27
Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh LEMCOTEC - Ultra-High Pressure-Ratio Aero-Engines - Improving the Core-Engine Thermal Efficiency by increasing the Overall Pressure Ratio -

Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

LEMCOTEC - Ultra-High Pressure-Ratio Aero-Engines- Improving the Core-Engine Thermal Efficiency by increasing the Overall Pressure Ratio -

Page 2: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Contributions to CO2 reduction

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 2 of 26

European Commission – FLIGHT PATH 2050 Environmental Goals

● CO2 - minus 75% per passenger kilometre (and carbon-neutral growth from 2020)

● NOx - minus 90%

● Noise - minus 65% perceived noise of flying aircraft

ACARE Vision for 2020 (Strategic Research Agenda)

● CO2 - minus 50% per passenger kilometre

engine contribution: 15 to 20% decrease

● NOx - minus 80% (minus 60% from the combustion system)

CO, UHC, SOx, smoke

● Noise - minus 10dB per operation (landing, take off)

(half perceived noise)

increase thermal (OPR/TET), propulsive (BPR/TET) and components efficiencies

reduce weight, cooling air requirement and leakages

Ultra-High Pressure-Ratio Aero-Engines

Global Reduction Targets @ TRL6

Page 3: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 3 of 26

Efficiency

• UH OPR + 40 to + 80 % rel. Y2000 datum

• Compression System + 2 % rel. Y2000 datum

• Materials + 50 K

• Compressor - 10 % weight

Engine Level Contributions

CO2, Fuel Burn, SOx - 20 to - 30 % rel. Y2000 datum

RTF / MOR / LTF - 20 % / - 30 % / - 24 %

NOx - 65 to - 70 % rel. CAEP/2

CO, UHC - 50 % rel. CAEP/2

Smoke - 75 % rel. CAEP/2

Exceed the ACARE Vision 2020 objectives

(together with contributions from airframe, ATM and operations)

Ultra-High Pressure-Ratio Aero-Engines

Summary of Project Objectives

Page 4: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 4 of 26

Ultra-High Pressure-Ratio Aero-Engines

Consortium (1/2)

35 partners from 10 EU countries

plus CIAM from Russia:

10 aero-engine OEMs

4 SMEs (6% of funding)

13 universities

9 research centres

32 test rigs/facilities

135 deliverable reports

140 milestones

4207 PMs (350 PYs)

68.4 M€ gross budget

39.9 M€ EC co-funding

Start date: 1 October 2011 Duration: 5 years (until 30 September 2016)

ERGON Research (ITA), PCA Engineering (GBR), Bauhaus Luftfahrt (GER), the University of Chalmers (SWE),

the University of Cranfield (GBR) and the University of Stuttgart (GER) completed their work already.

--- Y3 M45 ---

53% 71 done

64% 90 done

83% 3495 PM291 PY

64% ~ 44.1 M€

Elapsed time

75% M45

Page 5: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 5 of 26

Ultra-High Pressure-Ratio Aero-Engines

Consortium (2/2)

Page 6: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 6 of 26

Ultra-High Pressure-Ratio Aero-Engines

Thermal Efficiency Principles

Technical limit for OPR increase due to losses, material capabilities (or: limits) and (respective) cooling requirements

Aerodynamic improvements of compressor and turbine have a strong beneficial effect

Increased material capability (including high efficiency cooling) allows for higher T40

IDEAL OPEN JOULE

BRAYTON CYCLE

(isentropic compression

and expansion)

- polytropic compression

- polytropic expansion

+ nacelle drag/weight

+ components efficiencies

+ reduction of size, weight,

cooling and parasitic

leakage air mass flows

93.0polyKT 195040

KT 150040

KT 165040

Therm

al E

ffic

iency

/)1(/11

OPRth

9.0poly

87.0poly

87.0poly

87.0poly

Page 7: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 7 of 26

Ultra-High Pressure-Ratio Aero-Engines

Propulsive Efficiency Principles

PROPULSION EFFICIENCY

+ nacelle drag/weight

+ installation effects

+ engine system weight

09 /1/2 ccprop

propth

Real Limit

Thermal efficiency 0.6

OPR, TET, components

Real Limit

Propulsive efficiency 0.95

thermalpropulsive 0

LHV

cSFC

thprop

0

Note: Some inconsistencies between the figures for the different engines, which are partly due to engine size

and different technology levels assumed.

