversi

    dad

    UniversidadBogot

    200

    5

    Bogot

    200

    5

    ExperimentalExperimental SurfaceSurface WaveWave FieldField Analysis (1)Analysis (1)

    Measurement of wave field with few receivers and with a variable offset!

    1. Phase1. Phase DifferenceDifference MethodMethod (linear(lineararrayarray)) -- SASWSASW

    Determination ofDetermination ofthethe PhasePhase

    differencesdifferences ororthethe PhasePhasevelocitiesvelocities withwith followingfollowing stepssteps

    ++ FourierFourier--TransformationTransformation fromfrom

    thethe TD inTD in thethe FDFD

    ++ determinationdetermination ofofthethe CrossCross

    correlationcorrelation spectrumspectrum ofoftwotwo

    measuredmeasured signalssignals++ determinationdetermination of dieof die phasephase

    differencedifference withwith ReRe-- andand ImIm--partpart

    ( ) ( )( )( )( )

    ij

    s 2 f

    c f fa rc tan

    ij f

    =

    Method well been suitable, if only one mode of theMethod well been suitable, if only one mode of the

    surface waves, e.g. the fundamental mode issurface waves, e.g. the fundamental mode is

    evaluatedevaluated -- >> an averaged dispersion curve resultsan averaged dispersion curve results

    (if necessary from many branches)(if necessary from many branches)

    Generally a surface wave field possesses severalGenerally a surface wave field possesses several

    modes, i.e. at a measuring point several velocitiesmodes, i.e. at a measuring point several velocities

    or several wave fields with different velocities existor several wave fields with different velocities exist

    > >> > the detection of the higher modes isthe detection of the higher modes is

    extremelyextremely importantimportant for the success offor the success ofseismic field investigations!seismic field investigations!

    Fundamental modeFundamental mode

    HigherHighermodesmodes

    AveragedAveraged experimentalexperimental

    dispersiondispersion curvecurve

    In allIn all casescases:: thethe determinationdetermination ofofthethe dispersiondispersion characteristicscharacteristics ofofthethe sitesite!!

    ( ) ( ) ( )

    ( ) ( ) ( )

    ij 1 2

    ij 1 2

    t g g t d

    f G f G f

    7

    = +

    =

  • 8/22/2019 Univ Los Andes Bogota 2005

    23/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    2005

    ExperimentalExperimental SurfaceSurface WaveWave FieldField Analysis (2)Analysis (2)

    2.2. FrequencyFrequency -- WaveWave numbernumber-- Analysis (Analysis (fkfk -- Analysis)Analysis)

    Transformation ofTransformation ofthethe measuredmeasured timetime historieshistories inin thethe FrequencyFrequency -- WaveWave

    numbernumber DomainDomain withwith aa doubledouble FourierFourier TransformationTransformation -- techniquetechnique

    The distances of the geophones affect the wave number ranges whiThe distances of the geophones affect the wave number ranges which can bech can be

    detected and the spatial Aliasing effects; but the analysis is adetected and the spatial Aliasing effects; but the analysis is a durabledurable

    procedure with a high resolution!procedure with a high resolution!

    Improvement of the technology of evaluating of measured time historiesby consideration of the changes both over the time and the distance

    DispersionDispersion analysisanalysis byby usingusing ofofseveralseveral receiversreceivers withwith discretediscrete

    signalsignal samplingsampling andand processingprocessing inin thethe timetime-- andand spacespace--domaindomain

    ( ) ( )c / k =

  • 8/22/2019 Univ Los Andes Bogota 2005

    24/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    2005

    ExperimentalExperimental SurfaceSurface WaveWave FieldField Analysis (3)Analysis (3)

    3. Wave3. Wave FieldField TransformationTransformation (Slant Stack Transformation)

    ( ) ( ), , ixS p P x px e d

    = +

    -> good method for the evaluation of the higher modes

    -> slant stack - that means a linear time-shift and summing of the amplitudesover the outset axis (plane wave decomposition of a wave-field)

    -> the mathematical operations: transformation of the wave field in the

    p - - domain (a special mapping domain) by two independent lineartransformations: first a slant-stack or special Radon-transformationfollowed of a one-dimensional Fourier-transformation

    ( )P x,t inputdata

    t px;linearmoveout;coordinate transformation

    =

    1.1. StepStep:: SlantSlant stackstack

    p ray-parameter as a inverse of the horizontal phase velocity c

    ( ) ( )x

    P x, px Summationin the p domainS p, + =

    SlantSlant stackstack summationsummation

    2.2. StepStep: 1D: 1D FourierFourierTransformation ofTransformation ofthethe SlantSlant StackStack SummationSummation

    SlownessSlowness spectrumspectrum SS

    n R n nc (f )/ f =

  • 8/22/2019 Univ Los Andes Bogota 2005

    25/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    200

    5

    Bogot

    2005

    ExperimentalExperimental SurfaceSurface WaveWave FieldField Analysis (4)Analysis (4)

