64
© 2006 ANSYS, Inc.  All rights reserved. 1 ANSYS, Inc. Proprietary Turbulence Modelling: LES & DES Dr Aleksey Gerasimov Senior CFD Engineer Fluent Europe Ltd

Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

  • Upload
    vudat

  • View
    231

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 1 ANSYS, Inc. Proprietary

Turbulence Modelling:LES & DES

Dr Aleksey GerasimovSenior CFD EngineerFluent Europe Ltd

Page 2: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 2 ANSYS, Inc. Proprietary

Outline

• What is LES?

• Why LES?

• What about the cost?

• What does FLUENT offer

• Best-practice LES with FLUENT

• Closing Remarks

Page 3: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 3 ANSYS, Inc. Proprietary

What is LES?LES: Basic Concepts (1)

• Turbulent flow consists of eddies (structures) with wide range of length and time scales.

• In LES, large, energy-carrying eddies are directly computed (resolved), and the remaining smaller eddies are modeled.

Page 4: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 4 ANSYS, Inc. Proprietary

LES: Basic Concepts (2)

Page 5: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 5 ANSYS, Inc. Proprietary

LES: Filtering - Decomposition

E

Energy spectrum against the length scale

u x , t = u x , t resolved scale

u ' x , t subgrid scale

u x , t

f

u ' x , t

AnisotropicFlow dependent

IsotropicHomogeneousUniversal

Page 6: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 6 ANSYS, Inc. Proprietary

LES: Filtering of a Variable

• A random variable, ϕ (x), is filtered using a space­filter function, G

• With the top­hat filter (among others)

• The filtered variable becomes

φ x =∫D

φ x 'G x , x '

d x '

1 /V       for  { x'∈ν

¿

G x , x ' =    {0          otherwise¿

φ x =1V∫ν

φ x 'd x ' ,        { x

'

∈V ¿

Page 7: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 7 ANSYS, Inc. Proprietary

LES: Filtered Navier-Stoke Equations

• Filtering the original Navier­Stokes equations gives  filtered Navier­Stokes equations that are the governing equations in LES.

∂u i

∂ t∂ui u j

∂ x j

=−1ρ

∂ p∂ x i

∂ x j ν∂ ui

∂ x j −∂τ ij

∂ x j

τij≡ui u j−ui u j

∂u i

∂ t∂ ui u j

∂ x j

=−1ρ

∂ p∂ x i

∂ x j ν∂ ui

∂ x j N­S equation

Filtered N­S equation

Needs modelling

Sub­grid scale (SGS) stress

Filter

Page 8: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 8 ANSYS, Inc. Proprietary

Why LES? - Rationales

• Large eddies are responsible for the transports of momentum, energy, and other scalars.

• Large eddies are anisotropic, subjected to history effects, and are strongly dependent on boundary conditions, which makes their modelling difficult.

• Small eddies tend to be more isotropic and less flow­dependent (universal), which makes their modelling easier.

Page 9: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 9 ANSYS, Inc. Proprietary

Why LES Other Prediction Methods

• Different approaches to make turbulence computationally tractable:

– DNS: Direct Simulation. – RANS: Reynolds average (or time or ensemble)– LES: Spatially average (or filter)

DNS,3D unsteady

RANS, 2D or 3D steady or unsteady

LES,3D unsteady

Page 10: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 10 ANSYS, Inc. Proprietary

Why LES?

• Some applications need explicit computation of unsteady fields.

  

– Bluff body aerodynamics– Aerodynamically generated noise (sound)– Fluid­structure interaction– Combustion instability– …– …

Page 11: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 11 ANSYS, Inc. Proprietary

Why LES? - Examples Bluff-Body Aerodynamics

• Unsteadiness in the flow due to large eddies (e.g., unsteady  separation, vortex shedding) potentially impacts:

– Maneuverability (handling quality) of vehicles – Safety & comfort (wake of buildings and ships)– Unsteady loading on structures (r.m.s. forces and 

moments, frequency contents)• Buildings• Bridges

Page 12: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 12 ANSYS, Inc. Proprietary

Why LES? – ExamplesAerodynamic Noise

• Flow unsteadiness is the very source of aerodynamic noise.

