71
IIA Paper 3A3 Fluid Mechanics II: Turbomachinery/HPH 1-1 Module 3A3 - Turbomachinery Prof Howard Hodson 1 Introduction 1.1 Definition A Turbomachine is a steady flow device (non-positive displacement) which creates/consumes shaft-work by changing the moment of momentum (angular momentum) of a fluid passing through a rotating set of blades. IIA Paper 3A3 Fluid Mechanics II: Turbomachinery/HPH 1-2 1.2 Examples of Turbomachines 1.2.1 Very Large Machines MHI 501 single shaft Gas Turbine

Turbo Machinery, Lecture Notes Physics Prof T P Hynes

Embed Size (px)

Citation preview

Page 1: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-1

Module 3A

3 - Turbom

achinery P

rof How

ard Hodson

1 Introduction 1.1 D

efinition

A T

urboma

chine is a

stea

dy flow de

vice (non-positive

displace

me

nt) which

crea

tes/consum

es sha

ft-work by cha

nging the m

ome

nt of mom

entum

(angula

r m

ome

ntum) of a

fluid passing through a

rotating se

t of blade

s.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-2

1.2 Exam

ples of Turbom

achines 1.2.1

Ve

ry La

rge M

achine

s

MH

I 501 single shaft Gas T

urbine

Page 2: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-3

Three Low

Pressure R

otors from a large steam

turbine (approx 150 M

W per rotor)

Ma

nufacture

rs of

large

ga

s turbine

s a

nd stea

m turbine

s for industrial pow

er

gene

ration include

• Alstom

• Mitsubishi

• Sie

me

ns

• Ge

nera

l Ele

ctric

All use

axia

l flow turbom

achine

s

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-4

1.2.2 A

ero E

ngines &

Ae

ro De

rivative

s

Big 4 m

anufa

cturers:

• Ge

nera

l Ele

ctric

• Pra

tt & W

hitney

• Rolls-R

oyce

• SN

EC

MA

All use

axia

l flow com

pressors a

nd axia

l flow turbine

s exce

pt for the

sma

llest of e

ngines (e

g helicopte

rs a

nd UA

Vs) w

hen ra

dial flow

compre

ssors are

used

Page 3: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-5

1.2.3 R

adia

l Turbom

achine

ry

Ma

ny types &

configurations

Most com

mon type

s

• centrifuga

l pump or com

pressor w

ith axia

l inflow a

nd radia

l outflow

• radia

l inflow-a

xial outflow

turbine

An industrial centrifugal com

pressor

A S

mall T

urbocharger

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-6

The K

aplan turbine has an radial flow

stator and an axial flow rotor

The F

rancis Turbine has an radial flow

stator and a radial-axial flow

rotor

Page 4: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-7

1.3 Aim

s of the Course

This course

aim

s to provide a

n understa

nding of the principle

s that gove

rn the fluid dyna

mic ope

ration

of axia

l and ra

dial flow

turboma

chines.

At the

end of this course

, you should be a

ble to

• Identify a

nd understa

nd the ope

ration of diffe

rent type

s of turboma

chinery.

• Ana

lyse turbom

achine

ry perform

ance

.

• Unde

rstand the

cause

s of irreve

rsibilities w

ithin the bla

de pa

ssage

s

• Ana

lyse com

pressible

flow through turbom

achine

s.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-8

1.4 What is in this course?

• 4 types of m

achine

s:

o A

xial com

pressors

o A

xial ga

s turbines a

nd axia

l stea

m turbine

s,

o C

entrifuga

l compre

ssors

o R

adia

l inflow-a

xial outflow

turbines

• Ana

lysis of the flow

in blade

rows a

nd stage

s (1D)

• Dyna

mic sca

ling, chara

cteristics of com

pressors a

nd turbine

• Com

pressible

Flow

Ma

chines

• Hub-T

ip varia

tions in flow prope

rties (2D

)

Page 5: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-9

1.5 Laboratory Experim

ent E

valua

tion of pump pe

rforma

nce

• me

asure

perform

ance

para

me

ters

• study effe

cts of Re

ynolds numbe

r

• exa

mine

the e

ffects of a

nd visualise

cavita

tion

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-10

1.6 Recom

mended B

ooks A

uthor T

itle

Shelf M

ark

Dixon, S

L

Fluid

me

chanics,

The

rmodyna

mics

of T

urboma

chinery,

TN

24

Cohe

n, H.,

Roge

rs, G.F

.C., a

nd S

ara

vana

muttoo, H

.I.H.

