UBXFKZNP_5549

Embed Size (px)

Citation preview

  • 7/30/2019 UBXFKZNP_5549

    1/120

  • 7/30/2019 UBXFKZNP_5549

    2/120

    Advantages of State Space

    ApproachClassical

    State space approach/ModernControl Approach

    Transfer Function

    Linear Time InvariantSystem, SISO

    Laplace Transform,Frequency domain

    Only Input-output

    Description: Less DetailDescription on SystemDynamics

    State Variable Approach

    Linear Time Varying,Nonlinear, Time Invariant,MIMO

    Time domain

    Detailed description of

    Internal behaviour inaddition to I-O properties

    2

  • 7/30/2019 UBXFKZNP_5549

    3/120

    CLASSICAL APPROACH (TRANSFER

    FUNCTION) The classical approach or frequency domain

    technique is based on converting a systems

    differential equation to a transfer function. It relates a representation of the output to a

    representation of the input.

    It can be applied only to linear, time-invariant

    systems.

    It rapidly provides stability and transient responseinformation.

  • 7/30/2019 UBXFKZNP_5549

    4/120

    The state-space approach (also referred to as the modern, ortime-domain, approach) is a unified method for modeling,analyzing, and designing a wide range of systems.

    The state-space approach can be used to represent nonlinear

    systems. Also, it can handle, conveniently, systems withnonzero initial conditions and time varying

    The state-space approach is also attractive because of theavailability of numerous state-space software package for the

    personal computer.

  • 7/30/2019 UBXFKZNP_5549

    5/120

    MODERN APPROACH (STATE-

    SPACE) It can be used to model and analyze nonlinear

    (backlash, saturation), time-varying (missiles withvarying fuel levels), multi-input multi-outputsystems (i.e. an airplane) with nonzero initialconditions.

    But it is not as intuitive as the classical approach.The designer has to engage in several calculationsbefore the physical interpretation of the model isapparent.

  • 7/30/2019 UBXFKZNP_5549

    6/120

    STATE-SPACE REPRESENTATION Select a particular subset of all possible system

    variables and call them state variables.

    For an nth-order system, write n simultaneousfirst-order differential equations in terms of state

    variables.

    If we know the initial conditions of all state

    variables at t0 and the system input for tt0, we cansolve the simultaneous differential equations forthe state variables for tt0.

  • 7/30/2019 UBXFKZNP_5549

    7/120

    System variable: Any variable that responds to an input or initial conditions in

    a system.

    State variables: The smallest set of linearly independent systemVariables such that the values of the members of the set at time

    along with known forcing function completely determine the value of all

    system variables for all .

    Sate vector: A vector whose elements are the state variables.

    State space: The n-dimensional space whose axes are the state variables.

    State equations: A set of n simultaneous, first-order differential equations withn variables, where the n variables to be solved are the state variables.

    Output equation: The algebraic equation that expresses the output variables ofa system as linear combinations of the state variables and the inputs.

    0t

    0tt

    Concept of State Variable

  • 7/30/2019 UBXFKZNP_5549

    8/120

    State SpaceThe state variables are the smallest number of states that arerequired to describe the dynamic nature of the system, and itis not a necessary constraint that they are measurable.

    The manner in which the state variables change as a functionof time may be thought of as a trajectory in n dimensionalspace, called the state-space.

    Two-dimensional state-space is sometimes referred to as thephase-plane when one state is the derivative of the other.

    8

  • 7/30/2019 UBXFKZNP_5549

    9/120

    Dynamic System

    9

    Dynamic System must involve elements that memorize thevalues of the input for

    Integrators in CT serve as memory devices

    Outputs of integrators are considered as internal state variables

    of the dynamic system

    Number of state variables to completely define the dynamics ofthe system=number of integrators involved

  • 7/30/2019 UBXFKZNP_5549

    10/120

    Representation of a system in state-space

    10

  • 7/30/2019 UBXFKZNP_5549

    11/120

    RLC Circuit

    11

  • 7/30/2019 UBXFKZNP_5549

    12/120

    12

  • 7/30/2019 UBXFKZNP_5549

    13/120

    EXAMPLE

    + i(t)Lv(t)

