Unit 2 Module Tests Answers

Embed Size (px)

Citation preview

  • 8/10/2019 Unit 2 Module Tests Answers

    1/28

    Page 1of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    Module tests numerical answers

    Module 1 Test 1

    1 (a) (i) 16 cos sin4 4 4

    xe x x+

    + (ii)

    1

    2 1 2x x

    (b)1 1

    ln16 4

    (c) (i)4 2

    2 1 3x x+

    +

    15(ii) 2 ln

    4

    (d) Proof

    2 (a) (i) 21 x c + (ii) 12

    (b)4 23 24

    16 +

    (c) Approx: 0.644, exact: 0.491 (3 dp)3 (a) (ii) y= 2

    (b) Proof

    (c) (2 2) (3 2)i+ + +

    Module 1 Test 2

    1 (a) (i) 2 29 tan (3 ) sec (3 ) 8 sin cosx x x x 2

    2 2

    1 cos( 4)(ii) (iii)

    2( 2)1 sin ( 4)

    x x x

    xx x

    +

    ++ +

    (b)2 3/2

    2

    (1 ) 4x 3)

    x

    x

    +

    (c) (i)2

    1 3

    11 xx+

    ++ (ii) 3 ln 2

    4

    +

    2 (a) 311 8

    81 81e (b) = +

    1 1ln 3

    3 3y x (c) 5 2 7y x+ =

    3 (a) 43 116 16

    e + (b) tan , 1, 3, 5, 78n n

    =

    (c)(i) v = 2 , 2 , 1 , 3 2i i z i i+ = + +

    Module 2 Test 1

    1 (a) a= 8, b= 1 (b) (i)1 1

    2 , 4 , 9,152 2

    (c) +2 31 1

    2 6x x x

    2 (a) 21

    1 , 1 12

    x x x+ + < < (b) n2+ 3n (c) Proof

    3 (a) Proof (b) Proof (c) Proof (d) 1.57

  • 8/10/2019 Unit 2 Module Tests Answers

    2/28

    Page 2of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    Module 2 Test 2

    1 (a) (ii)3 1 1

    2 1n n

    + (b) 3, 10, 17, 24, an= 7n4 (c) Proof

    2 (a) 2 35 1 1

    1 ... ,3 3 3

    x x x x

    + < < (b) 0.86 (c) 2 35060

    2 23 184 ...3

    x x x+ + + +

    3 (a) (i)3 5

    sin6 120

    x xx x= + +

    2 4

    cos 12 24

    x xx= + +

    (ii) 2 41 5

    12 24

    x x+ + +

    (iii) 3 51 2

    3 15x x x+ + +

    (iv) 0.00100

    (b)2 3

    1 3 1 3

    2 2 3 4 3 12 3x x x

    +

    cos 610.48481

    Module 3 Test 1

    1 (a) 210 (i) 90 (ii) 60

    (b) 4 4 sin 2 3 cos2t tx Ae Be t t= + + 3 4 sin 2 3 cos2tx e t t= +

    (c) (i) 514

    (ii) 15

    28

    2 (a) (i) 91 (ii) 88205 5 1

    (b) (i) (ii) (iii)18 9 18

    (c) ( 1) cosxy e x= +

    3 (a) (i)

    10 100 50 85 000

    15 120 70 119 000

    18 105 100 136 250

    x y z

    x y z

    x y z

    + + =

    + + =

    + + =

    (ii)

    10 100 50 85 000

    15 120 70 119 000

    18 105 100 136 250

    x

    y

    z

    =

    (iii)

    930 475 201

    48 10 1 (iv) TT$ 5000, TT$ 250, TT$ 200135117 75 6

    x y z

    = = =

    (b) x= 1, 4

    Module 3 Test 2

    1 (a) 720 (b) (i) 30 (ii) 5001 4 3

    (c) (i) (ii) (iii)30 5 8

  • 8/10/2019 Unit 2 Module Tests Answers

    3/28

    Page 3of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    2 (a) Proof

    3 6

    5 52 1 1 111 7

    (b) (i) 3 4 2 7 (ii) Proof (iii)

    5 59 7 1 10

    x

    x

    y y

    z z

    = +

    = =

    =

    (c) (i)

    6 0 0

    0 6 0

    0 0 6

    (ii)

    3 2 11

    3 2 16

    3 4 1

    3 (a) y= e3x 53

    ( ) B

    b y Axx

    = + 2 3 24 6

    (c) 25 5

    x xy e e x x= +

    Full Worked Answers

    Module 1 Test 1

    1 (a) (i) 1 1 1d

    6 sin 6 cos 6 sind 4 4 4 4

    x x xe x e x e xx

    + + + = +

    16 cos sin4 4 4

    xe x x+

    = +

    1 1/2d 1 2 1(ii) sin (1 2 )d 2 1 2 1 ( 2 1) 2 1 2

    xx x x x x

    = = +

    (b) = 4t

    ln = ln 4tln = tln 4

    1 dln 4

    dt =

    d( ln 4) ( ln 4)4

    dt

    t

    = =

    When t= 2, 1 2d 1 1

    (ln 4 ) (4 ) lnd 16 4t

    = =

    (c) (i)2

    8 10 8 10

    (2 1) ( 3)2 5 3

    x x

    x xx x

    + +

    ++

    8 10

    (2 1) ( 3) 2 1 3

    x A B

    x x x x

    + + + +

    8x+ 10 A(x+ 3) +B(2x1)