Ga

s Turbine

The

ory V

K 33

Cum

psty, N.A

. C

ompre

ssor Ae

rodynam

ics V

S 16

Rolls-R

oyce

The

Jet E

ngine

VN

36

Page 6: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-11

1.7 Notation

Ge

ome

tric & F

low P

ara

me

ters

Ax

Annulus a

rea

=

hR

RR

Ax

mean

2hu

b2casin

g2

)(

ππ

=−

=

Ax

Pa

ssage

are

a =

(blade

height) × (bla

de pitch)

A

Effe

ctive flow

are

a =

A = A

x cosα b

axia

l width of ra

dial im

pelle

r (i.e. bla

de spa

n) α

F

low a

ngle in a

bsolute co-ordina

te syste

m

F

low a

ngle in rota

ting co-ordinate

system

D

dia

me

ter (usua

lly me

an or tip)

ψ

stage

loading coe

fficient

h A

nnulus height, bla

de he

ight, span =

h

= r

casin

g – rh

ub

h e

nthalpy

m &

Ma

ss flow ra

te

Q

Volum

etric flow

rate

φ F

low coe

fficient =

UV

x (or

3D

& in “sca

ling” applica

tions) Λ

re

action

r R

adius

s pitch (spa

cing) of blade

s σ

slip factor

U

Bla

de spe

ed (usua

lly at m

ea

n radius) =

U

= 1/

2(Uca

sing +

Uh

ub )

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

1-12

V

Flow

velocity

Vx

Axia

l velocity

Ta

ngentia

l velocity

Ra

dial ve

locity V

θ ,rel

Ta

ngentia

l velocity in rota

ting co-ordinate

system

V

rel

Ve

locity in rotating co-ordina

te syste

m

S

uffices:

0 sta

gnation

1 inle

t to 1st blade

row

2 ca

scade

exit or 1st bla

de row

exit / 2nd bla

de ro

w inle

t 3

stage

exit / 2nd bla

de row

exit / 3rd bla

de row

inle

t m

, me

an

value

at m

ea

n radius

r ra

dial

rel

rela

tive fra

me

of refe

rence

(rotating fra

me

) x

axia

l y, θ

tange

ntial

Page 7: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-13

2 Basic C

oncepts 2.1 S

tagnation (total) and Static (T

rue Therm

odynamic) Q

uantities

wx

q

2 1

Co

ntrol

Volum

e

Assum

ing gravity ca

n be ne

glecte

d, applica

tion of the

SF

EE

to the a

bove give

s

+

+

=−

22

211

222

Vh

Vh

wq

x

Now

, the sta

gn

atio

n (total) spe

cific entha

lpy h0 is given by:

2

2 10

Vh

h+

so the S

FE

E ca

n be w

ritten:

01

02h

hw

qx

−=

In a turbom

achine

, the w

ork excha

nge occurs be

cause

of change

s in mom

entum

(velocity) so the

im

portance

of the kine

tic ene

rgy in the S

FE

E ca

nnot be

ignored. IIA

Paper 3A

3 Fluid M

echanics II: Turbom

achinery/HP

H

2-14

The

refore

, espe

cially w

hen w

e a

re de

aling w

ith individua

l stage

s (i.e. single

rotor+sta

tor combina

tions),

we

must spe

cify if the p, T

and h tha

t we

are

using a

re the

• stag

na

tion (tota

l) pressure

, tem

pera

ture a

nd specific e

nthalp

y or

• the sta

tic (ie true

therm

odynam

ic) pressure

, tem

pera

ture a

nd spe

cific entha

lpy.