Ultra-Fan VAN/VP engine data from AIAA 2012 conference publication (Lockheed Martin Aeronautics).

Page 8: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 8 of 26

Ultra-High Pressure-Ratio Aero-Engines

Generic Study Engines

Mid Open RotorLarge Turbo-Fan

- 7 stages IPC / 5 stages HPC

- Combustor

- Single stage HPT

- 2 stages IPT / 3 stages PWT

- Differential gearbox

- Counter-rotating propellers

Overall Presssure Ratio @ ToC

Regional Turbo-Fan

- Direct drive composite fan

- 5 stage IPC / 11 stage HPC

- Combustor

- 2 stage HPT / 1 stage IPT

- 8 stage LPT © LEMCOTEC

© LEMCOTEC

© LEMCOTEC

- Geared Fan / 3 stage Booster

- 5 stage HPC axial

- 1 stage HPC centrifugal (cooled cooling air)

- Combustor / 2 stage HPT / 4 stage LPT

Page 9: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

WP 2.2 Rear Stages / Small Axial and Centrifugal Compressors

WP 2.3 High-Speed High Pressure Compressors

WP 2.4 Intermediate Pressure Compressors

Higher efficiency and improved surge margin

Light weight design

Reduction of losses, leakages and wear to improve reliability across service life

Improved compressor integration

Large scale compressor test facilities

Turbomeca 2 MWe 9 kg air /s 17:1 PR small axi-cf

RR + RRD 20 MWe 120 kg air / s 35 bar IPC

ITP + CTA 6 MWe 40 kg air / s 4:1 PR IPC (cruise conditions)

PBS + VZLU TJ100 Core Engine 1,000 N / 247 lbf Tip Blowing-IRC axi-cf

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 9 of 26

Ultra-High Pressure-Ratio Aero-Engines

SP2: UH-PR Compressors

Page 10: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 10 of 26

Ultra-High Pressure-Ratio Aero-Engines

Core-Engine Research Areas

Contact: Ralf von der Bank

Rolls-Royce Deutschland

[email protected]

Phone: 0049-33708-61373

WP 3.2 Development of Lean Staged Injection Systems for UH OPR

WP 3.3 Combustor-Turbine and OGV-Combustor Interaction

WP 3.4 Design & Manufacture of Ultra-Low NOx Combustors

WP 3.5 Validation of Combustion Systems by Full Annular Tests

WP 3.6 Development of Fuel Control System

Emissions (NOx, CO, UHC, smoke)

Operability (burn-out, weak extinction, altitude relight)

Dynamic behaviour, e.g. precessing vortex core, vortex shedding

Pressure oscillations, optimisation of NGV exit profile & fuel placement

Pilot and main fuel staging schedule, fuel manifold, fuel cooling and coking

Page 11: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 11 of 26

Ultra-High Pressure-Ratio Aero-Engines

Core-Engine Research Areas

Contact: Ralf von der Bank

Rolls-Royce Deutschland

[email protected]

Phone: 0049-33708-61373

WP 4.2 Structures for Aerodynamics and Inter-cooling

WP 4.3 Compressor Structures

WP 4.4 Hot Section Structures

WP 4.5 Turbine Aerodynamics

High performance light weight HPC guide vane

Recuperation and nozzle for intercooled recuperated aero-engines

Demonstration of reduced inter-case deformation and increased temperature capability

Extended temperature material manufacturing trials (demo cast)

Low leakage liner

High pressure turbine adapted for low emission combustor

Intermediate pressure turbine aerodynamics

Page 12: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 12 of 26

Ultra-High Pressure-Ratio Aero-Engines

Core-Engine Research Highlights

Injectors

1-8-6---1-2-6

Figure: TRENT XWB

Combustor-Turbine Interaction (NGV Cooling)

Assessment

Cycle Studies

Design

Manufacturing

Materials

HPC Rear Cone

VSV

HPC

IPC

Combustors

OGV

Tip Clearance

HPT

IPT

Rear Stages (axi-cf impeller)