    When1 7

    , 14 42 2

    x A A= = =

    When 3, 14 7 2x B B= = =

    8 10 4 2

    (2 1) ( 3) 2 1 3

    x

    x x x x

    + +

    + +

    (ii)22 2

    1 1 1

    8 10 4 2 4d d ln 2 1 2 ln 3

    (2 1) ( 3) 2 1 3 2

    xx x x x

    x x x x

    + = + = + +

    + +

    (2 ln 3 2 ln 5) (2 ln1 2 ln 4)= + +

  • 8/10/2019 Unit 2 Module Tests Answers

    4/28

    Page 4of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    2 ln15 2 ln 4=

    152 ln

    4

    =

    (d) y= tan1

    xtany=x

    2 dsec 1d

    yy

    x =

    2

    d 1

    d sec

    y

    x y=

    2

    1

    1 tan y=

    +

    Since tany=x

    2

    d 1

    d 1

    y

    x x

    =

    +

    2 (a) (i)2

    d1

    xx

    x

    u= 1 x2du= 2xdx

    1d d

    2u x x =

    21 x u =

    2

    1 1d d

    21

    xx u

    ux

    =

    1/ 21 d2

    u u=

    1/2

    1

    21 2

    u c

    = +

    u c= +

    Since 2 22

    1 d 11

    xu x x x c

    x= = +

    (ii)

    1

    10

    sin d x x

    Let u= sin1x, dv= 1

    2

    d 1,

    d 1

    uv x

    x x= =

    1 111 1

    200 0sin ( ) d sin d

    1

    xx x x x x

    x

    =

    11 2

    0

    sin 1x x x = +

  • 8/10/2019 Unit 2 Module Tests Answers

    5/28

    Page 5of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    1sin (1) 1

    12

    =

    =

    (b) 20

    cos dnnI t t t

    =

    Letd

    , cosd

    n vu t tt

    = =

    1d , sind

    nu n t v t t

    = =

    /2/21

    0 0sin sin d n nnI t t n t t t

    = /2

    1

    0sin d

    2

    nn

    nI n t t t

    = [1]

    12

    0sin dnt t t

    Let u= tn1,d

    d

    v

    t= sin t

    d

    d

    u

    t

    2( 1) , cosnn t v t = =

    / 21 1 22 2

    00 0sin d cos ( 1) cos d n n nt t t t t n t t t

    = +

    1/2

    20

    cos ( 1) , since cos d 2 2

    n

    nn nn I I t t t

    = + =

    /2 22

    0cos dnnI t t t

    =

    /21

    20

    sin d ( 1)n nt t t n I

    =

    Substituting into [1]:

    2( 1)2

    n

    n nI n n I

    =

    When n= 4,4

    4 24(3)2

    I I

    =

    4

    21216

    I=

    When n= 2,2

    2 02(1)2

    I I

    =

    2

    024

    I

    =

    [ ]/2

    /200 0

    0cos d sin sin sin 0 1

    2I t t t t

    = = = =

    2

    2 24

    I

    =

  • 8/10/2019 Unit 2 Module Tests Answers

    6/28

    Page 6of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    4 2 42

    4 12 2 3 2416 4 16

    I

    = = +

    (c)

    x 0 1 2e

    -2x 1 e-2= 0.135335 e-4= 0.018316Using the trapezium rule:

    22

    0

    1d (1)[(1 0.018316) 2(0.135335)]

    2

    xe x

    + + = 0.644 (3 dp)For the exact value:

    222 2

    0 0

    1d

    2x xe x e

    =

    41 1 0.4912 2

    e= + = (3 dp)

    3 (a) (i) x= 4 + 2 cos

    d2sind

    x =

    y= 2 cos 2

    d4sin2

    d

    y

    =

    d d d

    d d d

    y y x

    x=

    4 sin 2 8 sin cos4 cos

    2 sin 2 sin

    = = =

    (ii) Whend

    , 4 2 cos , 2 cos , 4 cos2 2 d 2

    yx y

    x

    = = + = = ,

    d4, 2, 0

    d

    yx y

    x= = =

    Equation of the tangenty+ 2 = 0 (x4)y= 2

    (b) y2+ sin (xy) = 2.Differentiate wrtx:

    d d2 cos( ) 0

    d d

    y yy xy y x

    x x

    + + =

    When , 12

    x y

    = =

    d d2 cos 1 0

    2 d 2 2 d

    y y

    x x

    + + =

  • 8/10/2019 Unit 2 Module Tests Answers

    7/28

    Page 7of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    d0

    d

    y

    x =

    d0

    d

    y

    x=

    (c) (i) 2 3 2z i =

    (2 3 ) 2z i + =

    The locus is a circle centre (2, 3) radius 2

    (ii) arg ( 2 3 )4

    z i

    =

    arg ( (2 3 ))4

    z i

    + =

    The locus is a half-line starting at (2, 3) excluding (2, 3) making an angle of4

    radians

    with the positive real axis.

    Point of intersection is a+ bi2 2a= +

    3 2b= +

    Point of intersection is (2 2) (3 2)i + + +

    Module 1 Test 2

    1 (a) (i) 3 2tan (3 ) 4 cosy x x= +

    2 2d 3 tan (3 )[3sec (3 )] 8 cos ( sin )d

    yx x x x

    x= +

    2 29 tan (3 ) sec (3 ) 8 sin cosx x x x=

  • 8/10/2019 Unit 2 Module Tests Answers

    8/28

    Page 8of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    (ii)21

    ln2

    xy

    x

    +=

    +

    21 1

    ln2 2

    x

    x

    +

    = +

    21 1ln(1 ) ln(2 )2 2

    y x x= + +

    2

    d 1

    d 2( 2)1

    y x

    x xx=

    ++

    (iii)1

    2 2 2sin( 4) [sin( 4)]y x x= + = +

    12 22

    d 1[sin( 4)] [2 cos( 4)]

    d 2

    yx x x

    x

    = + +

    2

    2

    cos( 4)

    sin( 4)

    x x

    x

    +=+

    (b) 1sin (2 )y x=

    2 1/ 2

    2

    d 1[1 (2 ) ]

    d 1 (2 )

    yx

    x x

    = =

    2 1/ 2[1 (4 4 )]x x = + 2 1/2( 4x 3)x = +

    22 3/2

    2

    d 1( 2 4) ( 4x 3)