Contours of surface pressure on a landing  gear PSD of surface static pressure

Page 13: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 13 ANSYS, Inc. Proprietary

Why LES? - Examples Aerodynamic Noise – cont’d

flow

Iso­surface of the second­invariant of the deformation tensor on a landing gear

Page 14: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 14 ANSYS, Inc. Proprietary

Why LES? – ExamplesFluid/Structure Interaction

Pressure response at three points on a 35 mm radius

100

105

110

115

120

125

130

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Seconds

Pas

cals

Housing­35mm

Disc­35mm, top

Disc­35mm, bottom

Pressure response at three points on outside diameter of the disc

180

190

200

210

220

230

240

250

260

270

280

0 0.005 0.01 0.015 0.02

SecondsP

asca

ls

Housing­OD of disc

Disc­OD, top

Disc­OD, bottom

Spinning disk inside a cylindrical  enclosure (D = 95mm, N = 10,000 rpm)

• Unsteady fluid­dynamic loading causes dynamic response of structures

r/r0 = 0.35

r/r0 = 1.0

Page 15: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 15 ANSYS, Inc. Proprietary

Why LES? Why Not Unsteady RANS?

• URANS with “good” turbulence models can occasionally predict a regular vortex­shedding (“largest” scale), offering essentially VLES.

• Yet URANS fall sort of capturing the remaining large scales.

URANS with SST k­ω model LES

Page 16: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 16 ANSYS, Inc. Proprietary

Why LES?Difficulties with RANS (1)

• RANS­based models often fail to predict even time­averaged quantities.

– Inability to model the physics of large­scale structures in transporting momentum and scalars

Dump combustor 

(ReD = 10,000)

Page 17: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 17 ANSYS, Inc. Proprietary

Why LES?Difficulties with RANS (2)

• Large­scale structures mainly contributes to the mixing

Iso­surface of velocity magnitude colored by 

strain­rate

Page 18: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 18 ANSYS, Inc. Proprietary

What About the Cost?LES is More Expensive

• LES always requires transient 3­D solutions to the filtered N­S equations

 • Needs the mesh and the time­step sizes sufficiently 

fine to resolve the energy­containing eddies • The cost of resolving near­wall region in high­Re 

wall­bounded flows is very high

• Compared to DNS (~Ret3), the cost of LES 

increases much more slowly with Ret or remains largely independent of Ret depending on whether or not near­wall region is resolved

Page 19: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 19 ANSYS, Inc. Proprietary

What About the Cost?Mesh Resolution (1)

• The mesh resolution determines the fraction of turbulent kinetic energy directly resolved

ln 2π

ln E

Energy spectrum against the length scale

ln 2π

f

AnisotropicFlow dependent

IsotropicHomogeneousUniversal

Page 20: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 20 ANSYS, Inc. Proprietary

What About the Cost?Mesh Resolution (2)

• Suppose you want to resolve 80% of TKE.• Then, we need to resolve the eddies whose sizes are larger than 

roughly half the size of the integral length scale (    ).

k k

/ 0

0.0

1.0

0.1

6.1

0.8

0.420.16

1.66.10/ 0

k =0 .1 k

k =0 . 5 k

k =0 .8 k

Cumulative TKE against length­scale of eddies based on the Kolmogorov’s energy spectrum

0.42

0

k =0 . 9 k

Page 21: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 21 ANSYS, Inc. Proprietary

What About the Cost?Time-Step Size

• The time­step size, Δt, should be small enough to resolve the time­scale, τ, of the smallest resolved eddies

• As  τ ~ Δx / U , it correspond to approximate value of Courant numer  CFL = 1  (where U is the velocity scale of the flow)

• New in 6.2: CFL post­treatment

CFL=U t

x≈1. 0      ⇒      t=

xU

Page 22: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 22 ANSYS, Inc. Proprietary

What About the Cost?An Example

Lab­scale mixing tanks

– Tank dimension : L = 300 mm– Integral length scale l0 ~ L/5 ~ 60 mm– Suppose you have a 1003 cell mesh

• This gives an average cell size of Δx = 3 mm.