    R

    Ldi

    dtRi v t

    v t Ri t

    ( )

    ( ) ( ) ( )

    (state equation)

    Output equation

    L sI s i V s

    I s R s s

    i

    s

    i tR

    e i e

    RL

    RL

    R L t R L t

    [ ( ) ( )] ( )

    ( )( )

    ( ) ( ) ( )( / ) ( / )

    0

    1 1 1 0

    11 0

    Assuming that v(t) is a unit step and knowing i(0), taking the LT of the stateequation

  • 7/30/2019 UBXFKZNP_5549

    14/120

    Writing the equations in matrix-vector form

    i

    v0

    i

    v 0v(t)

    c

    RL

    1L

    1

    C c

    1L

    Assuming the voltage across the resistor as the output

    v (t) Ri(t) R 0i

    vR c

  • 7/30/2019 UBXFKZNP_5549

    15/120

    Example: Given the electric network, find a state-space representation.(Hint: state variables and , output )

    Cv Li

    )(/1

    0

    0/1

    /1)/(1tv

    Li

    v

    L

    CRC

    i

    v

    L

    C

    L

    C

    L

    C

    Ri

    vRi 0/1

    Ri

  • 7/30/2019 UBXFKZNP_5549

    16/120

    Block Diagram of CT CS in SS

    16

  • 7/30/2019 UBXFKZNP_5549

    17/120

    The general form of state and output equations for a linear,time-invariant system can be written as

    Du+Cx=yBu+Ax=x

    Where x is the nx1 state vector, u is rx1 input vector,yis the mx1output vector.Ais nxn state matrix, B is nxr, C is mxn and D ismxr matrices. For the previous example

    0=D0R=C

    0=B0

    --=Av

    i=x L

    R

    1L

    1

    L

    R

    c

    C

  • 7/30/2019 UBXFKZNP_5549

    18/120

    System Description

    18

    Consider a MIMO System with n integrators

    r inputs

    m outputs

    Define n outputs of integrators as state variables

    Dynamics ofthe System:

  • 7/30/2019 UBXFKZNP_5549

    19/120

    The outputs

    19

  • 7/30/2019 UBXFKZNP_5549

    20/120

    Define

    20

    Linearizedabout

    operatingpoints

  • 7/30/2019 UBXFKZNP_5549

    21/120

    Time Varying/Invariant Systems

    21

    Time Varying System (f and g involve explicitly t)

    Time Invariant System (f and g do not involve explicitly t)

  • 7/30/2019 UBXFKZNP_5549

    22/120

    State & Output Equation:

