Tutorial on Seepage Flow Nets and Full Solution Chapter 1

Embed Size (px)

Citation preview

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    1/13

       Assignment 1 . Flownet Sketching and Interpretation for a Dam

    a dam, shown in figure below and in Appendix 1, retains 6 m of water. a

    sheet pile wall (cutoff curtain) on the upstream side, which is used to reduce

    seepage under the dam, penetrates 4 m into a thick pervious layer of soil.below the that pervious layer, is a a thick deposit of practically impervious

    clay. assume the pervious layer is a homogeneous and isotropic.

     Your Tasks

    (a) draw the flow net under the dam on Appendix I.

    (b) determine the flow rate under the dam if the equivalent hydraulic

    conductivity is 0.0004 cm/s.

    (c) calculate and draw the porewater pressure distribution at the base

    of the dam.

    (d) determine the uplift force.

    (e) determine and draw the porewater pressure distribution on the

    upstream and downstream faces of the sheet pile wall.

    (f) determine the resultant lateral force on the sheet pile wall due tothe porewater.

    (g) determine the maximum hydraulic gradient.

    (h) will piping occur if the void ratio of the pervious layer is 0.6?

    (i) what is the effect of reducing the depth of penetration of the sheet

    pile wall?

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    2/13

      Your Tasks

    (a) draw the flow net under the dam on Appendix I.

    (b) determine the flow rate under the dam if the equivalent hydraulic

    conductivity is 0.0004 cm/s. your solution 

    (i) the difference between upstream and downstream water level

    elevation, H is

    (ii) Nd is

    (iii) Nf  is

    (iv) the flow rate

    d

    Nq k H

    N

     

    (c) calculate and draw the porewater pressure distribution at the base

    of the dam.

     your solution 

    (i) the equal intervals

    dam width, B

    n

     

     x

     

    (ii) the head loss, h, between each consecutive pair of

    equipotential lines

    d

    Hh

    N

     

    (iii) the porewater pressure at each nodal point can be easily

    determine by creating a table.

     Table 1 

    (d) determine the uplift force.

    Graph 1 

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    3/13

     Table 1

    under base of dam . measured from point x  (m)

     x (m)  0 1.75 3.50 5.25 7.00 8.75 10.50 12.25 14 15.75 17.5

    Nd (m)

    H (m)

    h (m)

    Nd  h

    h z (m)

    hP (m)= H - NdH - h z

    u (kPa) = hp w

     x . convenient number of equal intervals; Nd . number of equipotential lines; H . the difference between upstream

    and downstream water level elevation; h . the head loss between each consecutive pair of equipotential lines; hz .

    the elevation head; hP . the pressure head; u . porewater pressure head.

    Graph 1

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    4/13

     Appendix I

    6 m

    sheet pile

    1.25 m

    4 m

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    5/13

     

    Tutorial 1 . Flownet Sketching and Interpretation for a Dam

    redo the previous problem on Appendixes II and III.

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    6/13

     Appendix II

    6 m

    1.25 m

    4 m

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    7/13

     Appendix III

    6 m

    1.25 m

    4 m

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    8/13

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    9/13

    51© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

    Chapter 8

    8.1 Eq. (8.14):

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ +

    =

    2

    2

    1

    11

    112

     H 

     H 

    k  H 

    k hh  

    ( )   ⎟ ⎠

     ⎞⎜⎝ 

    ⎛  +

    =

    cm15

    cm/sec

    cm10

    cm/sec0.004cm10

    cm/sec)cm)(0.004(20cm8

    2k  

    k 2 = 0.009 cm/sec 

    8.2 The flow net is shown.

    k  = 4 × 10-4 cm/sec

     H  =  H 1 –  H 2 

    = 6.0 – 1.5 = 4.5 m.

    So

     /m/daym1077.76 36-×=

    ×=

    ⎟ ⎠ ⎞

    ⎜⎝ ⎛    ×⎟

     ⎠

     ⎞⎜⎝ 

    ⎛   ×=

     /m/secm109

    8

    45.4

    10

    104

    36

    2

    4

    q

     