    2d

    yx x

    x

    = + +

    2 3/ 2

    2

    ( 4x 3)

    x

    x

    =

    +

    (c) (i)2

    2 2

    3 4

    1( 1)( 1) 1

    x x Ax B C

    xx x x

    + + + +

    ++ + +

    2 23 4 ( ) ( 1) ( 1)x x Ax B x C x + + + + + +

    Whenx= 1, 6 = 2CC= 3Whenx= 0, 4 =B+ CB= 1Equating coefficients ofx2: 3 =A+ CA= 0

    2

    2 2

    3 4 1 3

    1( 1) ( 1) 1

    x x

    xx x x

    + +

    + ++ + +

    (ii)21

    20

    3 4d

    ( 1) ( 1)

    x xx

    x x

    + +

    + + 1

    20

    1 3d

    11x

    xx= +

    ++ 11

    0tan ( ) 3 ln 1x x = + +

    = tan 11+ 3 ln 2

    3 ln 2

    4

    = +

  • 8/10/2019 Unit 2 Module Tests Answers

    9/28

    Page 9of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    2 (a)1

    3

    0dn xnI x e x= 3d,

    d

    n xvu x e

    x

    = =

    1 3d 1,d 3

    n xu nx v ex

    = =

    1 13 1 3

    00

    1 1d

    3 3

    n x n xnI x e n x e x

    = 1 1

    3 3 1 31 1

    0 0

    1 1, since d d

    3 3

    n x n xn n n nI e n I I x e x I x e x

    = = =

    14 3

    40

    dxI x e x= 3

    4 3

    1 4

    3 3I e I=

    33 2

    1

    3I e I=

    32 1

    1 2

    3 3I e I=

    31 0

    1 1

    3 3I e I=

    Since1

    3

    0dn xnI x e x=

    110 3 3 3

    00 0

    1 1 1d 3 3 3

    x x

    I x e x e e

    = = =

    3 31

    1 1 1 1

    3 3 3 3I e e

    =

    32 1

    9 9e= +

    3 32

    1 2 2 1

    3 3 9 9I e e

    = +

    35 2

    27 27e=

    3 33 1 5 2

    3 27 27I e e =

    34 2

    27 27e= +

    3 34

    1 4 4 2

    3 3 27 27I e e

    = +

    3 327 16 8

    81 81 81e e=

    311 8

    81 81e=

    (b) 2ln(2 1), 1x t y t= + =

  • 8/10/2019 Unit 2 Module Tests Answers

    10/28

    Page 10of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    d 2 d, 2

    d 2 1 d

    x yt

    t t t= =

    +

    d d d

    d d d

    y y x

    x t t

    =

    2(2 1)

    2

    2 1

    tt t

    t

    = = +

    +

    When t= 1,x= ln 3,y= 0

    d(1) (2 1) 3

    d

    y

    x= + =

    Gradient of the normal1

    3=

    Equation of the normal:

    1

    0 ( ln 3)3y x = 1 1

    ln 33 3

    y x= +

    (c) 2 22 3 .xy x y x+ =

    2 2d d4 4 3d d

    y yx y x y xy

    x x+ + + =

    Whenx= 1,y= 1,d d

    1 4 4 3d d

    y y

    x x + + + =

    d5 2

    d

    y

    x=

    d 2

    d 5

    y

    x=

    Equation of the tangent at (1, 1) is 2

    5

    21 ( 1)

    5y x =

    5 5 2 2y x = +

    5 2 7y x+ =

    3 (a) 3

    1ln d

    e

    x x x 3dln ,

    d

    vu x x

    x= =

    4d 1 1,d 4

    uv x

    x x= =

    3 4 3

    1 11

    1 1ln d ln d

    4 4

    ee e

    x x x x x x x

    =

    4 4

    1

    1 1ln

    4 16

    e

    x x x

    =

    4 41 1 1ln4 16 16

    e e e

    =

  • 8/10/2019 Unit 2 Module Tests Answers

    11/28

    Page 11of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    43 1

    16 16e= +

    (b) cos 4+ isin 4= (cos + isin )44 4 3 4 2 2

    1 2cos4 sin 4 cos cos ( sin ) cos ( sin )i C i C i + = + +

    4 3 43 cos ( sin ) ( sin )C i i+ +

    4 2 2 4 3 3(cos 6 cos sin sin ) (4 cos sin 4 cos sini ) = + +

    Equating real and imaginary parts4 2 2 4cos 4 cos 6 cos sin sin = +

    3 3sin 4 4 cos sin 4 cos sin = 3 3

    4 2 2 4

    sin 4 4cos sin 4 cos sinNow tan4

    cos4 cos 6 cos sin sin

    = =

    +

    Dividing top and bottom by cos4 3 3

    44

    4 2 2 4

    4 4 4

    4cos sin 4 cos sincoscostan 4 .