    Matrices/Vectors

    22

    A(t)= State MatrixB(t)= Input Matrix

    C(t)=Output MatrixD(t)=Direct Transmission Matrix

  • 7/30/2019 UBXFKZNP_5549

    23/120

    State-space Equations

  • 7/30/2019 UBXFKZNP_5549

    24/120

    DC Servo Motor

  • 7/30/2019 UBXFKZNP_5549

    25/120

  • 7/30/2019 UBXFKZNP_5549

    26/120

  • 7/30/2019 UBXFKZNP_5549

    27/120

    Selection of State Variables

  • 7/30/2019 UBXFKZNP_5549

    28/120

  • 7/30/2019 UBXFKZNP_5549

    29/120

  • 7/30/2019 UBXFKZNP_5549

    30/120

    Simulation Diagrams/Block Dagrams

  • 7/30/2019 UBXFKZNP_5549

    31/120

    Transfer Function from SS Equations

  • 7/30/2019 UBXFKZNP_5549

    32/120

    Evaluation of Transfer Function Matrix

  • 7/30/2019 UBXFKZNP_5549

    33/120

    Linearization of State Equations

  • 7/30/2019 UBXFKZNP_5549

    34/120

    Linearisation about Nominal Trajectory

  • 7/30/2019 UBXFKZNP_5549

    35/120

    Perturbations

  • 7/30/2019 UBXFKZNP_5549

    36/120

  • 7/30/2019 UBXFKZNP_5549

    37/120

  • 7/30/2019 UBXFKZNP_5549

    38/120

  • 7/30/2019 UBXFKZNP_5549

    39/120

    Ex Spin Stabilized Satellite

  • 7/30/2019 UBXFKZNP_5549

    40/120

  • 7/30/2019 UBXFKZNP_5549

    41/120

  • 7/30/2019 UBXFKZNP_5549

    42/120

  • 7/30/2019 UBXFKZNP_5549

    43/120

  • 7/30/2019 UBXFKZNP_5549

    44/120

  • 7/30/2019 UBXFKZNP_5549

    45/120

  • 7/30/2019 UBXFKZNP_5549

    46/120

  • 7/30/2019 UBXFKZNP_5549

    47/120

  • 7/30/2019 UBXFKZNP_5549

    48/120

    Solution of State Equations

  • 7/30/2019 UBXFKZNP_5549

    49/120

  • 7/30/2019 UBXFKZNP_5549

    50/120

  • 7/30/2019 UBXFKZNP_5549

    51/120

  • 7/30/2019 UBXFKZNP_5549

    52/120

  • 7/30/2019 UBXFKZNP_5549

    53/120

    State Transition Matrix

  • 7/30/2019 UBXFKZNP_5549

    54/120

    Laplace Transform Method (STM

    Computation)

  • 7/30/2019 UBXFKZNP_5549

    55/120

  • 7/30/2019 UBXFKZNP_5549

    56/120

    STM using MATLAB

  • 7/30/2019 UBXFKZNP_5549

    57/120

    Total Response

  • 7/30/2019 UBXFKZNP_5549

    58/120

    System Response Using MATLAB

  • 7/30/2019 UBXFKZNP_5549

    59/120

    LTI Viewer

  • 7/30/2019 UBXFKZNP_5549

    60/120

    Total Response using Symbolic Math

    MATLAB

  • 7/30/2019 UBXFKZNP_5549

    61/120

    SS Manipulations in MATLAB

  • 7/30/2019 UBXFKZNP_5549

    62/120

  • 7/30/2019 UBXFKZNP_5549

    63/120

    Natural Modes

  • 7/30/2019 UBXFKZNP_5549

    64/120

    Natural Motions

  • 7/30/2019 UBXFKZNP_5549

    65/120

    Eigenvalue Problem

  • 7/30/2019 UBXFKZNP_5549

    66/120

  • 7/30/2019 UBXFKZNP_5549

    67/120

    Diagonalisation

  • 7/30/2019 UBXFKZNP_5549

    68/120

  • 7/30/2019 UBXFKZNP_5549

    69/120

  • 7/30/2019 UBXFKZNP_5549

    70/120

    Rapid Calculation of Modal Matrix

  • 7/30/2019 UBXFKZNP_5549

    71/120

    Diagonalisation Repeated Eigen Values

    Case

  • 7/30/2019 UBXFKZNP_5549

    72/120

  • 7/30/2019 UBXFKZNP_5549

    73/120

    Engineering/Scientific Theories

  • 7/30/2019 UBXFKZNP_5549

    74/120

    g g/A model or framework for understandingA set of statements closed under certain rules of

    inferenceValidated & tested (not mere conjectures) Summarizes (infinitely) many practical situations

    Requires abstraction

    Types Categorization (system of naming things) Summarizes past experiences Predicts future outcomes

    Tool to design with State space theory

    super theory (physics, chemistry, etc hence abstract) Helps understand engineering analysis and design techniques

  • 7/30/2019 UBXFKZNP_5549

    75/120

    CT vs DT Discrete time state equations Continuous time state equations

  • 7/30/2019 UBXFKZNP_5549

    76/120

    Discrete time State Equations

    ( 1) ( ( ), ( ), )

    ( ) ( ( ), ( ), )

    X t F X t U t t

    Y t G X t U t t t

    ( 1) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    X t A t X t B t U t

    Y t C t X t D t U t t

    ( 1) ( ) ( )

    ( ) ( ) ( )