For a

perfe

ct gas, the

static a

nd stagna

tion tem

per

ature

s T a

nd T0 are

rela

ted to h a

nd h0 by

2

2 10

0)

(V

TT

ch

hp

=−

=−

It is T0 ra

ther tha

n h0 that is m

ea

sured e

xperim

enta

lly. This ca

n be done

by m

ounting a the

rmocouple

inside

some

thing like a

Pitot tube

.

By w

orking in term

s of stagna

tion (total) qua

ntities

• kinetic e

nergy e

ffects a

re a

utoma

tically ta

ken ca

re of,

• ana

lyses a

re e

asie

r (sta

gn

atio

n quantitie

s are

ea

sier to m

ea

sure tha

n sta

tic quantitie

s).

Note

that if the

type is not spe

cified or im

plied,

it is usually sa

fer to a

ssume

that the

p, T a

nd h re

prese

nt the

stag

na

tion pre

ssure, sta

gn

atio

n tem

pera

ture a

nd sta

gn

atio

n specific e

nthalpy.

Page 8: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-15

2.2 The air-standard Joule (B

rayton) cycle T

he clo

sed a

ir-standa

rd Joule/B

rayton cycle

is the

• is the sim

plest m

odel of the

o

pe

n circuit gas turbine

• is the ba

sic standa

rd aga

inst which w

e a

ssess pra

ctica

l applica

tions

• is a ve

ry good mode

l of the a

ctual e

ngine

Assum

ptions:

• All proce

sses a

re re

versible

• cp a

nd γ are

constant a

round the cycle

• No pre

ssure cha

nge (i.e

. no losses) in the

hea

t exc

hange

rs

• In the com

pressors a

nd turbines, e

verything ha

ppens

so quickly that the

re is no tim

e for a

ny hea

t tra

nsfer, i.e

., they a

re

ad

iab

atic

In this course, w

e w

ill assum

e a

ll of the a

bove e

xce

pt that w

e w

ill often a

llow irre

versibilitie

s to occur.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-16

TurbineS

haft

CO

NT

RO

L SU

RFA

CE

2

1

3

4

QQ

inout

.. CW

.

W =

W -W

x

..

CT

.

Closed C

ircuit Gas T

urbine

Page 9: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-17

You should be

able

to show tha

t the e

fficiency is g

iven by

t

cycler 1

1−

whe

re r

t is the ise

ntropic tem

pera

ture ra

tio

γ

γ)1

(

4 3

1 2−

==

=p

tr

T T

T Tr

and r

p is the pre

ssure ra

tio

4 3

1 2

p p

p prp

==

For the

idea

l cycle

• ηcycle de

pends only on the

pressure

ratio rp .

(for a rea

l gas turbine

, it also de

pends on the

ratio 13

TT

).

• ηcycle incre

ase

s monotonica

lly with incre

asing

rp .

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-18

2.3 Irreversible Turbom

achines: Isentropic efficiencies W

e a

re use

d to dea

ling with the

se in the

context of e

ntire turbine

s (gas or ste

am

) or entire

compre

ssors.

How

eve

r,

• The

sam

e de

finitions can a

lso be a

pplied to individ

ual rotor+

stator com

binations

(i.e. sta

ges)

The

isen

trop

ic efficie

ncies a

re de

fined a

s the ra

tio of the

• the a

ctual w

ork and

• the ise

ntropic work

that occur be

twe

en

• the spe

cified inle

t conditions and

• the spe

cified e

xit pressure

The

refore

, espe

cially w

hen w

e a

re de

aling w

ith individua

l stage

s, we

must spe

cify if the p, T

and h th

at

we

are

using are

the

stag

na

tion (tota

l) or the sta

tic value

s.

