34
Unit 7 Endomembranes

Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Embed Size (px)

Citation preview

Page 1: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Unit 7

Endomembranes

Page 2: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

SECRETORY PATHWAY:

Unit 7

Page 3: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Secretory Pathway• Proteins are synthesized on the Rough ER.

• Move via vesicles to Golgi

• Move via vesicles to Plasma membrane

- Budding is through coated vesicles (ie. clathrin)

- Docking is through the SNAREs

Page 4: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Budding via Coated Vesicle

- Clathrin coated vesicles originate from Golgi and Plasma membrane

Page 5: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Docking via SNARESVesicles are targeted by

interactions between v-SNARES and t-SNARES

• each vesicle has unique v-SNARES embedded in its membrane

• each target membrane has unique t-SNARES (v-SNARE receptors) embedded in the target membranes

Page 6: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Protein Transport: 3 mechansims

1. Nuclear import

2. Protein translocators - protein pores in the membrane that help unfolded proteins get into membranes

3. Transport vesicles - membrane vesicles pinch off a donor compartment, fuse with a recipient compartment and carry both:

- soluble proteins in lumen and

- membrane proteins associated with bilayer

Page 7: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Protein Targeting• Sorting signals are necessary to direct a

protein to a particular organelle.

1. Nuclear localization signal

2. ER signal sequence

3. KDEL - retention in the ER lumen

4. Mitochondria/chloroplast signal sequence

NOTE: Proteins destined for nucleus, chloroplast, mitochondria, and peroxisome are made in cytosol on

free ribosomes!

Page 8: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Nuclear localization signal

- On soluble, folded nuclear proteins, made on free ribosomes in the cytosol

- Contains one or two short sequences with positively charged amino acids

- Bind Nuclear import receptors in cytoplasm

- Move into nucleus through nuclear pores

Page 9: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

ER Signal Sequence

- Protein Translocator = at N terminal

- Consists of hydrophobic amino acids.

- Causes proteins meant for secretory pathway to enter the ER

- Retention signal = KDEL

- Used to target “resident proteins” of ER to get back to ER from Golgi after sorting

Page 10: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Mitochondria/chloroplast Signal Sequence

- Protein translocator for proteins made on free ribosomes destined for mitochondria and chloroplast

- signal sequence at N terminal

What if the sequence is moved to C terminal?

Page 11: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Models of Golgi FunctionThere are two competing theories:

Cisternal progression model:New cisternae form continuouslyfrom ER vesicles.Cisternae move through the stack from cis to trans and finally break up into transport vesicles at the trans face.

Vesicle transport model:Cisternae remain fixed. Both membrane and content move from the cis to the trans cisternae in transport vesicles.

Unit 7

Page 12: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

- protein binds receptors on the cell surface and is internalized in clathrin-coated vesicles.

- the vesicles lose their coats and fuse with endosomes.

- Cargo protein separates from its receptor in endosome.

Endocytosis

- protein is transferred to a lysosome and degraded to release free cholesterol

- protein receptors return to the plasma membrane via transport vesicles

Unit 7

Page 13: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Phagocytosis1. Recognition between plasma

membrane receptors and bacteria.2. pseudopodia surround bacteria3. membrane fusion and vesicle

formation4. internalized as early endosome, pH

change, becomes late endosome, fuses with primary lysosome where digestive enzymes are activated

5. becomes secondary lysosome, 6. bacteria is digested,

macromolecules diffuse across lysosomal membrane

Page 14: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Pulse-Chase Autoradiography

An experimental approach to observing protein secretion

Page 15: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

What is Autoradiography?

• Autoradiography is the use of radioactively labeled molecules to look at cell processes.

• A labeled molecule can be located because its radioactivity develops the silver grains on a photographic emulsion.

Page 16: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

“Tailing” a labeled molecule

• Allows us to observe the movement of molecules through the cell over time.

• Cellular pathways are revealed as the progress of molecules is monitored.

Page 17: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

The “Pulse” and the “Chase”

•  The "Pulse" consists of radioactive material added for a very brief period and then washed away.

• Then the “Chase” begins- non-radioactive molecules are added.

• This creates a group of labeled molecules, with unlabeled molecules in front and behind, that move through a particular metabolic pathway.

Page 18: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Now for a demonstration!• Stomach cells which secrete digestive enzymes

(zymogen) are supplied with radioactively labeled amino acids.

• After a brief period -the “Pulse” - the excess labeled amino acids are washed away.

• The cells are then supplied with unlabeled amino acids -the “Chase”

And in the TEM we see…

Page 19: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Three minutes after pulse…

Labeled amino acids (incorporated into newly synthesized proteins) are localized around RER.

The “squiggles” show radioactivity.

Page 20: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Seven minutes after pulse…

• The majority of the newly synthesized proteins have moved to the periphery of the Golgi complex.

• Arrows indicate periphery of Golgi complex.

Page 21: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

37 minutes after pulse…• Labeled proteins are

concentrated over secretory vesicles called condensing vacuoles (CV).

• Arrows indicate periphery of Golgi complexes.

• Secretory vesicles containing zymogen are marked Z.

Page 22: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

117 minutes after pulse…

• Radioactivity is mainly localized over secretory vesicles containing zymogen.

• Some labeled protein has already been secreted into the lumen (L) .

Page 23: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Where are they now?

• Samples are taken after various time periods and the location of the labeled molecules is identified.

(CV)

(Z)

Page 24: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

Got it?

Feed the cell a pulse of radioactively labeled molecules and see what it does with them.

Page 25: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

So here are a few questions…

Page 26: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

1. PULSE: Cell is exposed to radioactively-labelled nucleotides (green) for 3 minutes.  The nucleotides are taken up by the nucleus.

1

2

3

4

Page 27: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

2. CHASE: The cell is exposed to an excess of non-radioactive nucleotides.  After five minutes of chase, some radioactive molecules are found in the cytoplasm.

1

2

3

4

Page 28: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

1

2

3

4

3. 15 MINUTES: Most of the radioactivity has moved from the nucleus to the cytoplasm after 15 minutes of the chase.

Page 29: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

1

2

3

4

4. 30 MINUTES: After 30 minutes, all of the radioactive label is found outside the nucleus.

Page 30: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

1) What macromolecule is

being studied in this experiment? Why?

A. Polypeptides

B. Lipids

C. DNA

D. RNA

E. Carbohydrates

Page 31: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

2. Where is this macromolecule being

synthesized?

A. Nucleus

B. Golgi

C. Rough ER

D. Cytosol

E. Smooth ER

Page 32: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

3. After thirty minutes, is the macromolecule

still being synthesized?

Page 33: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

4) Which is the best explanation for the observations?

A. Synthesis doesn't continue as there is no more labeled nucleotide.  

B. Synthesis doesn't continue as the cell is not making any more RNA.  

C. You cannot 'see' that synthesis is continuing as the nucleotides being incorporated are not labeled and hence can not be visualized by autoradiography.  

Page 34: Unit 7 Endomembranes. SECRETORY PATHWAY: Unit 7 Secretory Pathway Proteins are synthesized on the Rough ER. Move via vesicles to Golgi Move via vesicles

NEXT TUTORIAL

Structure and function of the CYTOSKELETON

– Actin Microfilaments– Microtubules– Intermediate Filaments