13
1 Supplementary Information for Ultra-large scale syntheses of monodisperse nanocrystals via a simple and inexpensive route JONGNAM PARK 1 , KWANGJIN AN 1 , YOSUN HWANG 2 , JE-GEUN PARK 2 , HAN- JIN NOH 3 , JAE–YOUNG KIM 3 , JAE-HOON PARK 3 , NONG-MOON HWANG 4 , AND TAEGHWAN HYEON *1 Figure S1. FT-IR spectra of the iron-oleate complex. Red curve: the iron-oleate complex. Black curve: the complex after heating at 380 o C. 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) Transmittance (a.u.) C=C C=O -CH 2 -CH 3 C-O C-C Fe-O C=O -CH 3 4000 3500 3000 2500 2000 1500 1000 500 heat treatment precursor Wavenumber (cm -1 ) Transmittance (a.u.) C=C C=O -CH 2 -CH 3 C-O C-C Fe-O C=O -CH 3 ©2004 Nature Publishing Group

Ultra-large scale syntheses of monodisperse nanocrystals ... · 1 Supplementary Information for Ultra-large scale syntheses of monodisperse nanocrystals via a simple and inexpensive

  • Upload
    vankhue

  • View
    223

  • Download
    3

Embed Size (px)

Citation preview

1

Supplementary Information for

Ultra-large scale syntheses of monodisperse

nanocrystals via a simple and inexpensive route

JONGNAM PARK1, KWANGJIN AN1, YOSUN HWANG2, JE-GEUN PARK2, HAN-

JIN NOH3, JAE–YOUNG KIM3, JAE-HOON PARK3, NONG-MOON HWANG4,

AND TAEGHWAN HYEON*1

Figure S1. FT-IR spectra of the iron-oleate complex. Red curve: the iron-oleatecomplex. Black curve: the complex after heating at 380 oC.

4000 3500 3000 2500 2000 1500 1000 500

heat treatment precursor

Wavenumber (cm-1)

Tra

nsm

itta

nce

(a.

u.)

C=C

C=O-CH2

-CH3

C-OC-C

Fe-O

C=O

-CH3

4000 3500 3000 2500 2000 1500 1000 500

heat treatment precursor

Wavenumber (cm-1)

Tra

nsm

itta

nce

(a.

u.)

C=C

C=O-CH2

-CH3

C-OC-C

Fe-O

C=O

-CH3

© 2004 Nature Publishing Group

2

Figure S2 Thermogravimetric analysis (TGA) and differential scanning calorimetry(DSC) data of iron-oleate complex.

Figure S3 T E Mimages (upperimages: low

magnification, bottom images: higher magnification) of the iron oxide nanoparticles takenat various reaction time intervals.

320¡É (0 min.) 320¡É (10 min.) 320¡É (20 min.) 320¡É (30 min.)310¡É

12 nm12 nm12 nm8 ~ 11 nm

320¡É (0 min.) 320¡É (10 min.) 320¡É (20 min.) 320¡É (30 min.)310¡É

12 nm12 nm12 nm8 ~ 11 nm

50 100 150 200 250 300 350 400-4

-2

0

2

DSC TGA

Temperature ( 0C)

Hea

t fl

ow

(m

W)

0

20

40

60

80

100W

eigh

t loss (%

)

© 2004 Nature Publishing Group

3

Figure S4 Particle size distribution histograms of iron oxide nanocrystals. (a) 5 nm,(b) 9 nm, (c) 12 nm, (d) 16 nm and (e) 22 nm.

Average diameter = 5.09 nmSize variation = ± 0.21 nm (± 4.11%)

Average diameter = 9.01 nmSize variation = ±0.19 nm (± 2.10%)

5 nm

0

5

10

15

20

25

30

35

40

45

4.1 4.4 4.7 5.0 5.4 5.7 6.0 6.3

diameter (nm)

rela

tive

coun

t

(a) 5 nm

0

5

10

15

20

25

30

35

40

45

4.1 4.4 4.7 5.0 5.4 5.7 6.0 6.3

diameter (nm)

rela

tive

coun

t

(a)

9 nm

0

10

20

30

40

50

60

8 8.4 8.8 9.2 9.6 10 10.4

diameter (nm)

Rel

ativ

e co

unt

(b) 9 nm

0

10

20

30

40

50

60

8 8.4 8.8 9.2 9.6 10 10.4

diameter (nm)