    cos 6 cos sin sin

    cos cos cos

    =

    +

    3

    2 4

    4 tan 4 tan

    1 6 tan tan

    =

    +

    Let 4 2tan 6 1 0x x x= + = 4 2tan 6 tan 1 0 + =

    3 5 7tan 4 , 4 , , ,

    2 2 2 2

    =

    3 5 7, , ,

    8 8 8 8

    =

    tan , 1, 3, 5, 78

    nx n

    = =

    (c) (i) 2 3 4v i= + 2( ) 3 4x iy i+ = +

    2 2 (2 ) 3 4x y i xy i + = +

    Equating real and imaginary parts:2 2 3x y = [1]

    2 4xy= [2]

    From [2]2

    yx

    =

    22 2 3x

    x

    =

    4 23 4 0x x = 2 2( 4) ( 1) 0x x + =

    2 4 2x x= = sincex

    Whenx= 2,

    2

    12y= =

  • 8/10/2019 Unit 2 Module Tests Answers

    12/28

    Page 12of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    When2

    2, 12

    x y= = =

    2v i = + , 2 i

    (ii)2

    (4 3 ) 1 5 0z i z i + + + = 24 3 (4 3 ) 4(1 5 )

    2

    i i iz

    + + +=

    2(4 3 ) 16 24 9 4 20

    2

    i i i i+ + + =

    (4 3 ) 3 4

    2

    i i +=

    Since v = 3 4 2 , 2i i i+ = +

    4 3 2 6 43 2

    2 2

    i i iz i

    + + + += = = +

    or4 3 2 2 2

    12 2

    i i iz i

    + += = = +

    Module 2 Test 1

    1 (a) 8 8 8 21 2(1 ) 1 ( ) ( )by C by C by+ = + + + 2 21 8 28by b y= + + + 8 2(1 ) (1 ) (1 ) (1 8 28 ...)ay by ay by by+ + = + + + +

    2 2 21 8 28 8by b y ay aby= + + + + + 2 21 ( 8 ) (28 8 ) ...y a b y b ab= + + + + +

    Now coefficient ofy= 0 and coefficient ofy2= 368 0 8a b a b + = =

    228 8 36b ab+ = 228 8( 8 ) 36b b b + =

    2 228 64 36b b = 236 36b =

    b2= 1

    b= 1Since bis positive, b= 1a= 8.Hence a= 8, b = 1

    (b) 1 11

    2 , 2,2

    n nu u n u n+ = + + =

    (i) 2 11 1 1

    2 2 2 42 2 2

    u u= + + = + + =

    3 21 1 1

    2(2) 4 4 92 2 2

    u u= + + = + + =

    4 3

    1 1 1

    2(3) 9 6 152 2 2u u= + + = + + =

  • 8/10/2019 Unit 2 Module Tests Answers

    13/28

    Page 13of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    First four terms are1 1

    2, 4 , 9,152 2

    (ii) RTP:22 3

    2

    nn n

    u +

    =

    Proof:

    When n= 1, 12 1 3 4

    22 2

    u +

    = = =

    Since u1is given as 2, when n= 122 3

    2n

    n nu

    +=

    Assume true for n= k, i.e.22 3

    2k

    k ku

    +=

    RTP true for n= k+ 1,

    i.e.

    2

    1

    2( 1) ( 1) 3

    2kk k

    u ++ + +

    =

    Proof:

    Since 11

    22

    n nu u n+ = + +

    11

    22

    k ku u k+ = + +

    Substituting22 3

    gives2

    kk k

    u +

    =

    2

    12 3 1

    22 2

    kk k

    u k+ +

    = + +

    22 3 4 1

    2

    k k k + + +=

    22 3 4

    2

    k k +=

    22( 1) ( 1) 3

    2

    k k+ + +=

    Hence by PMI22 3

    2n

    n nu

    +=

    (c) Letf(x) = ln(1 + sinx)

    cos( ) 1 sin

    xf x x= +

    2

    (1 sin ) ( sin ) cos (cos )( )

    (1 sin )

    x x x xf x

    x

    + =

    +

    2 2

    2

    sin (sin cos )

    (1 sin )

    x x x

    x

    +=

    +

    2

    sin 1 1

    1 sin(1 sin )

    x

    xx

    = =

    ++

    2

    cos( )

    (1 sin )

    xf x

    x =

    +

    Whenx= 0,f(0) = ln1 = 0

  • 8/10/2019 Unit 2 Module Tests Answers

    14/28

    Page 14of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    cos0(0) 1

    1 sin0f = =

    +

    (0) 1f =

    2cos0(0) 1(1 sin 0)f = =+

    2 3

    ( ) (0) (0) (0) (0)2! 3!

    x xf x f xf f f= + + + +

    2 3

    ln(1 sin ) 0 (1) ( 1) (1)2! 3!

    x xx x+ = + + + +

    2 31 1ln(1 sin ) ...2 6

    x x x x + = + +

    2 (a) (i)1 12 2

    1(1 ) (1 )

    1

    xx x

    x

    += +

    2 2

    1 1 1 3

    1 12 2 2 21 1 ( ) ( )

    2 2! 2 2!x x x x

    = + + + + + +

    2 21 1 1 31 12 8 2 8

    x x x x

    = + + + + +

    2 2 21 3 1 1 112 8 2 4 8

    x x x x x + + + +

    211

    2

    x x= + +

    The expansion is valid for 1

  • 8/10/2019 Unit 2 Module Tests Answers

    15/28

    Page 15of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    (2)f= (1)f

    (3)f+ (2)f

    (4)f+ (3)f

    +

    ( )f n+ ( 1)f n

    ( 1) ( )f n f n+ +

    ( 1) (1)f n f= +

    Since ( 1) ( 1) ( 2) ( 1) ( 1) ( 2)f r r r f n n n+ = + + + = + +

    ( ) ( 1) (1) (1)(1 1) 2f r r r f= + = + =

    1

    2( 1) ( 2) ( 1) 2

    n

    r

    r n n

    =

    + = + +

    2 3 2 2n n= + + 2 3n n= +

    (c) RTP2

    1

    1

    2 14 1

    n

    r

    n

    nr=

    = +

    Proof:

    When n= 1, LHS2

    1 1

    34(1) 1= =

    RHS 1 12(1) 1 3= =+

    LHS = RHS when n= 1

    2

    1

    1

    2 14 1

    n

    r

    n

    nr=

    = +

    Assume true for n= k, i.e2

    1

    1

    2 14 1

    k

    r

    k

    kr=

    = +

    RTP true for n= k+ 1, i.e.