• l0 = 20 Δx

Page 23: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 23 ANSYS, Inc. Proprietary

What About the Cost?Wall-Bounded Flows (Pope, 2000)

• “Near­wall resolving” approach– Turbulence length scale becomes smaller in near­

wall region.– Resolving the bulk of the energy requires a very 

fine mesh near the wall.– The cost increases as a power of the Reynolds 

number.– Too expensive for high­Re wall­bounded flows

• “Near­wall modelling” approach – An Alternative – Wall functions (e.g., laws­of­the­wall)– Zonal RANS/LES hybrid approaches (e.g., DES)

Page 24: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 24 ANSYS, Inc. Proprietary

What Does FLUENT Offer?LES Capability in FLUENT

• Underpinnings– Numerics– SGS turbulence models– Post­processing

• FLUENT’s LES     capability aimed at

– Accuracy– Efficiency– Robustness– Usability

Page 25: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 25 ANSYS, Inc. Proprietary

LES Capability in FLUENT Numerics - Spatial Discretization (1)

• Spatial accuracy has been greatly improved in recent releases.– Major upgrades

• Node­based gradient scheme (6.1)• High­order reconstruction of “convecting” velocity (6.2)

– Benefits mostly the cases involving unstructured (tet, hybrid) meshes

• Numerical diffusion ought to be minimized in LES.– Remember we set out to resolve eddies.– RANS vs. LES

ν t ,RANS >>νt ,SGS

Page 26: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 26 ANSYS, Inc. Proprietary

LES Capability in FLUENT Numerics - Spatial Discretization (2)

• Discretization of convection terms is the most critical for LES

• FLUENT offers:

– High­order upwind schemes (SOU, QUICK, MUSCL)– Bounded central differencing (BCD) scheme (new in 6.2, seg. solver 

only, the default LES­convective scheme in 6.2)

– Low­diffusion flux (LDF) scheme (new in 6.2, coupled solver only, default LES­convective scheme in 6.2)

– Central differencing (CD) scheme (seg. solver only)

• Central differencing (CD) gives the least numerical diffusion and thus the best accuracy

• Upwind schemes are too diffusive for LES and should be avoided whenever possible

Page 27: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 27 ANSYS, Inc. Proprietary

LES Capability in FLUENT Example: CD vs. QUICK Scheme (1)

Surface­mounted cube in a channel (Martinuzzi & Tropea, 1993)

Page 28: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 28 ANSYS, Inc. Proprietary

LES Capability in FLUENT Example: CD vs. QUICK Scheme (2)

Central­differencing

QUICK

Separation and reattachment points predicted by FLUENT and others 

1.701.23Breuer et al. LES

2.401.26FLUENT (LES + QUICK)

1.781.18FLUENT (LES + CD)

1.611.04Exp. data (Martinuzzi & Tropea (1993)

XRXF

Time­averaged streamlines on the mid­plane 

Page 29: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 29 ANSYS, Inc. Proprietary

LES Capability in FLUENT Numerics - Spatial Discretization (3)

• The CD scheme can become unstable, giving unphysical oscillations (wiggles) for high­Re flows.

• The BCD scheme detects and removes the wiggles.

bounded central differencing 

Flow around 2­D section of a landing gear

central differencing 

Page 30: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 30 ANSYS, Inc. Proprietary

LES Capability in FLUENTNumerics - Spatial Discretization (4)

• The BCD scheme has much lower numerical diffusion than high­order upwind schemes.

Taylor’s inviscid vortex flow – 2­D periodic array of vortices

Evolution of total kinetic energy

Page 31: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 31 ANSYS, Inc. Proprietary

LES Capability in FLUENT Example: CD vs. BCD

Surface­mounted cube in a channel (Martinuzzi & Tropea, 1993)

Page 32: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 32 ANSYS, Inc. Proprietary

LES Capability in FLUENTNumerics- Transient Algorithm (1)

• Iterative Time­Advancement (ITA) schemes– Has been the workhorse for unsteady flow calculations in FLUENT 

segregated solver– No splitting error– Costly due to many outer (velocity­pressure) iterations – SIMPLE, SIMPLEC, PISO

• Non­Iterative Time­Advancement (NITA) schemes– New in 6.2 (segregated solver only)– Only one outer iteration per time­step– Splitting error commensurate with the truncation error ( ~ O(Δt2) )– Two flavours

• Fractional­step method • PISO

Page 33: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 33 ANSYS, Inc. Proprietary

LES Capability in FLUENTTransient Algorithm (2) – Example

Taylor’s VortexComparison of the fully­iterative (SIMPEC) and non­iterative time­

advancement schemesRe = 1

Page 34: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 34 ANSYS, Inc. Proprietary

LES Capability in FLUENTTransient Algorithm (3) – Example

Green’s Vortex

Dissipation rate integrated over the volume

Comparison of NITA (SIMPEC) and NITA/FSM schemes

Re = 100 32 x 32 x 32 cells

Page 35: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 35 ANSYS, Inc. Proprietary