Rel

ativ

e co

unt

(b)

© 2004 Nature Publishing Group

4

Average diameter = 11.72 nmSize variation = ±0.27 nm (± 2.30%)

Average diameter = 16.25 nmSize variation = ±0.44 nm (± 2.73%)

16 nm

0

5

10

15

20

25

30

35

40

45

13.2 14.0 14.8 15.6 16.4 17.2 18.0 18.8 ±âŸDiameter (nm)

Rel

ativ

e co

unt

(d) 16 nm

0

5

10

15

20

25

30

35

40

45

13.2 14.0 14.8 15.6 16.4 17.2 18.0 18.8 ±âŸDiameter (nm)

Rel

ativ

e co

unt

(d)

12 nm

0

5

10

15

20

25

30

35

40

10.4 10.8 11.2 11.6 12.0 12.4 12.8 13.2

Diameter (nm)

Rel

ativ

e co

unt

(c) 12 nm

0

5

10

15

20

25

30

35

40

10.4 10.8 11.2 11.6 12.0 12.4 12.8 13.2

Diameter (nm)

Rel

ativ

e co

unt

(c)

© 2004 Nature Publishing Group

5

Average diameter = 22.06 nmSize variation = ±0.79 nm (± 3.57%)

22 nm

0

5

10

15

20

25

30

35

40

17.8 19.2 20.6 22 23.4 24.8 26.2 27.6

Diameter (nm)

Rel

ativ

e co

unt

(e) 22 nm

0

5

10

15

20

25

30

35

40

17.8 19.2 20.6 22 23.4 24.8 26.2 27.6

Diameter (nm)

Rel

ativ

e co

unt

(e)

© 2004 Nature Publishing Group

6

Figure S5 The size control of monodisperse iron oxide nanocrystals by varying therelative concentration of oleic acid. (a) 9 nm (1.5 mmol); (b) 12 nm (3 mmol); (c) 14nm (4.5 mmol).

(a)

(b)

(c)

(a)(a)

(b)(b)

(c)(c)

© 2004 Nature Publishing Group

7

Figure S6 The power X-ray diffraction (XRD) patterns of (a) 12 nm sized Fe3O4

nanocrystals, (b) 12 nm sized MnO nanocrystals, (c) pencil-shaped CoO nanorods,and (d) 20 nm sized Fe nanocrystals.

30 40 50 60 700

200

400

600

800

1000

1200

Intensity

(220)

(311)

(400)

(422)

(511)

(440)

(a) (b)

30 40 50 60 70 800

100

200

300

400

500

600

700

Intensity

(111)

(200)

(220)

(311)(222)

(c)

30 40 50 60 70

200

400

600

800

1000

Intensity

(100)(002)

(101)

(102) (110) (103)(112)

30 40 50 60 70

0

100

200

300

400

500

600

700

800

FeO(220)Fe(200)

Fe(110)

FeO(200)

Intensity

FeO(111)

(d)30 40 50 60 70

0

200

400

600

800

1000

1200

Intensity

(220)

(311)

(400)

(422)

(511)

(440)

(a) (b)

30 40 50 60 70 800

100

200

300

400

500

600

700

Intensity

(111)

(200)

(220)

(311)(222)

(c)

30 40 50 60 70

200

400

600

800

1000

Intensity

(100)(002)

(101)

(102) (110) (103)(112)

30 40 50 60 70

0

100

200

300

400

500

600

700

800

FeO(220)Fe(200)

Fe(110)

FeO(200)

Intensity

FeO(111)

(d)

© 2004 Nature Publishing Group

8

Figure S7 (a) Field dependence of magnetization measured at 5 K after zero-fieldcooling from 380 K. The inset shows the full hysteresis curve of 16 nm samplemeasured at 5 K up to 5 Tesla. (b) Size dependence of coercive field, Hc,measured at 5 K after zero-field cooling from 380 K. (c) The normalized coercivefield (Hc/Hc0) as function of reduced temperature (T/TB) for 12 nm sample, whereHc is the coercive field measured at temperature T, Hc0 the estimated coercive fieldat T=0K, and TB the measured blocking temperature from M(T). The solid line isguide for eyes and the dashed line is for a theoretical curve for a single domain offine particles, (Hc/Hc0) = 1-(T/TB)1/2.