    X t AX t BU t

    Y t CX t DU t t

    Possibly nonlinear, most general, hardest to analyze

    Linear, possibly time-varying

    Linear & time-invariant, easiest to analyze, provides mostconvenient design techniques

  • 7/30/2019 UBXFKZNP_5549

    77/120

    Continuous time State Equations

    ( ) ( ( ), ( ), )

    ( ) ( ( ), ( ), )

    X t F X t U t t

    Y t G X t U t t t

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    X t A t X t B t U t

    Y t C t X t D t U t t

    ( ) ( ) ( )

    ( ) ( ) ( )

    X t AX t BU t

    Y t CX t DU t t

    Possibly nonlinear, most general, hardest to analyze

    Linear, possibly time-varying

    Linear & time-invariant, easiest to analyze, provides mostconvenient design techniques

  • 7/30/2019 UBXFKZNP_5549

    78/120

    Solve LTI DT state equations Free response Forced response

    Weighting sequence (Markov parameters)

    External equivalence

    Impulse response

    Convolution

    S l LTI CT t t ti

  • 7/30/2019 UBXFKZNP_5549

    79/120

    Solve LTI CT state equations Scalar equation

    Vector-matrix equation Matrix exponential

    Existence, uniqueness, Lipschitz condition

    Free response, forced response State transition matrix

    Linearity

    Complete response

    Impulse response

    convolution

  • 7/30/2019 UBXFKZNP_5549

    80/120

    Discretization

    STATE SPACE REPRESENTATION OF DYNAMIC

  • 7/30/2019 UBXFKZNP_5549

    81/120

    STATE SPACE REPRESENTATION OF DYNAMIC

    SYSTEMS

    Consider the following n-th order differential equation in which the forcingfunction does not involve derivative terms.

    d y

    dta

    d y

    dta

    dy

    dta y b u

    Y s

    U s

    b

    s a s a s a

    n

    n

    n

    n n n

    n n

    n n

    1

    1

    1 1 0

    0

    1

    1

    1

    ( )

    ( )Choosing the state variables as

    x y, x y, x y, , xd y

    dtx x , x x , , x x

    x a x a x a x b u

    1 2 3 n

    n 1

    n 1

    1 2 2 3 n-1 n

    n n 1 n 1 2 1 n 0

  • 7/30/2019 UBXFKZNP_5549

    82/120

    x

    x

    x

    x

    x

    x

    0 1 0 0 0 0

    0 0 1 0 0 0

    0 0 0 1 0 0 0

    0 0 0 0 0 1 0

    0 0 0 0 0 0 1

    a a a a a

    x

    x

    x

    x

    x

    x

    1

    2

    3

    n 2

    n 1

    n n n 1 n 2 2 1

    1

    2

    3

    n 2

    n 1

    n

    0

    0

    0

    0

    0

    b

    u

    y = [1 0 0 0 0]x

    0

  • 7/30/2019 UBXFKZNP_5549

    83/120

    EXAMPLE

    Y s

    U s

    s

    s s s

    x

    x

    x

    x

    x

    x

    u

    y

    x

    x

    x

    ( )

    ( )

    3 2

    1

    2

    3

    1

    2

    3

    1

    2

    3

    14 56 160

    0 1 0

    0 0 1

    160 56 14

    0

    1

    14

    1 0 0

    a e pace epresen a on ot ith f i f ti

  • 7/30/2019 UBXFKZNP_5549

    84/120

    system with forcing function

    involves DerivativesConsider the following n-th order differential equation inwhich the forcing function involves derivative terms.

    d ydt

    a d ydt

    a dydt

    a y

    bd u

    dt

    bd u

    dt

    bdu

    dt

    b u

    Y s

    U s

    b s b s b s b

    s a s a s a

    n

    n

    n

    n n n

    n

    n

    n

    n n n

    n n

    n n

    n n

    n n

    1

    1

    1 1

    0 1

    1

    1 1

    0 1

    1

    1

    1

    1

    1

    ( )

    ( )

  • 7/30/2019 UBXFKZNP_5549

    85/120

    Define the following n variables as a set of n state variables

    uxudt

    du

    dt

    ud

    dt

    ud

    dt

    yd

    x

    uxuuuyxuxuuyx

    uyx

    nnnnn

    n

    n

    n

    n

    n

    n 11122

    2

    11

    1

    0

    222103

    11102

    01

  • 7/30/2019 UBXFKZNP_5549

    86/120

    .