    8.3 The flow net is shown.

     N  f  = 3;  N d  = 5

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

     f 

     N 

     N kH q  

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    10/13

    52© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

     /m/daym0.5183=×=⎟

     ⎠ ⎞

    ⎜⎝ ⎛ −⎟

     ⎠

     ⎞⎜⎝ 

    ⎛    ×=   −

    /m/secm1065

    3)5.03(m/sec

    10

    104 362

    4

    q  

    8.4 Based on the notations in Figure 8.10:

     H  = (4 – 1.5) m = 2.5 m; S  =  D = 3.6 m; T  ' =  D1 = 6 m; S /T 

     ' = 3.6/6 = 0.6

    From the figure, 44.0≈kH 

     /m/daym0.38 3=⎟ ⎠

     ⎞⎜⎝ 

    ⎛ ×××

    ×=

    m/day24606010

    104)5.2)(44.0(

    2

    4

    q  

    8.5 The flow net is shown.

     /m/daym7.2 3=⎟ ⎠ ⎞

    ⎜⎝ ⎛ 

    ⎟ ⎠ ⎞

    ⎜⎝ ⎛  ×××=⎟⎟

     ⎠

     ⎞⎜⎜⎝ 

    ⎛ =

    12

    5)10(m/day246060

    10

    002.02

     f 

     N 

     N kH q  

    8.6 Refer to the flow net given in Problem 8.5 and the figure on the next page.

    The flow net has 12 potential drops. Also,  H  = 10 m. So the head loss for each

    drop = (10/12) m. Thus,

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    11/13

    53© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

    Pressure head at  D = (10 + 3.34) – (2)(10/12) = 11.67 m

    Pressure head at  E  = (10 + 3.34) – (3)(10/12) = 10.84 m

    Pressure head at F  = (10 + 1.67) – (3.5)(10/12) = 8.75 m

    Pressure head at G = (10 + 1.67) – (8.5)(10/12) = 4.586 m

    Pressure head at  H  = (10 + 3.34) – (9)(10/12) = 5.84 m

    Pressure head at  I  = (10 + 3.34) – (10)(10/12) = 5 m

    The pressure heads calculated are shown in the figure. The hydraulic uplift force

     per unit length of the structure can now be calculated to be

    kN/m1717.5=

    ++++=

    ⎥⎥

    ⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢

    ⎟ ⎠ ⎞⎜

    ⎝ ⎛    ++⎟

     ⎠ ⎞⎜

    ⎝ ⎛    ++⎟

     ⎠ ⎞⎜

    ⎝ ⎛    ++

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛    ++⎟

     ⎠

     ⎞⎜⎝ 

    ⎛    +

    =

    =

    )05.971.816.12236.168.18)(81.9(

    )67.1(2

    584.5)67.1(2

    84.5586.4)32.18(2

    586.475.8

    )67.1(2

    754.884.10)67.1(

    2

    84.1067.11

    )diagram)(1head pressuretheof area(wγ  

     

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    12/13

    54© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

    8.7 The flow net is shown.  N  f  = 3;  N d  = 5.

     /m/daym2.13≈×=

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ =⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ −

     ⎠

     ⎞

    ⎝ 

    ⎛ =

     ⎠

     ⎞

    ⎝ 

    ⎛ =

    −−

    /m/secm10429.2

    14

    4)5.8)(10(

    14

    4)5.110(

    10

    10

    35

    5

    2

    3

     f 

     N 

     N kH q

     

    8.8 For this case, T  ' = 8 m; S  = 4 m;  H  =  H 1 –  H 2 = 6 m;  B = 8 m; b =  B/2 = 4 m.

    a. 5.08

    4==

    ′T 

    S ;  x = b –  x′ = 4 – 1 = 3 m; 5.0

    8

    4 ;75.0

    4

    3==

    ′−=

    b

    b

     x 

    From Figure 8.11, q/kH  = 0.37.

     /m/daym1.923≈⎟

     ⎠ ⎞

    ⎜⎝ ⎛  ×××= )6(246060

    10

    001.0)37.0(

    2q  

     b. 5.04

    2 m;224 ;5.0 ;5.0   ===−=′−==

    ′=

    ′   b

     x xb x

    b

    S . So q/kH  = 0.4.

     /m/daym2.07 3≈⎟ ⎠ ⎞

    ⎜⎝ ⎛  ×××= )6(246060

    10

    001.0)4.0(

    2q  

  • 8/20/2019 Tutorial on Seepage Flow Nets and Full Solution Chapter 1

    13/13

    55© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

    8.9

    α 1 = 35°; α 2 = 40º;  H  = 7 m; Δ = 7 cot

     35 = 10 m. 0.3Δ = 3 m.

    m2.24334cot)710(5)40)(cot10(

    Δ3.0cot)(cot 11121

    =+−++=+−++=   α α    H  H  L H d   

    m94.1

    40sin

    7

    40cos

    2.24

    40cos

    2.24

    sincoscos

    22

    2

    2

    2

    2

    2

    2

    2

    =

    ⎟ ⎠

     ⎞⎜⎝ 

    ⎛ −⎟

     ⎠

     ⎞⎜⎝ 

    ⎛ −=−−=

    α α α 

     H d d  L

     

     /m/daym0.2713≈×=

    ⎥⎦

    ⎤⎢⎣

     ⎠

     ⎞

    ⎝ 

    ⎛    ×==

    /sec/mm10139.3

    )40)(sin40(tan)94.1(

    10

    103sintan

    36

    2

    4

    22   α α kLq

     

    8.10 From Problem 8.9, d  = 24.2 m;  H  = 7 m; α 2 = 40º

    ;46.37

    2.24==

     H 

    d  m ≈ 0.25 (Figure 8.14)

    m2.7240sin

    )7)(25.0(sin 2

    ===α 

    mH  L  

     /m/daym0.2913≈×=

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛    ×==

    /sec/mm1037.3

    )40)(sin72.2(10

    103sin

    36

    2

    2

    4

    2

    2α kLq