    4.4. ExampleExample forforanan evaluatedevaluated measurementmeasurement

    Deposit of an old mining industry:Deposit of an old mining industry:

    height 25height 25 -- 30 m30 m

    dispersion analysis of the measureddispersion analysis of the measuredwave fieldwave field

    (a) time history(a) time history

    (b)(b) fkfk -- transformtransform

    (c ) slant(c ) slant -- stackstack -- transformtransform

    aa

    bb

    cc

  • 8/22/2019 Univ Los Andes Bogota 2005

    26/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    2005

    Bogot

    2005

    Theoretical Wave Field Analysis Matrix Methods

    1) Thomson-Haskell-Algorithm

    relative simple mathematical-physical model

    simple numerical realisation

    2) Method of the generalized Reflex ion-and Transmission coefficients

    numerical stable

    7

    ( ) ( ){ }

    ( ) ( )

    1 1

    ,

    ,

    z z z zjd

    z z z zju

    j j j j

    j j jj

    diag e e

    diag e e

    =

    =

    2 2pk k =

    2 2sk k =

    k c

    =

    0 0 0

    0 0 0

    0 0 0

    0 0 0

    z

    z

    z

    z

    e

    e

    e

    e

    =

  • 8/22/2019 Univ Los Andes Bogota 2005

    27/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    2005

    Bogot

    2005

    Inversion of Surface Wave Data

    Basis ofBasis ofthethe InversionInversion MethodMethod -- thethe experimentalexperimental dispersiondispersion

    curvescurves ofofthethe surfacesurface waveswaves inin thethe FDFD

    InversionInversion TechniqueTechnique representsrepresents aa newnew qualityquality ofofthethe

    Dispersion Analysis >> Inversion ofDispersion Analysis >> Inversion ofthethe measuredmeasured fieldfield datadata

    Goal: Investigation ofGoal: Investigation ofdepthdepth--dependentdependent soilsoil stiffnessstiffness profilesprofiles

    M

    i ij j

    j 1

    f (d, m) d Gm 0

    d G m=

    = =

    =

    Nonlinear connection between the measuredNonlinear connection between the measured

    discrete data d and the material properties mdiscrete data d and the material properties m

    with the function Gwith the function G

    Solution of the nonSolution of the non--linear Inversion problemlinear Inversion problem

    e.g. Use of thee.g. Use of the gradient methodgradient method on basis of theon basis of the linearizationlinearization of aof a nonnon--linearlinear

    problemproblem (Taylor(TaylorSeriesSeries expansionexpansion))

    d,d,mm difference vectorsdifference vectorsThe number of the iterative cycles depends on the nonThe number of the iterative cycles depends on the non--linearity of the problem andlinearity of the problem and

    on the quality of the Input stiffness profile of the siteon the quality of the Input stiffness profile of the site (obtimization problem)

    Numerical stabilization of the inversion steps with the use of the weightedMarquardt-Levenberg-Algorithmus

    DiscreteDiscrete inversioninversion problemproblem iterativeiterativegoodgood adjustmentadjustment ofofthethe modelmodel vectorvectormm

    toto thethe datadata vectorvectordd

    T 1 Tm (G WG I) G W d = +

  • 8/22/2019 Univ Los Andes Bogota 2005

    28/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    2005

    Bogot

    2005

    Inversion of Surface Wave Data

    Overview of the Inversion ProcedureOverview of the Inversion Procedure

    Theory

    Iteration

    InversionSite condition

    (layers, soil parameters)

    j

    d

    11j

    du

    j

    ud

    j

    d

    j

    d

    1j

    du

    j

    u

    j

    du

    j

    du

    T)R~

    R(IT~

    T~

    R~

    TRR~

    +

    =

    +=

    ( ) 0R~R~Idet 1du0ud =( ) (0)EER

    ~ 1u

    1

    22

    11

    21

    0

    ud

    =

    N

    du

    N

    du

    N

    d

    N

    d

    RR~

    TT~

    =

    =

    Reflection and Transmission matrixmethod (Chen,Luco)

    Experi-

    ment

  • 8/22/2019 Univ Los Andes Bogota 2005

    29/29

    LosLos

    Andes

    AndesUniversidad

    UniversidadBogot

    2005

    Bogot

    2005

    Inversion of Surface Wave Data

    Site investigationSite investigation -- Determination of a soil stiffness Profile (example)Determination of a soil stiffness Profile (example)

    Deposit of an old mining industryDeposit of an old mining industry: height 25: height 25 -- 30 m30 m

    Inversion of the surface wave dataInversion of the surface wave data Dispersion characteristicsDispersion characteristics

    (a) Slant stack dispersion of the site together with theoretical(a) Slant stack dispersion of the site together with theoretical dispersiondispersion

    curves of the determined soil profilecurves of the determined soil profile

    (b) depth(b) depth--dependent velocity profile (shear wave velocity)dependent velocity profile (shear wave velocity)

    aa bb