Page 10: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-19

2.3.1 T

otal-T

otal Ise

ntropic Efficie

ncies

Although you m

ay not ha

ve re

alise

d it, in Pa

rt I you ha

ve be

en using sta

gnation (tota

l) quantitie

s to de

fine the

isentropic e

fficiencie

s. The

se a

re use

d w

hen

• the kine

tic ene

rgy of the flow

is very sm

all or

• whe

re the

kinetic e

nergy of the

flow le

aving one

com

ponent (e

g stage

) is not wa

sted by a

dow

nstrea

m com

ponent

Com

pressor

01Entropy s

02

h (or T)

02s

wis

w

0102

01s

02tt

hh

hh

work

actual work

ideal− −

=≡

η

Gas or S

team T

urbine

03

Entropy s

04

h (or T)

04s

w

wis

s04

03

0403

tth

hh

h w

orkideal w

orkactual

− −=

≡η

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-20

2.3.2 T

otal-S

tatic Ise

ntropic Efficie

ncies

We

use the

se de

finitions whe

n

• the kine

tic ene

rgy of the flow

lea

ving one com

ponen

t (eg sta

ge) is w

aste

d by a dow

nstrea

m

compone

nt

This m

ost often ha

ppens w

hen w

e w

aste

the e

xit kinetic e

nergy of a

n entire

turboma

chine, e

.g.

• in the e

xhaust duct of a

stea

m turbine

• whe

n a fa

n or pump e

xhausts dire

ctly into the a

tmos

phere

The

total-sta

tic efficie

ncy is alw

ays le

ss than the tota

l-total e

fficiency. T

he diffe

rence

is due to the

so-ca

lled le

avin

g lo

ss (i.e. the

exit K

E)

Page 11: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-21

Com

pressor

w

w

is, no exit KE

actual

Exit KE

01Entropy s

022

h (or T)

02s2s

0102

01s

2ts

hh

hh

work

actual work

ideal− −

=≡

η

Gas or S

team T

urbine

03

Entropy s

04

h (or T)

04s

w

w

is, no exit KE

actual

44s

P03

P04

P4

Exit KE

s4

03

0403

tsh

hh

h w

orkideal w

orkactual

− −=

≡η

Total-S

tatic Isentropic Efficiencies

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-22

2.3.3 E

xam

ple

Th

e in

let a

nd

exit co

nd

ition

s to a

turb

ine

are

:

inle

t: T

03 =

1000 K

P

03 =

2.0 bar

e

xit: T

04 =

874 K

P

04 =

1.2 bar

P

4 = 1.17 ba

r

Ca

lculate

both the tota

l-to-total a

nd total-to-sta

tic ise

ntropic efficie

ncies. A

ssume

the flow

is a p

erfe

ct ga

s with γ =

1.4.

total-to-tota

l: γ

γ)1

(

03

0403

04

=P P

TT

s =

4.

1)4

.0(

0.2

2.1

1000

=

864.2 K

928.0

2.864

1000874

1000 w

orkide

al w

orka

ctual

0403

0403

0403

0403

=− −

=− −

=− −

=≡

ss

ttT

T

TT

hh

hh

η

total-to-sta

tic: γ

γ)1

(

03 403

4

=P P

TT

s =

4.

1)4

.0(

0.2 17.1

1000

=

857.97 K

887.0

97.

8571000

8741000

work

idea

l work

actua

l

403

0403

403

0403

=− −

=− −

=− −

=≡

ss

tsT

T

TT

hh

hh

η

Page 12: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-23

2.4 The R

ankine Steam

Cycle

This is the

basis of a

lmost e

very pra

ctical ste

am

cycle

for large

scale

powe

r gene

ration.

4

3

2

1

Qin from

combu

stion gas

WP

WT

feed

pum

p stea

m turbine

steam

genera

tor

condenser

Qo

ut to cooling

water

.

..

.