    .

    .

    . . . .

    . . . .

    . . . .

    .

    .

    .

    .

    .

    .

    x

    x

    x

    x a a a a

    x

    x

    x

    x

    n

    n n n n

    n

    n

    n

    1

    2

    1

    1 2 1

    1

    2

    1

    1

    2

    1

    0 1 0 0

    0 0 1 0

    0 0 0 1

    n

    n

    u

    y

    x

    x

    x

    u

    1 0 0

    1

    2

    0

    .

    .

    .

  • 7/30/2019 UBXFKZNP_5549

    87/120

    CONTROLLABLE CANONICAL FORMd y

    dt

    ad y

    dt

    ady

    dt

    a y

    bd u

    dtb

    d u

    dtb

    du

    dtb u

    Y s

    U s

    b s b s b s b

    s a s a s a

    n

    n

    n

    n n n

    n

    n

    n

    n n n

    n n

    n n

    n n

    n n

    1

    1

    1 1

    0 1

    1

    1 1

    0 1

    1

    1

    1

    1

    1

    ( )

    ( )

  • 7/30/2019 UBXFKZNP_5549

    88/120

    Y s

    U sb

    b a b s b a b b a b

    s a s a s a

    Y s b U s Y s

    Y sb a b s b a b b a b

    s a s a s a

    n

    n n n n

    n n

    n n

    nn n n n

    n n

    n n

    ( )

    ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( )( ) ( ) ( )

    0

    1 1 0

    1

    1 1 0 0

    1

    1

    1

    0

    1 1 01

    1 1 0 0

    1

    1

    1

    U s

    Y s

    b a b s b a b b a b

    U s

    s a s a s aQ s

    n

    n n n n

    n n

    n n

    ( )

    ( )

    ( ) ( ) ( )

    ( )( )

    1 1 0

    1

    1 1 0 0

    1

    1

    1

  • 7/30/2019 UBXFKZNP_5549

    89/120

    s Q s a s Q s a sQ s a Q s U s

    Y s b a b s Q s b a b sQ s

    b a b Q s

    n nn n

    n

    n n

    n n

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    11

    1

    1 1 0

    1

    1 1 0

    0

    Defining state variables as follows:

    X s Q s

    X s sQ s

    X s s Q s

    X s s Q s

    n

    n

    n

    n

    1

    2

    1

    2

    1

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    sX s X s

    sX s X s

    sX s X sn n

    1 2

    2 3

    1

    ( ) ( )

    ( ) ( )

    ( ) ( )

    x x

    x x

    x xn n

    1 2

    2 3

    1

  • 7/30/2019 UBXFKZNP_5549

    90/120

    sX s a X s a X s a X s U s

    x a x a x a x u

    Y s b U s b a b s Q s b a b sQ s

    b a b Q s

    b U s b a b X s

    n n n n

    n n n n

    n

    n n

    n n

    n

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( )

    ( ) ( ) ( )

    1 1 2 1

    1 1 2 1

    0 1 1 0

    1

    1 1 0

    0

    0 1 1 0

    +

    =

    ( ) ( )

    ( ) ( )

    ( ) ( ) ( )

    b a b X s

    b a b X s

    y b a b x b a b x b a b x b u

    n n

    n n

    n n n n n

    1 1 0 2

    0 1

    0 1 1 1 0 2 1 1 0 0

    +

  • 7/30/2019 UBXFKZNP_5549

    91/120

    ub

    x

    x

    x

    babbabbaby

    u

    xx

    x

    x

    aaaaxx

    x

    x

    n

    nnnn

    n

    n

    nnnn

    n

    0

    2

    1

    0110110

    1

    2

    1

    121

    1

    2

    1

    .