Fuel Controls

Casing + StiffnessID-GPD

ITD

Page 13: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 13 of 26

Ultra-High Pressure-Ratio Aero-Engines

Highlight: Filtered Rayleigh Scattering

• Filtered Rayleigh Scattering

for temperature and velocity was

compared with OH-T-LIF for

temperature and PIV for velocity

Page 14: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 14 of 26

Ultra-High Pressure-Ratio Aero-Engines

Highlight: CFD-Simulation of Ignition

A - Ignition sequence in single sector B – Flame propagation in azimuthal set-up

t = 0.2 ms t = 2.8 ms t = 8.9 ms t = 13.5 ms

Page 15: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 15 of 26

Ultra-High Pressure-Ratio Aero-Engines

Highlight: Optimised LDI System

An max increase of 15% in air flow area achieved TRL6 test planned in the HBK5 test facility

Datum Optimisation

• Aim: Reduce NOx emissions by 65% rel. CAEP/2 (Y2000)

• CFD based approach was used to improve the design

• TRL4 hardware manufactured and tested (high alt. relight & high pressure (34bar 860K))

FANN – HBK5 Facility at DLR Cologne

P30 < 40 bar

Page 16: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 16 of 26

Ultra-High Pressure-Ratio Aero-Engines

Highlight: High-Speed IPC Rig Test

4 stage high-speed rig 2 stage high-speed rig

05/10/15 : Delivery to ANECOM

12/10/15: Rig Build

02/11/15: Rig Test

Page 17: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Enabler - introduction of turning struts• Reduce pressure losses, more turning• Remove IPC OGV• Shorter and lighter inter-duct

CFD design and experimental validation• Introduce S-shaped struts with profile• 3D RANS CFD analysis• Modification of AIDA rig for lifting struts

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 17 of 26

Ultra-High Pressure-Ratio Aero-Engines

Highlight: Aerodynamically Lifting Inter-Duct

75% Removal inlet tangential momentum

Full annular isothermal test rig

Page 18: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 18 of 26

Ultra-High Pressure-Ratio Aero-Engines

Highlight: VSV Bush Rig

VSV-system (bush materials)• Lower wear • Lower friction coefficient actuation forces• Reduced hysteresis and malscheduling• Improved aerodynamics and stall margin

Build up of new VSV bush test rig including engine-like test conditions (up to TRL 6)• Temperature and oxidation• Pressurization• Radial, axial loading + bending load

Preliminary AssessmentWear reduction 42% (after 5,000 cycles)

Predicted temperature distribution

VSV bush wear test rig

Wear pattern

shroud bush

casing bush

VIGV

Page 19: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 19 of 27

Ultra-High Pressure-Ratio Aero-Engines

Highlight: Turbine Mid Frame Liner

• improve the low-leakage liner thermal design, for example thermal conductivity, skin temperatures and heat transfer coefficients

• Hot Flow Sector: 12 kg, 1070 K, 400 kPa

• Preliminary assessment:leakage flow reduction 48% vs. 35% objective weight reduction 24% vs. 15% objective

Fabricated TMF from welded sheet metal

Cooling Flow

Page 20: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

100% T/O Thrust SLS – ICAO Emissions Data (public domain)

Y2000 (TRL9) BPR OPR (T/O) Thrust (kN) WFE (kg/s) SFC (g/h/N)

BR715-A1 4.6 28.7 83.2 0.831 35.9

CFM56-5A 6.0 27.9 117.9 1.131 34.5

Trent 772 5.0 35.8 316.3 3.20 36.4

Note: reference engines and aircrafts have been derived from the Y2000 configurations above

Y2025+ BPR OPR (T/O) Thrust (kN) WFE (kg/s) SFC (g/h/N) ∆ SFC (T/O SLS) ∆ Block Fuel

RTF 11.9 36.3 81,9 0.562 24.7 - 31,3 % - 19.0 %

MOR 52.9 46.3 140.8 0.700 17.9 - 48,2 % - 29.8 %

LTF 14.6 60.9 348.4 2.162 22.3 - 38,7 % - 23.4 %

Notes:observation of principles / SFC cruise is different / block fuel improvements depend on flight missions

the numbers provide tendencies only

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 20 of 26

Ultra-High Pressure-Ratio Aero-Engines

Assessment (1/4): Fuel Burn Reduction

Page 21: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 21 of 27

Ultra-High Pressure-Ratio Aero-Engines

Assessment (2/4): Fuel Burn Reduction

Short Range Long RangeICAO CEC LEMCOTEC ICAO CEC LEMCOTEC

av. Fuel Burn kg 3,200 2,240 54,240 41,550CO2 / PAX kg 74.7 52.3 424.3 325FB / PAX / 100 l 4.5 3.1 2.5 2.0