03

s

T

04s 04

0201

You should a

lrea

dy know tha

t per unit m

ass of ste

am

circulating, the

fee

d pump w

ork input is given by

combining the

SF

EE

with Td

s = d

h − d

p/ρ a

nd assum

ing that the

wa

ter is incom

pressible

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-24

ρ

ηρ

ηη

pu

mp

s

pu

mp

pu

mp

sp

um

pp

pd

ph

hh

hw

0102

0201

0102

0102

1)

(−

≅=

−=

−=

whe

re η

pu

mp is the

total-tota

l isentropic e

fficiency of the

fee

d pump a

nd ρ is the de

nsity of wa

ter.

1

The

hea

t input in the boile

r and he

at re

jecte

d in the

condense

r are

given by

02

03h

hq

in−

= a

nd 01

04h

hq

ou

t−

=

The

turbine w

ork output is given by

)

(04

0304

03s

isen

trop

icT

hh

hh

w−

=−

whe

re η

isen

trop

ic is the tota

l-total ise

ntropic efficie

ncy of the w

hole

turbine.

1 Th

e final p

art of th

is expressio

n is m

uch

mo

re accu

rate and

con

venien

t to u

se than

interp

olatin

g fo

r liq

uid

enth

alpies

in th

e steam tab

les.

Page 13: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

2-25

2.5 Sum

mary

We

must a

lwa

ys specify if the

p, T a

nd h tha

t we

are

using are

the

• stagnatio

n (total) pre

ssure, te

mpe

rature

and spe

cific entha

lpy or

• static (ie

true the

rmodyna

mic) pre

ssure, te

mpe

rature

and s

pecific e

nthalpy.

For com

pressors:

• 01

02

0102

work

actua

l work

idea

lh

h

hh

stt

− −=

≡η

01

02

012

work

actua

l work

idea

lh

h

hh

sts

− −=

≡η

For a

gas or ste

am

turbine:

• s

tth

h

hh

0403

0403

work

idea

l work

actua

l− −

=≡

η

sts

hh

hh

403

0403

work

idea

l work

actua

l− −

=≡

η

For incom

pressible

pumps, if pum

pw

is the a

ctual spe

cific work input

• ρ

ηp

um

ptt

w

pp

0102

−=

ρ

ηp

um

pts

w

pp

012

−=

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-26

3 Flow

Velocities and V

elocity Triangles

3.1 Basic C

oordinate System

s and Velocities

Ea

rlier, w

e de

fined a

turboma

chine a

s a ste

ady flow

device

which cre

ate

s/consume

s shaft-w

ork by cha

nging the m

ome

nt of mom

entum

of a fluid pa

ssing through a

rotating se

t of blade

s.

The

refore

, we

must conside

r

• the m

ome

nt of mom

entum

• rotation a

bout an a

xis

As a

result,

• we

use a

n x-r-θ coordinate

system

x = a

xial dire

ction

r = ra

dial dire

ction

θ = ta

ngentia

l/circumfe

rentia

l direction

• we

nee

d to work in the

sta

tionary (a

bso

lute) a

nd rota

ting (re

lative) fra

me

s of refe

rence

Page 14: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-27

In the sta

tionary fra

me

, we

have

Vx =

axia

l velocity

Vr =

radia

l velocity

Vθ =

tange

ntial/circum

fere

ntial/sw

irl velocity

Vx

Vr

V

xr

θ

Ω

We

note tha

t:

The

sign convention use

d throughout this course (a

nd by much of indust

ry) is that

tange

ntial/circum

fere

ntial/sw

irl velocitie

s are

positive

if they a

re in the

sam

e

direction a

s the rota

tion of the rotor.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-28

The

ana

lysis of the flow

through rotating bla

de rows (rotors) ca

n be gre

atly sim

plified by w

orking in a

fra

me

of refe

rence

so that the

rotors appe

ar to be

a

t rest.