    .

    .

    10

    .

    .

    .0

    0

    .

    .

    .

    1000

    ....

    ....

    ....0100

    0010

    .

    .

    .

    BLOCK DIAGRAM

  • 7/30/2019 UBXFKZNP_5549

    92/120

    BLOCK DIAGRAM

    u +

    b0

    + + +

    + + + +

    +y

    ++

    ++

    ++

    +

    b1-a1b0 b2-a2b0 bn-1-an-1 b0 bn-an b0

    a1 a2an-1 an

    xn xn-1x2 x1

    OBSERVABLE CANONICAL FORM

  • 7/30/2019 UBXFKZNP_5549

    93/120

    OBSERVABLE CANONICAL FORM

    s Y s b U s s a Y s bU s

    s a Y s b U s a Y s b U s

    Y s b U s bU s a Y s

    b U s a Y s b U s a Y s

    X s

    n n

    n n n n

    s

    s n n s n n

    n s

    n n

    [ ( ) ( )] [ ( ) ( )]

    [ ( ) ( )] ( ) ( )

    ( ) ( ) [ ( ) ( )]

    [ ( ) ( )] [ ( ) ( )]

    ( ) [

    0

    1

    1 1

    1 1

    0

    1

    1 1

    11 1

    1

    1

    0

    1

    bU s a Y s X s

    X s b U s a Y s X s

    X s b U s a Y s X s

    X s b U s a Y s

    Y s b U s X s

    n

    n s n

    s n n

    s n n

    n

    1 1 1

    1

    1

    2 2 2

    2

    1

    1 1 1

    1

    1

    0

    ( ) ( ) ( )]

    ( ) [ ( ) ( ) ( )]

    ( ) [ ( ) ( ) ( )]

    ( ) [ ( ) ( )]

    ( ) ( ) ( )

  • 7/30/2019 UBXFKZNP_5549

    94/120

  • 7/30/2019 UBXFKZNP_5549

    95/120

    .

    .

    .

    . . .

    . . . .

    . . . .

    .

    .

    .

    .

    x

    x

    x

    x

    a

    a

    a

    a

    x

    x

    x

    x

    b a b

    b a

    n

    n

    n

    n

    n

    n

    n n

    n n

    1

    2

    1

    1

    2

    1

    1

    2

    1

    0

    1

    0 0 0

    1 0 0

    0 0

    0 0 1

    1 0

    1 1 0

    1

    2

    00 0 1

    b

    b a b

    u

    y

    x

    x

    b u

    .

    .

    .

    .

    .

    .

    .

  • 7/30/2019 UBXFKZNP_5549

    96/120

    BLOCK DIAGRAM

    b0

    a1an-1an

    +

    +

    +

    +

    +

    +

    +

    y

    u

    bn-anb0 bn-1-an-1b0 b1-a1b0

    x1x2 xn-1 xn

  • 7/30/2019 UBXFKZNP_5549

    97/120

    DIAGONAL CANONICAL FORM

    Consider that the denominator polynomial involves onlydistinct roots. Then,

    Y s

    U s

    b s b s b s b

    s p s p s p

    bc

    s p

    c

    s p

    c

    s p

    n n

    n n

    n

    n

    n

    ( )

    ( ) ( )( ) ( )

    0 1

    1

    1

    1 2

    0

    1

    1

    2

    2

    where, ci, i=1,2, , n are the residues corresponding pi

  • 7/30/2019 UBXFKZNP_5549

    98/120

    Y s b U sc

    s pU s

    c

    s pU s

    c

    s p

    X ss p

    U s sX s p X s U s

    X ss p

    U s sX s p X s U s

    X ss p

    U s sX s p X s U s

    n

    n

    n

    n

    n n n

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    0

    1

    1

    2

    2

    1 1 1 1 1

    2

    2

    2 2 2

    1

    1

    1

  • 7/30/2019 UBXFKZNP_5549

    99/120

    ( ) ( ) ( ) ( ) ( )