    1

    21

    1 1

    2( 1) 14 1

    k

    r

    k

    kr

    +

    =

    +=

    + +

    1

    2 2 2

    1 1

    1 1 1

    (4 1) (4 1) 4( 1) 1

    k k

    r rr r k

    +

    = =

    = + +

    2

    1

    2 1 4 8 3

    k

    k k k= +

    + + +

    1

    2 1 (2 1) (2 3)

    k

    k k k= +

    + + +

    1 1

    2 1 2 3k

    k k

    = + + +

  • 8/10/2019 Unit 2 Module Tests Answers

    16/28

    Page 16of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    21 2 3 1

    2 1 2 3

    k k

    k k

    + +=

    + +

    1

    2 1k= +

    (2 1)k+ ( 1)

    2 3

    k

    k

    +

    +

    1 1

    2 3 2( 1) 1

    k k

    k k

    + += =

    + + +

    Hence by PMI

    2

    1

    1

    2 14 1

    n

    r

    n

    nr=

    = +

    3 4( ) 4 16 1f x x x= +

    (a) 3( ) 16 16f x x =

    3( ) 0 16 16 0f x x> > 3 1x >

    1x>

    Since ( ) 0 when 1f x x> >

    f(x) is strictly increasing forx> 1

    (b) 2( ) 4 16 1f x x x= +

    f(0) = 1(1) 4 16 1 11f = + =

    (2) 64 32 1 33f = + =

    Sincef(0)f1< 0, by the IMVT

    There existsx= such thatf() = 0 there is a root in the interval [0, 1]Sincef1f2< 0, by the IMVTThere existsx= such thatf() = 0 there is a root in the interval [1, 2]

    (c) Since the function is strictly increasing forx> 1 and there is a root in the interval [1, 2]there is exactly one root in that intervalHence there is no other root in the interval [1, 2]

    (d) 4( ) 4 16 1f x x x= + 3( ) 16 16f x x =

    1( )

    ( )

    nn n

    n

    f xx x

    f x+ =

    41 3

    4 16 116 16

    n nn n

    n

    x xx xx

    + +=

    4 4 4 4

    13 3 3

    16 16 4 16 1 12 1 12 1,

    16 16 16 16 16 16

    nn n n n n

    n

    n n n

    x x x x x xx

    x x x+

    + = = =

    (e) Usingx1= 1.54

    2 3

    12(1.5) 11.572368

    16(1.5) 16x

    = =

    x3= 1.56605.Root is 1.57 to 2 dp

    Module 2 Test 2

  • 8/10/2019 Unit 2 Module Tests Answers

    17/28

    Page 17of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    1 (a) (i)2

    2 2

    ( 1) ( 1)1 r rr

    +

    2( 1) ( 1) 1 1

    A Br r r r + + +

    2 ( 1) ( 1)A r B r + +

    When 1, 2 2 1r A A= = =

    When 1, 2 2 1r B B= = =

    2

    2 1 1

    1 11 r rr =

    +

    (ii)2

    2 2

    2 1 1

    1 11

    n n

    r r

    r rr= =

    = +

    11

    3=

    1 1

    2 4

    +

    1

    3

    +

    1

    5

    1

    4

    +

    1

    6 ...

    +

    1

    3n+

    1

    1n

    1

    2n

    +

    1 1

    1n n

    +

    1

    1n

    +

    1 1 11

    2 1n n= +

    +

    3 1 1

    2 1n n=

    +

    (iii) As 3, sum2

    n

    (b) 1 17, 3n na a a= + =

    2 1 7 3 7 10a a= + = + =

    3 2 7 10 7 17a a= + = + =

    4 3 7 17 7 24a a= + = + =

    Terms are 3, 10, 17, 24an= 7n4RTP 7 4 1na n n=

    Proof:

    When n= 1, a1= 714 = 3true when n= 1, since a1is given as 3Assume true for n= k, i.e. ak= 7k4RTP true for n= k+ 1, i.e. ak+ 1= 7(k+ 1) 4Proof:Since 1 7n na a = +

    1 7k ka a+ = +

    7 4 7 (since 7 4)kk a k= + =

    7 7 4k= +

    7( 1) 4k= +

    Hence by PMI7 4na n=

  • 8/10/2019 Unit 2 Module Tests Answers

    18/28

    Page 18of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    (c) RTP 2 1 2 , 3nn n+ <

    Proof:Since 7 < 8 23+ 1 < 23When n= 3, 2n+ 1 < 2n

    Assume true for , i.e. 2 1 2kn k k= + <

    RTP true for 11, i.e.2( 1) 1 2kn k k += + + + <

    Proof:

    2 1 2kk+ <

    (2 1) 2 2 2kk+ <

    Now 4 2 2 2k k k k + = + + +

    2 3k + 2( 1) 1k + +

    12( 1) 1 2kk + + + <

    Hence by PMI 2 1 2 , 3nn n+ <

    2 (a)133 1 3 (1 3 )x x =

    2 3

    1 2 1 2 5

    1 3 3 3 3 31 ( 3 ) ( 3 ) ( 3 )