LES Capability in FLUENTTransient Algorithm (4) – Example

Vortex­Shedding from a Square CylinderComparison of NITA (SIMPEC) and NITA/FSM scheme

ReH = 22,000 (Lyn, 1995), RNG k­ε model

Page 36: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 36 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

• FLUENT 6.2 offers

– Smagorinsky’s model– WALE model (new in 6.2)– Dynamic Smagorinsky 

model (new in 6.2) – Dynamic subgrid kinetic 

energy transport model (new in 6.2)

Page 37: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 37 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

• Simple algebraic (0 ­ equation) model 

• Cs = 0.1 ~ 0.2• The major shortcoming is that there is no Cs universally 

applicable to different types of flow• Difficulty with transitional (laminar) flows• An ad hoc damping is needed in near­wall region

τij−13τkk δij=−2 C s

2∣S∣S ij

=∇1/3 , S≡2Sij S ijwith

Smagorinsky’s Model

Page 38: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 38 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

• Wall­Adapting Local Eddy­Viscosity model• Algebraic (0 ­ equation) model – retains the simplicity 

of Smagorinsky’s model

• The WALE SGS model adapts to local near­wall flow structure– Wall damping effects are accounted for without using the 

damping function explicitly

νSGS=C s

2 S ijd S ij

d 3/2

S ijS ij

5/2S ij

d S ijd

5/4

near­wall modification

WALE Model

Page 39: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 39 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

• Example– Simulate the mechanism associated with drag reduction using 

oscillating walls (Ret=395, ReH=20 000)– The wall is forced to oscillate in the span­wise direction with                                 W+=A+ sin (2 π t+/T+)– Interaction between the stokes layer and the near­wall structures

30.422.10.LES (FLUENT)

30.622.89.4DNS (Choi et al)

A+=20A+=10A+=5

Reduction rate (%) in wall­shear

WALE Model (cont’d)

Page 40: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 40 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

• Based on the similarity concept and Germano’s identity (Germano et al., 1991; Lilly, 1992)

• The model parameter  (Cs ) is automatically adjusted using the resolved velocity field

• FLUENT implementation– Locally dynamic model– Adapted for unstructured meshes (test­filter)

• Overcomes the shortcomings of the Smagorinsky’s model– Can handle transitional flows– The near­wall (damping) effects are taken into account

Dynamic Smagorinsky’s Model

Page 41: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 41 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

• Kim and Menon (1997)• One­equation (for SGS kinetic energy) model

• Like the dynamic Sgamorinsky’s model, the model constants (Ck, Cε) are automatically adjusted on­the­fly using the resolved velocity field. 

• The dynamic procedure has stronger arguments than the dynamic Smagorinsky’s model. 

τij−13τkk δij=−2Ck ksgs

1/2 S ij

∂ ksgs

∂ t∂u j ksgs

∂ x j

=−τij

∂ ui

∂ x j

−C ε

ksgs3/2

∂ x j ν sgs

σk

∂ ksgs

∂ x j

Dynamic Subgrid KE Transport Model

Page 42: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 42 ANSYS, Inc. Proprietary

LES Capability in FLUENT Subgrid-Scale (SGS) Viscosity Models

Channel Flow (Ret = 180)72 x 72 x 72 cells

Page 43: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 43 ANSYS, Inc. Proprietary

Example: LES of the Flow Past a Square Cylinder (ReH = 22,000)

Iso­contours of instantaneous vorticity magnitude

0.1302.1 – 2.2Exp.(Lyn et al., 1992)0.1342.22Dynamic TKE0.1302.28Dynamic Smag.

StCD

CL spectrum

Page 44: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 44 ANSYS, Inc. Proprietary

Example: LES of the Flow Past a Square Cylinder (ReH = 22,000)

Streamwise mean velocity along the wake centerline

Streamwise normal stress along the wake centerline

Page 45: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 45 ANSYS, Inc. Proprietary

• Smagorinsky model (Smagorinsky, 1963)– Need ad­hoc near wall damping

• WALE model (Nicoud & Ducros 1999)– Correct asymptotic near wall behaviour 

• Dynamic model (Germano et al., 1991)– Local adaptation of the Smagorinsky constant

• Dynamic sub­grid kinetic energy transport model (Kim & Menon 2001)