    x p x u

    x p x u

    x p x u

    Y s b U s c X s c X s c X s

    y c x c x c x b u

    n n n

    n n

    n n

    1 1 1

    2 2 2

    0 1 1 2 2

    1 1 2 2 0

  • 7/30/2019 UBXFKZNP_5549

    100/120

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    x

    x

    x

    p

    p

    p

    x

    x

    x

    u

    y c c c

    x

    x

    x

    b u

    n

    n

    n

    n

    n

    1

    2

    1

    2

    1

    2

    1 2

    1

    2

    0

    0

    0

    1

    1

    1

  • 7/30/2019 UBXFKZNP_5549

    101/120

    BLOCK DIAGRAM

    yu

    x1

    x2

    xn

    c1

    b0

    c2

    cn

    ++

    ++

    +

    1

    1s p

    1

    2s p

    1

    s pn

  • 7/30/2019 UBXFKZNP_5549

    102/120

    JORDAN CANONICAL FORMConsider the case where the denominator polynomial involves multiple roots.Suppose that the pis are different from one another, except that the first three areequal.

    Y s

    U s

    b s b s b s b

    s p s p s p s p

    Y s

    U sb

    c

    s p

    c

    s p

    c

    s p

    c

    s p

    c

    s p

    n n

    n n

    n

    n

    n

    ( )

    ( ) ( ) ( )( ) ( )

    ( )

    ( ) ( ) ( )

    0 1

    1

    1

    1

    3

    4 5

    0

    1

    1

    3

    2

    1

    2

    3

    1

    4

    4

  • 7/30/2019 UBXFKZNP_5549

    103/120

    Y s b U s cs p

    U s cs p

    U s

    c

    s pU s

    c

    s pU s

    c

    s pU s

    X sc

    s p

    U s

    X sc

    s pU s

    X s

    X s s p

    X sc

    s pU s

    X s

    X

    n

    n

    ( ) ( )( )

    ( )( )

    ( )

    ( ) ( ) ( )

    ( )

    ( )

    ( )

    ( )( )

    ( )( )

    ( )

    ( ) ( )( )

    01

    1

    32

    1

    2

    3

    1

    4

    4

    1

    1

    1

    3

    2

    2

    1

    2

    1

    2 1

    3

    3

    1

    2

    1

    +

    3 1

    44

    4

    1

    ( )

    ( ) ( )

    ( ) ( )

    s s p

    X sc

    s pU s

    X sc

    s pU sn

    n

    n

  • 7/30/2019 UBXFKZNP_5549

    104/120

    sX s p X s X s x p x x

    sX s p X s X s x p x x

    sX s p X s U s x p x u

    sX s p X s U s x p x u

    sX s p X s U s xn n n

    1 1 1 2 1 1 1 2

    2 1 2 3 2 1 2 3

    3 1 3 3 1 3

    4 4 4 4 4 4

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    n n n

    n n

    n n

    p x u

    Y s b U s c X s c X s c X s c X s

    y b u c x c x c x c x

    ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 2 3 3

    0 1 1 2 2 3 3

  • 7/30/2019 UBXFKZNP_5549

    105/120

    BLOCK DIAGRAMb0

    c3

    c2

    c1

    c4

    cn

    x3x2 x1

    x4

    xn

    .

    .

    ....

    1

    1s p

    1

    1s p

    1

    4s p

    1

    1s p

    1

    s pn

    u y

    +

    +

    +

    ++

    ++

    +

    +

  • 7/30/2019 UBXFKZNP_5549

    106/120

    Example: Express in CCF/OCF/DCF

  • 7/30/2019 UBXFKZNP_5549

    107/120

    Example: Express in CCF/OCF/DCF

    107

    CCF

    OCFDCF

    Converting a Transfer Function to State Space

  • 7/30/2019 UBXFKZNP_5549

    108/120

    g p

    A set of state variables is called phase variables, where eachsubsequent state variable is defined to be the derivative of theprevious state variable.Consider the differential equation