-10000 -5000 0 5000 10000-40

-20

0

20

40

-4 -2 0 2 4-20

-10

0

10

20

5 nm 9 nm 12 nm 16 nm 22 nm

M (

emu/

g)

H (Oe)

M (

emu/

g)

H (T)

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0HC

/HC0

T/TB

0 10 20 30 400

200

400

600

800

1000

Diameter (nm)

HC

(O

e)

(a) (b)

(c)

-10000 -5000 0 5000 10000-40

-20

0

20

40

-4 -2 0 2 4-20

-10

0

10

20

5 nm 9 nm 12 nm 16 nm 22 nm

M (

emu/

g)

H (Oe)

M (

emu/

g)

H (T)

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0HC

/HC0

T/TB

0 10 20 30 400

200

400

600

800

1000

Diameter (nm)

HC

(O

e)

(a)(b)

(c)

0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0HC

/HC0

T/TB

0 10 20 30 400

200

400

600

800

1000

Diameter (nm)

HC

(O

e)

(a)(b)

(c)

© 2004 Nature Publishing Group

9

Figure S8 TEM images of (a) 9 nm sized manganese ferrite and (b) 8 nm sizedcobalt ferrite nanocrystals.

(a)

(b)

© 2004 Nature Publishing Group

10

(c) Energy dispersive X-ray spectroscopic (EDX) results on the nanoparticles ofmanganese ferrite and cobalt ferrite.

We have conducted energy dispersive X-ray spectroscopic (EDX) studies on thenanoparticles of cobalt ferrite and manganese ferrite. The molar ratio of Co:Fe was 1:1.93,demonstrating that a stoichiometric cobalt ferrite nanoparticles were produced. The molarratio of Mn:Fe was 1:2.80, showing that iron-rich manganese ferrite was produced.

Element PeakArea

AreaSigma

kfactor

AbsCorrn.

Weight%

Weight% Atomic%

Mn K 101 32 1.120 1.000 25.96 6.46 26.28Fe K 285 33 1.133 1.000 74.04 6.46 73.72

Totals 100.00

Element PeakArea

AreaSigma

kfactor

AbsCorrn.

Weight%

Weight% Atomic%

Fe K 290 32 1.133 1.000 64.69 5.67 65.91Co K 150 33 1.197 1.000 35.31 5.67 34.09Totals 100.00

© 2004 Nature Publishing Group

11

Figure S9 TEM images and electron diffraction patterns of the products afterreacting iron-oleate complex in octadecene (a) at 260 oC for 1 day, (b) at 260 oC for3 days, (c) at 240 oC for 3 days, and (d) at 200 oC for 3 days.

a) b)

c) d)

a) b)

c) d)

© 2004 Nature Publishing Group

12

0 50 100 150 200 250 300 350 400 450

0

20

40

60

80

100

Rel

ativ

e In

tens

ity (

%)

Temperature (oC)

Figure S10. (a) In-situ FT-IR spectra of the iron-oleate complex at varioustemperatures. (b) Plot of the temperature dependence of the peak intensity of C-Hstretching mode (2930 cm-1) in the IR spectra. (c) In-situ FT-IR spectra of thesolution-phase reaction mixture at various temperatures (background spectra fromoctadecene solvent was subtracted).

(a)

(b)

(c)

4000 3000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

25 °C

75 °C

100 °C

150 °C

200 °C

225 °C

250 °C

4000 4003000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

250 °C

275 °C

300 °C

325 °C

350 °C

375 °C

400 °C

4004000 3000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

25 °C

75 °C

100 °C

150 °C

200 °C

225 °C

250 °C

4000 3000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

25 °C

75 °C

100 °C

150 °C

200 °C

225 °C

250 °C

4000 4003000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

250 °C

275 °C

300 °C

325 °C

350 °C

375 °C

400 °C

400 4000 4003000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

250 °C

275 °C

300 °C

325 °C

350 °C

375 °C

400 °C

400 4000 4003000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

4000 4003000 2000 1000

Wavenumber (cm-1)

Abs

orba

nce

250 °C

275 °C

300 °C

325 °C

350 °C

375 °C

400 °C

400

© 2004 Nature Publishing Group

13

250¡É

220¡É200¡É

250¡É240¡É

30¡É

100¡É

Aging

CO2 C=O

250¡É

220¡É200¡É

250¡É240¡É

30¡É

100¡É

Aging

250¡É

220¡É200¡É

250¡É240¡É

30¡É

100¡É

Aging

CO2 C=O

© 2004 Nature Publishing Group