– Robust constant calculation procedure– Physical limitation of backscatter 

2

t sv C S

3/ 2

2

5/ 45/ 2

d dij ij

t s d dij ij ij ij

S SC

S S S S

vt=Ck ksgs1/2

∂ ksgs

∂ t∂u j ksgs

∂ x j

=−τij

∂ui

∂ x j

−C ε

ksgs3/2

∂ x j ν sgs

σk

∂ ksgs

∂ x j

12

3ij kk ij t ijv S

2

t Dv C S

LES Capability in FLUENT SGS Models: Summary

Sub­grid stress : turbulent viscosity

Page 46: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 46 ANSYS, Inc. Proprietary

LES Capability in FLUENT LES for Combustion Simulation

• LES is compatible with all FLUENT’s turbulent combustion models

– Eddy­dissipation/finite­rate– Non­premixed combustion model (mixture­fraction/PDF)– Partially­premixed or premixed combustion model (Reaction­

progress variable)– PDF transport

• The dynamic procedure is not implemented yet for scalar transport equations 

 

– Subgrid­scale turbulent diffusivities are computed with Prandtl (Schmidt) number.

Page 47: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 47 ANSYS, Inc. Proprietary

LES Capability in FLUENT Example: Combustion Simulation

LES for Sandia Flame­D using mixture­fraction/PDF model 

Instantaneous temperature field

Mean temperature (in K) along the centreline 

Page 48: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 48 ANSYS, Inc. Proprietary

LES Capability in FLUENTInflow Boundary Conditions

• It is often important to specify a realistic turbulent inflow velocity for accurate prediction of the (downstream) flow

• The random­number based inflow boundary condition in 6.1 is superseded by two new methods in 6.2

– Spectral synthesizer– Vortex method

u i x ,t = U i x time−averaged

ui' x , t

coherentrandom

Page 49: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 49 ANSYS, Inc. Proprietary

LES Capability in FLUENTInflow Boundary Conditions

• Largely based on the work of Celik et al.(2001)

• Able to synthesize anisotropic, inhomogeneous turbulence from RANS results (k­ε, k­ω, and RSM fields)

• The velocity­field satisfies the continuity by design.

Spectral Synthesizer (1)

Page 50: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 50 ANSYS, Inc. Proprietary

LES Capability in FLUENTInflow Boundary and Conditions

Spectral Synthesizer (2)

Speziale, C.G., AIAA J., Vol.36, No.2, 1998

A.Smirnov,I.Celik,S.Shi, JFE, Vol.123, pp.359­371, 2001

Page 51: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 51 ANSYS, Inc. Proprietary

LES Capability in FLUENT Inflow Boundary Conditions

• In essence, vorticity­transport is modeled by distributing and tracking many point­vortices on a plane (Sergent, Bertoglio) 

• Velocity field computed using the Biot­Savart’s law 

u x , t =−1

2π∬ x− x ' ×ω x ' ez

∣x−x '∣2 d x '

ω x , t =∑k=1

N

Γk t η ∣x−xk∣, t

Vortex Method  

Page 52: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 52 ANSYS, Inc. Proprietary

LES Capability in FLUENT Inflow Boundary Conditions

Vortex Method ­ Example

Computational Domain

Flow

3­D Wavy Channel (ReH = 10,600)

Page 53: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 53 ANSYS, Inc. Proprietary

LES Capability in FLUENTInflow Boundary Conditions

Vortex Method – Example (cont’d)

Vortex Inlet• Umean

• k,ε (...)

Instantaneous field

Mean field

Page 54: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 54 ANSYS, Inc. Proprietary

LES Capability in FLUENT Inflow Boundary Conditions

Vortex Method – Example (cont’d)

 

Random number

Periodic

VM

xr

5.2 H   VM7.7 H   Random

5.0 H      Periodic4.7 HExp.

LES predictions of the reattachment point by different 

methods

Exp

Page 55: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 55 ANSYS, Inc. Proprietary

LES Capability in FLUENT Initial Conditions

• Initial condition for velocity field is generally not important  for statistically steady­steady flows

• Patching a realistic turbulent velocity field can however help shorten the simulation time substantially to get to a statistically steady state

• The same spectral synthesizer can be used to superimpose turbulence on top of the mean velocity field (new in 6.2).