    Choosing the state variables

    ubyadt

    dya

    dt

    yda

    dt

    ydn

    n

    nn

    n

    0011

    1

    1

    ubxaxaxadt

    ydx

    dt

    ydx

    xdt

    ydxdt

    ydx

    xdt

    ydx

    dt

    dyx

    xdt

    dyxyx

    nnn

    n

    nn

    n

    n 0121101

    1

    43

    3

    32

    2

    3

    32

    2

    22

    211

  • 7/30/2019 UBXFKZNP_5549

    109/120

    u

    bx

    x

    x

    x

    x

    aaaaaax

    x

    x

    x

    x

    n

    n

    nn

    n

    0

    1

    3

    2

    1

    143210

    1

    3

    2

    1

    0

    0

    0

    0

    100000

    001000

    000100

    000010

    n

    n

    xx

    x

    x

    x

    y

    1

    3

    2

    1

    00001

    Converting a transfer function with constant term in numerator

  • 7/30/2019 UBXFKZNP_5549

    110/120

    g

    Step 1. Find the associated differential equation.

    Step 2. Select the state variables.

    Choosing the state variables as successive derivatives.

    24269

    24

    )(

    )(

    23

    ssssR

    sC

    rcccc

    sRsCsss

    2424269

    )(24)()24269( 23

    cx

    cx

    cx

    3

    2

    1

    1

    3213

    32

    21

    2492624

    xy

    rxxxx

    xx

    xx

  • 7/30/2019 UBXFKZNP_5549

    111/120

    Figure 3.10a.Transfer function;

    b. equivalent block diagram showing phase-variables.

    Note: y(t) = c(t)

    Converting a transfer function with polynomial in numeratorStep1. Decomposing a transfer function.

  • 7/30/2019 UBXFKZNP_5549

    112/120

    Step 2. Converting the transfer function with constant term in numerator.

    Step 3. Inverse Laplace transform.

    01

    2

    2

    3

    3

    1 1

    )(

    )(

    asasasasR

    sX

    )()()()( 101

    2

    2 sXbsbsbsCsY

    101

    12

    1

    2

    2)( xbdt

    dxb

    dt

    xdbty

    01

    2

    2

    3

    3

    1 1

    )(

    )(

    asasasasR

    sX

    )()()()( 1012

    2 sXbsbsbsCsY

    322110)( xbxbxbty

    Transfer function;

  • 7/30/2019 UBXFKZNP_5549

    113/120

    equivalent block

    diagram.

    decomposedtransfer function

    Converting from state space to a transfer function

  • 7/30/2019 UBXFKZNP_5549

    114/120

    DuCxy

    BuAxx

    Given the state and output equations

    Take the Laplace transform assuming zero initial conditions:

    (1)

    (2)

    Solving for in Eq. (1),

    or(3)

    Substitutin Eq. (3) into Eq. (2) yields

    The transfer function is

    )()()(

    )()()(

    sss

    ssss

    DUCXY

    BUAXX

    )(sX

    )()()( sss BUXAI

    )()()( 1 sss BUAIX

    )()()()( 1 ssss DUBUAICY

    )(])([ 1 ss UDBAIC

    DBAICU

    Y 1)(

    )(

    )(s

    s

    s

    Ex. Find the transfer from the state-space representation

  • 7/30/2019 UBXFKZNP_5549

    115/120

    u

    0

    0

    10

    321

    100

    010

    xx

    x001y

    321

    10

    01

    321100

    010

    0000

    00

    )(s

    s

    s

    ss

    s

    s AI

    Solution:

    123

    12

    31

    1323

    )det()()( 23

    2

    2

    2

    1

    sss

    sss

    sss

    sss

    ssadjs

    AIAIAI

    123

    )23(10

    )(

    )(23

    2

    sss

    ss

    s

    s

    U

    Y

  • 7/30/2019 UBXFKZNP_5549

    116/120

    116

  • 7/30/2019 UBXFKZNP_5549

    117/120

    117

  • 7/30/2019 UBXFKZNP_5549

    118/120

    118

  • 7/30/2019 UBXFKZNP_5549

    119/120

    Output Eq. modifies to

    119

    Invariance of Eigenvalues

  • 7/30/2019 UBXFKZNP_5549

    120/120