    3 2! 3!x x x

    = + + + +

    2 3513

    x x x=

    The expansion is valid for1 1

    3 3x < <

    (b) 3 22 2x x+ = 3 22 2 0x x+ =

    Let 3 2( ) 2 2f x x x= +

    3 2 3(0.5) 2(0.5) (0.5) 22

    f = + =

    3 2(1) 2(1) (1) 2 1f = + =

    Sincef(0)f1< 0, by IMVT there existsx= in the interval [0.5, 1] such thatf() = 0Hence there is a root in the interval [0.5, 1]Linear interpolation:

    1

    ( ) ( )

    ( ) ( )

    a f b b f a

    x f b f a

    +

    = +

    1

    3(0.5) (1) (1)

    2 420.8

    3 5 51

    2 2

    x

    +

    = = = =+

    3 2(0.8) 2(0.8) (0.8) 2 0.336f = + =

    Root is between 0.8 and 1

    2(0.8) (1) (1) (0.336)

    0.850301 0.336

    x +

    = =+

    3 2

    (0.85030) 2(0.85030) (0.85030) 2 0.04739f = + = Root lies between 0.85030 and 1

  • 8/10/2019 Unit 2 Module Tests Answers

    19/28

    Page 19of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    3(0.85030) (1) (1) (0.04739)

    0.857081 0.04739

    x +

    = =+

    (0.85708) 0.006216f =

    4 (0.85708) (1) (1) (0.006216) 0.857961 0.006216

    x += =+

    Root is 0.86 (2 dp)

    (c) 2d

    4 7d

    yy

    x= +

    2

    2

    d d8

    dd

    y yy

    xx=

    3 2

    3 2

    d d d d 8 8

    d dd d

    y y y yy

    x xx x

    = +

    Whenx= 0,y= 2, 2d

    4(2) 7 23

    d

    y

    x

    = + =

    2

    2

    d(8) (2) (23) 368

    d

    y

    x= =

    3

    3

    d8(2) (368) 8 (23) (23) 10 120

    d

    y

    x= + =

    Maclaurins expansion:2 3

    ( ) (0) (0) (0) (0)2! 3!

    x xf x f x f f f= + + +

    2 3

    2 ( ) (23) (368) (10 120)2! 3!

    x xy x = + + + +

    2 350602 23 1843

    x x x= + + + +

    3 (a) (i)3 5

    sin6 120

    x xx x= + +

    2 4

    cos 12 24

    x xx= + +

    (ii)1

    2 41

    4(cos ) 1

    2 2

    x xx

    = +

    22 4 2 4

    4

    ( 1) ( 2)1 ( 1)

    2 24 2! 2 2

    x x x x = + + + + +

    2 4 41 1 112 24 4

    x x x= + + +

    2 41 512 24

    x x= + + +

    (iii) 1sin

    tan (sin ) (cos )cos

    xx x x

    x

    = =

    3 5 2 41 1 1 5... 1 ...6 120 2 24

    x x x x x

    = + + + + +

  • 8/10/2019 Unit 2 Module Tests Answers

    20/28

    Page 20of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    3 5 3 5 51 5 1 1 1

    2 24 6 12 120x x x x x x= + + + +

    3 51 2

    3 15x x x= + + +

    (iv) 3 51 2

    tan(0.001) 0.001 (0.001) (0.001)3 15

    + +

    = 0.00100 (5 dp)(b) ( ) cosf x x=

    ( ) sinf x x=

    ( ) cosf x x=

    ( ) sinf x x =

    When1

    , cos3 3 3 2

    x f

    = = =

    3sin3 3 2

    f = =

    1cos

    3 3 2f

    = =

    3sin

    3 3 2f

    = =

    Taylors expansion:2 3( ) ( )

    ( ) ( ) ( ) ( ) ( ) ( )2! 3!

    x a x af x f a x a f a f a f a

    = + + + + +

    ( ) cos ,3

    f x x a

    = =

    2 3

    1 3 1 33 3cos

    2 2 3 2! 2 3! 2

    x x

    x x

    = + + +

    2 31 3 1 3

    cos2 2 3 4 4 12 3

    x x x x

    = + +

    The Taylors expansion about3

    x

    = is:

    2 31 3 1 3

    cos2 2 3 4 3 12 3

    x x x x

    = + +

    Now 61= 60+ 13 180

    = +

    cos61 cos3 180

    = +

    2 31 3 1 3

    2 2 3 180 3 4 3 180 3 12 3 180 3

    = + + + +

    +

    2 31 3 1 3

    2 2 180 4 180 12 180

    = +

    +

    0.4848096= 0.48481 (5 dp)

  • 8/10/2019 Unit 2 Module Tests Answers

    21/28

    Page 21of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    Module 3 Test 1

    1 (a) NUMBERS has 7 different lettersNo. of 3-letter words = 7P3= 210(i) Since we need the S, we choose 2 others from the remaining 6 and then order all three

    letters in 3! waysNo. of 3-letter words containing the S = 6C23! = 90

    (ii) No. of 3 letter words without the vowels = 5C33! = 60

    (b)2

    2

    d d3 4 50 sin 2

    dd

    x xx t

    tt =

    y= CF + PI2

    2

    ddCF: 3 4 0

    dd

    x xx

    tt =

    AQE: m23m4 = 0(m4) (m+ 1) = 0m= 4 or m = 1

    4t tx Ae Be = +

    PI: Let x= asin 2t+ bcos 2td

    2 cos 2 2 sin 2d

    xa t b t

    t=

    2

    2

    d4 sin 2 4 cos 2

    d

    xa t b t

    t=

    Substituting into the differential equation:

    4 sin 2 4 cos 2 3(2 cos 2 2 sin 2 ) 4( sin 2 cos 2 ) 50 sin 2a t b t a t b t a t b t t + = Equating coefficients of sin 2t4a+ 6b4a= 508a+ 6b= 50 [1]Equating coefficients of cos 2t: 4b6a4b= 0 6 8a b=

    4

    3a b

    =

    Substituting in [1]

    48 6 50

    3b b

    + =

    50 503

    b=

    3, 4b a= =

    General solution is4 4 sin 2 3 cos2t tx Ae Be t t= + +

    When 0, 0x t= =

    0 3, 3A B A B = + + =

    Sincexremains finite as t, A= 0B= 3Required solution isx= 3et4 sin 2t+ 3 cos 2t

    (c) (ii) P(two red)5 4 5

    8 7 14= =

  • 8/10/2019 Unit 2 Module Tests Answers

    22/28

    Page 22of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    (ii) P(blue and red) = P(BR) + P(RB)3 5 5 3

    8 7 8 7= +

    30

    56=

    15

    28=

    2 (a) We separate the two Es and the other letters:EE SLCT ION(i)

    75

    74

    73

    Number of selections with zero Es C 21

    Number of selections with one E C 35

    Number of selections with two Es C = 35

    = =

    = =

    =

    Total number of selections = 21 + 35 + 35 = 91(ii) We need the number of arrangements of the five letters:Number of arrangements with zero Es 21 5! 2520

    Number of arrangements with one E 35 5! 4200

    5!Number of arrangements with two Es 35 2100

    2!

    Total number of arrangements 8820

    = =

    = =

    = =

    =

    (b) (i) Biased: P(H)1

    ,3

    = P(T)2

    3=

    Unbiased P(H)1

    ,2

    = P(T)1

    2=

    P(X) = P(TTT) + P(HHH)2 2 1 1 1 1

    3 3 2 3 3 2= +

    2 1 5

    9 18 18= + =

    (ii) P(X Y) = P(X) + P(Y) P(X Y)5 1 4 10 5

    18 2 18 18 9= + = =

    (iii) P(X Y) = P(X) P(X Y)5 4 1

    18 18 18= =

    (c)

    2d

    cos sin cosd

    xy

    x y x e xx+ =

    Dividing by cosx gives:

    dtan cos

    d

    xy y x e xx

    + =

    IFtan d ln sec sec

    x x xe e x= = =

    General solution is

    (sec ) cos (sec )d xy x e x x x= sec d xy x e x= (sec ) xy x e c= +

    Whenx= 0,y= 2

  • 8/10/2019 Unit 2 Module Tests Answers

    23/28

    Page 23of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    02

    cos0e c= +

    2 = 1 + cc= 1

    ysecx= ex+ 1y= (ex+ 1) cosx

    3 (a) (i) 10 100 50 85000 10 5 8500x y z x y z+ + = + + =

    15 120 70 119000 3 24 14 23800x y z x y z+ + = + + =

    18 105 100 136250 18 105 100 136250x y z x y z+ + = + + =

    (ii)

    1 10 5 8500

    3 24 14 23800

    18 105 100 136250

    x

    y

    z

    =

    (iii)

    1 10 524 14 3 14 3 24

    3 24 14 10 5105 100 18 100 18 10518 105 100

    = +

    = 930 480 585= 135

    1 10 5

    3 24 14

    18 105 100

    Matrix of cofactors

    930 48 117

    475 10 75

    20 1 6

    =

    1

    930 475 201

    48 10 1135

    117 75 6

    A

    =

    (iv)

    930 475 20 85001

    48 10 1 23800135

    117 75 6 136250

    x

    y

    z

    =

    675000 50001

    33750 250135

    27000 200

    = =

    TT$ 5000

    TT$ 250

    TT$ 200

    x

    y

    z

    =

    =

    =

    (b)

    2 4 2

    1 3 2 0

    1 4 1

    x

    x

    x

    +

    =

    3 2 1 2 1 3( 2) ( 4) (2) 0

    4 1 1 1 1 4

    x xx

    x x

    + + =

    ( 2)[( 3) ( 1) 8] 4[( 1) 2] 2[4 3] 0x x x x x + + + + + = 2( 2) ( 4 5) 4( 1) 2( 1) 0x x x x x + + + + + =

  • 8/10/2019 Unit 2 Module Tests Answers

    24/28

    Page 24of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    2( 2)( 4 5) 6( 1) 0x x x x + + + =

    ( 2)( 1)(x 5) 6( 1) 0x x x+ + + + = 2( 1) ( 3 10 6) 0x x x+ + =

    ( 1) ( 1) ( 4) 0x x x+ + = 1 or 4x x= =

    Module 3 Test 2

    1 (a) 11 33 2 4 8Treating all the digits as if they are different:For the number to be odd it must end with a 1 or 3.

    Number of odd numbers assuming the digits were different = 6543214

    Since we have two 1s and two 2s, the number of odd arrangements

    6 5 4 3 2 1 4720

    2! 2! = =

    (b) (i) No. of letters to be chosen = 4EEE SLCTD

    54

    53

    52

    51

    No. of choices with no Es C 5

    No. of choices with one E C 10

    No. of choices with two Es C 10

    No. of choices with three Es C = 5

    Total no.of choices 30

    = =

    = =

    = =

    =

    =

    (ii) No. of arrangements4! 4!

    5 4! 10 4! 10 52! 3!