Velocity field generated by turbulence synthesizer for a homogeneous turbulence

Page 56: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 56 ANSYS, Inc. Proprietary

LES Capability in FLUENT Detached Eddy Simulation (DES)

• Motivation– Near­wall­resolving LES is prohibitively expensive for high­Re wall 

bounded flows– Using RANS in near­wall regions would significantly mitigate the 

mesh resolution requirement, reducing the cost

• FLUENT offers a RANS/LES hybrid model based on S­A turbulence model (Spalart et al., 1997)

• One­equation SGS turbulence model– In equilibrium, it reduces to an algebraic model

D νDt

=Cb1S ν−Cw1 f w

νd

2

1σ ν [ ∂

∂ x j { ρ ν ∂ν

∂ x j }. ..]d=min dw , CDES

ν≈ CDES 2 S

 LES region

 RANS region

Page 57: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 57 ANSYS, Inc. Proprietary

LES Capability in FLUENT Detached Eddy Simulation (DES)

Page 58: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 58 ANSYS, Inc. Proprietary

LES Capability in FLUENT DES Example: GTS Body (1)

• Simplified truck configuration tested at the NASA Ames wind tunnel.

• ReL = 2 ∙ 106

• Computed with 11M­cell hex mesh• Zero­yaw (head­wind)

Page 59: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 59 ANSYS, Inc. Proprietary

LES Capability in FLUENT DES Example: GTS Body (2)

• Drag prediction

0.253Predicted (DES)

0.250Measured

CD

Page 60: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 60 ANSYS, Inc. Proprietary

LES Capability in FLUENT Postprocessing

• Time­Averaging– Mean values of the 

solution variables.– RMS values of the 

solution variables

• Built­in FFT– Data conditioning

• Pruning• Windowing

– Power spectral density of arbitrary variables

Page 61: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 61 ANSYS, Inc. Proprietary

Best Practice LES in FLUENT General Tips

• Mesh– Use hex meshes for the best accuracy– Take advantage of hybrid meshing capability and local mesh 

refinement

• Spatial discretization– Stick with CD or BCD for momentum– Use the node­based gradient option– Use the upwind schemes (QUICK, MUSCL, SOU) for scalars

• Time discretization– Use the second­order scheme– Use the NITA/fractional­step method for incompressible or weakly 

compressible flows– With the fully­iterative scheme, use SIMPLEC (jack up URF’s – 0.9 

for pressure and momentum equations)

• SGS modelling– The dynamic Smagorinsky’s model is a good starting point.– Consider DES for high­Re wall­bounded flows

Page 62: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 62 ANSYS, Inc. Proprietary

Best-Practice LES with FLUENTRecommended Procedure (1)

• Compute the mean flow with steady RANS

• Superimpose the synthesized turbulence on the mean flow      TUI: /solve/initialize/init­instantaneous­vel

• Switch to LES, select the SGS turbulence model of your choice

• Select the solver algorithm (e.g., ITA/NITA, FSM/PISO/SIMPLEC) and the discretization schemes

• Set the time­step (Δt) and adjust the solver parameters if needed (e.g., URF’s, convergence criteria)

• Set the monitors with relevant global (e.g., forces/moments) and local quantities (e.g., velocity, pressure) of your choice

• Set the autosave of the data files (e.g., every a few hundreds time­steps)

Page 63: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 63 ANSYS, Inc. Proprietary

Best-Practice LES with FLUENTRecommended Procedure (2)

• Save the viewgraphs of your choice for animation (contours of pressure, iso­surfaces of vorticity, second­invariant, etc.)

• Start the transient run and continue until a statistically steady state is reached

• Start sampling the data (to compute mean and r.m.s. values)     GUI: Solve/Iterate… (click on the “Data Sampling for Time Statistics” button) 

GUI: Solve/Initialize/Reset Statistics  to reset the data sampling

• Continue sampling for a sufficiently long period of time

• Post­process the results (mean, r.m.s., power spectra, etc.)

Page 64: Turbulence Modelling: LES & DES - Aerospace · PDF fileTurbulence Modelling: ... Taylor’s inviscid vortex flow ... – Has been the workhorse for unsteady flow calculations in FLUENT

© 2006 ANSYS, Inc.  All rights reserved. 64 ANSYS, Inc. Proprietary

Closing Remarks

• RANS­based turbulence models are still the workhorse for industrial CFD, and will be so for some time

• In the coming years, high­fidelity CFD will rely upon less “modelling” and more “simulation”

• LES is rapidly becoming feasible for industrial flows

• FLUENT has been significantly upgraded recently in numerics and subgrid­scale turbulence modelling

• Our goal is to ramp up the overall efficacy of LES to the level where LES becomes a useful tool for industrial applications.