LEMCOTEC technologies (engine alone) drive consumption towards 2 liters / PAX / 100 km

long term: < 1 liter / PAX / 100 km (all contributors by 2050)

Route: from FRANKFURT (FRA) to NEW YORK, USA (JFK) ( 6,186 km )

This itinerary is served by the following aircraft: 346,744,767

Each flight consumes an average of 54,239 Kg of fuel

The average number of seats per flight is 396

The average CO2 emitted per passenger is 424.27 Kg

Route: from BERLIN (SXF) to BRUSSELS, BEL (BRU) ( 642 km )

This itinerary is served by the following aircraft: 319,320

Each flight consumes an average of 3,198 Kg of fuel

The average number of seats per flight is 180

The average CO2 emitted per passenger is 74.74 Kg

ICAO Carbon Emission Calculator – Assessment results on Y2015 missions

Page 22: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 22 of 26

Ultra-High Pressure-Ratio Aero-Engines

Assessment (3/4): NOx Emission Reduction

DP

NO

x,c

/ F

oo [g / k

N]

RTF / MOR / LTF: 3 engine certification (C3 = 0.9441)Data Source: ICAO Aircraft Engine Emissions Databank, Issue 20B, 7 March 2014, EASA Cologne‡ Source: ICAO Environmental Protection, Annex 16, Volume II, 3rd Edition July 2008

Page 23: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 23 of 26

Ultra-High Pressure-Ratio Aero-Engines

Assessment (4/4): SMOKE Reduction

ICAO SMOKE Regulation 1983

LEMCOTEC Objective

GEnx TAPS

Trent 1000

JT3D-3B (1972 DC-8)

Data Source: ICAO Aircraft Engine Emissions Databank, Issue 20B, 7 March 2014, EASA Cologne ‡ Source: ICAO Environmental Protection, Annex 16, Volume II, 3rd Edition July 2008

LEMCOTEC study enginesFoo RTF ~ 81 kN Foo LTF ~ 140 kNFoo MOR ~ 350 kN

RTF

MOR

LTF

Page 24: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 24 of 26

Ultra-High Pressure-Ratio Aero-Engines

Integration & Exploitation

Engine System

Sub-Systems

Components

Large scale validation projects (like LEMCOTEC, E-BREAK and ENOVAL) are important for the integration of lower TRL technologies are closing the gap between RIA component dev. and Clean Sky flying demos.

Page 25: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 25 of 26

Ultra-High Pressure-Ratio Aero-Engines

Summary & Conclusions

LEMCOTEC is developing advanced technologies for aiming at improving thermal cycle efficiency through ultra-high OPR.

Key research areas are IPC, HPC, lean combustion and injection systems, materials and hot structures, cooling technology and combustor-turbine interaction.

LEMCOTEC is proving its objectives by the means of an assessment scheme based on whole system level approach and by using three generic engine platforms.

An intermediate assessment of current results demonstrates the technological advancements and validates the preliminary project achievements.

Studies on innovative core concepts reveal additional improvement potentials.

Expectation: the engine-alone contribution of ACARE Vision2020 can be exceeded.

Page 26: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Slide: 26 of 15

Ultra-High Pressure-Ratio Aero-Engines

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom

Page 27: Ultra-High Pressure-Ratio Aero-EnginesContributions to CO 2 reduction Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh AERODAYS 2015, 20-23 October

Ralf von der Bank, Stefan Donnerhack, Anthony Rae, Sebastien Bourgois, Anders Lundbladh

AERODAYS 2015, 20-23 October 2015, London, United Kingdom Slide: 27 of 27

Ultra-High Pressure-Ratio Aero-Engines

Core-Engine Research Areas

Injectors

1-8-6---1-2-6

Figure: TRENT XWB

Combustor-Turbine Interaction (NGV Cooling)

Assessment

Cycle Studies

Design

Manufacturing

Materials

HPC Rear Cone

ITDVSV

HPC

IPC

Combustors

OGV

Tip Clearance

HPT

IPT

Rear Stages (axi-cf impeller)

Fuel Controls

Casing + StiffnessID-GPD