    = + + +

    120 240 120 20= + + +

    = 500(c)

    No. drawn = 3

    (i) P(all red )4

    3

    103

    C 4 1

    120 30C= = =

    (ii) P(at least one of each colour) = P(1R 2G) + P(2R 1G)4 6 4 6

    1 2 2 110

    3

    C C C C 60 36 96 4

    120 120 5C

    + += = = =

    (iii) P(2 R | at least one of each colour)4 6

    2 1

    103

    C C 36P(2 red at least one of each colour) 36 3C 120

    96 96P(at least one of each colour) 96 8

    120 120

    = = = = =

    2 (a)2 2 2 2 2 2

    2 2 2

    1 1 1b c a c a b

    a b cb c a c a b

    a b c

    = +

  • 8/10/2019 Unit 2 Module Tests Answers

    25/28

    Page 25of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    = bc2 b2c ac2+ a2c+ ab2 a2b= abc+ bc2 b2c ac2+ a2c+ ab2 a2b abc= (a b) (c a) (b c)

    (b) 2x+yz= 1

    3x+ 4y+ 2z= 79x+ 7yz= 10

    (i)

    12 1 1

    3 4 2 7

    9 7 1 10

    x

    y

    z

    =

    (ii)

    12 1 1

    3 4 2 7

    9 7 110

    R22R2 3R1R

    32R

    3 9R

    1

    12 1 1

    0 5 7 11

    0 5 7 11

    3 3 2R R R

    12 1 1

    0 5 7 11

    0 0 0 0

    Since the three equations reduce to:

    2x+yz= 15y+ 7z= 11We have an infinite set of solutions

    (iii) 2x+yz= 15y+ 7z= 11Letz= , 5y+ 7= 11

    11 7

    5y

    =

    11 7

    5 5y=

    11 72 1

    5 5

    x + =

    6 122

    5 5x

    = +

    3 6

    5 5x

    = +

    The solution set is:3 6

    5 5

    11 7

    5 5

    x

    y

    z

    = +

    =

    =

  • 8/10/2019 Unit 2 Module Tests Answers

    26/28

    Page 26of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    (c) (i)

    1 1 0 3 2 1 6 0 0

    0 1 1 3 2 1 0 6 0

    3 1 2 3 4 1 0 0 6

    AB

    = =

    (ii)1 0 0

    6 0 1 0

    0 0 1

    AB =

    = 6I1AA I =

    16B A= 3 2 1

    13 2 1

    63 4 1

    AB

    =

    3 (a) 3d 2d

    xy y ex

    =

    32, xP Q e= =

    IF =2 d 2x xe e

    =

    General solution is2 3 2( ) dx x xy e e e x = 2( ) dx xy e e x =

    y(e-2x) = ex+ cWhenx= 0,y= 1

    1 = 1 + cc= 0y(e2x) = exy= e3x

    (b) x= eud d d

    d d d

    y y u

    x u x=

    Sincex= eu,d

    d

    ux eu

    =

    d 1 1

    d uu

    x e x = =

    d 1 dd dy yx x u

    =

    d d

    d d

    y yx

    x u=

    Differentiating again wrtx:2 2

    2 2

    d d d d

    d dd d

    y y y ux

    x xx u+ =

    2 2

    2 2

    d d 1 d

    dd d

    y y yx

    x xx u+ =

    2 22

    2 2

    d d d

    dd d

    y y y

    x x xu x = +

  • 8/10/2019 Unit 2 Module Tests Answers

    27/28

    Page 27of 28

    Unit 2 Answers: Module Tests Macmillan Publishers Limited 2013

    Now2

    22

    d d15 0

    dd

    y yx x y

    xx =

    22

    2

    d d d2 15 0

    d dd

    y y yx x x y

    x xx

    + =

    Substituting2 2

    22 2

    d d d

    dd d

    y y yx x

    xx u+ = and

    d d

    d d

    y yx

    x u= gives:

    2

    2

    d d2 15 0

    dd

    y yy

    uu =

    AQE: 2 2 15 0m m =

    ( 5) ( 3) 0m m + =

    5 or 3m m= = 5 3u uy Ae Be = +

    Since eu=x5 3( ) ( )u uy A e B e = +

    5 3y Ax Bx = +

    (c)2

    22

    d d6 6 8 11

    dd

    y yy x x

    xx = + +

    y= CF + PI2

    2

    d dCF : 6 0

    dd

    y yy

    xx =

    AQE: 2 6 0m m =

    ( 3) ( 2) 0m m + =

    2 or 3m m= = 2 3x xy Ae Be = +

    PI: Let 2y ax bx c= + +

    d2

    d

    yax b

    x= +

    2

    2

    d2

    d

    ya

    x=

    Substituting into the differential equation:2a (3ax+ b) 6 (ax2+ bx+ c) = 6x2+ 8x+ 11Equating coefficients ofx2: 6a= 6, a= 1

    Equating coefficients ofx: 2a 6b= 86

    16

    b = =

    Equating constants: 2a b 6c= 11 2 + 1 6c= 11 c= 2This gives y= x2x 2General solution isy=Ae2x+Be3xx2x 2Whenx= 0,y= 00 =A+B 2 A+B= 2 [1]

    2 3d 2 3 2 1d

    x xy Ae Be xx

    = +

    When d0, 1

    d

    yx

    x

    = =

    1 2 3 1A B = +

  • 8/10/2019 Unit 2 Module Tests Answers

    28/28

    Page 28of 28

    2A+ 3B= 2 [2][1] 2 gives:2A+ 2B= 4 [3]

    [2] + [3] gives 5B= 6,

    6

    5B= 6 4

    25 5

    A A+ = =

    Required solution is

    2 3 24 6 25 5

    x xy e e x x= +