Vr

Vθ,rel

rΩ Ω

r

Axial view

of the components of the absolute and rotor relative velocity vectors

We

first note tha

t in the both fra

me

s of refe

rence

, w

e ha

ve

V

x = a

xial ve

locity

V

r = ra

dial ve

locity

Page 15: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-29

and tha

t the tw

o (stationa

ry/absolute

and rota

tional/rotor re

lative

) fram

es of re

fere

nce a

re re

late

d a

ccording to the ve

ctor expre

ssion

a

bsolute ve

locity = re

lative

velocity +

rotationa

l ve

locity

Since

Vx a

nd Vr a

re the

sam

e in both fra

me

s of refe

rence

, the only diffe

rence

betw

ee

n the a

bsolute a

nd re

lative

velocitie

s is due to the

ma

gnitude of the

circum

fere

ntial ve

locity.

In fact,

r

VV

rel,

Ω+

θ

whe

re

rel,

= rotor re

lative ta

ngentia

l/circumfe

rentia

l/swirl ve

locity

and

=

Ur

blade

spee

d

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-30

For a

xial m

achine

s:

V

x >>

Vr

For ra

dial m

achine

s, at the

outer ra

dius

V

x <<

Vr

and a

t the inne

r radius, de

pending on w

hethe

r the f

low is m

ainly a

xial or ra

dial,

V

x >>

Vr

or

V

x <<

Vr

Page 16: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-31

3.2 Mean-line A

nalyses D

esign m

ethods for turbine

s, compre

ssors and pum

ps usua

lly involve a

numbe

r of sepa

rate

processe

s.

The

first step is to use

• 1-D ca

lculations a

long me

an ra

dius, i.e. m

ea

n-line

ana

lyses

to exa

mine

• me

an ra

dius velocity tria

ngles

before

and a

fter e

ach bla

derow

In doing so, we

assum

e tha

t

• the spa

n (hub-tip length) of the

blade

s is sma

ll in re

lation to the

me

an ra

dius so that

• the va

riation of the

flow in the

hub-tip direction

can be

negle

cted

• the m

ea

n radius =

r

mea

n = (r

casin

g + r

hu

b ) / 2

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-32

Axial F

low P

ump

Page 17: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-33

3.3 Velocity T

riangles for an Axial T

urbine Stage (S

tator+R

otor) F

or simplicity, w

e w

ill assum

e tha

t

• the va

riation of the

flow in the

radia

l direction i

s sma

ll

• the ra

dial com

ponent of ve

locity is negligible

(Vr =

0)

• there

is no change

of radius (r) through the

stage

• the bla

de spe

ed (

Ur=

Ω) is consta

nt

• the va

riation of the

flow in the

circumfe

rentia

l dire

ction is sma

ll

• we

can e

xam

ine the

flow by looking a

n unwra

pped (ie de

velopm

ent of) cylindrica

l surface

of re

volution, i.e. by using the

ca

scade (x–y or x-rθ) pla

ne

We

reca

ll that

• flow a

ngles a

re positive

if they a

re in the

sam

e di

rection a

s the rota

tion of the rotor.

Now

,

• turbines use

stators to cre

ate

a m

ome

nt of mom

entum

which is the

n rem

oved in the

rotor.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-34

V2

,rel

α2,re

l

α2

V2

U

U

STA

TO

RR

OT

OR

xV

θ2,rel

Vθ1

Vθ2

Vx2

α2

V2

V2

,rel

V1

α2

,rel

α1

Vx2

Vx1

Axial T

urbine Stator E

xit/Rotor Inlet V

elocity Triangle V

iewe

d Radially

Page 18: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-35

At the

inlet of our sta

tor

axia

l velocity

11

1cos α V

Vx

=

tange

ntial ve

locity 1

11

sin α V V θ

=

At the

exit/outle

t of our stator

axia

l velocity

22

2cos α V

Vx

=

tange

ntial ve

locity 2

22

sin α V V θ

=

Fina

lly, we

note tha

t (see

late

r):

• the a

bsolute e

xit flow a

ngle

α of a

stator &

the re

lative

exit flow

angle

rel

α of a

rotor tend to be

inde

pende

nt of the ope

rating condition e

ven w

hen th

e inle

t flow a

ngle to the

sam

e bla

derow

or the

velocitie

s change

.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-36

Now

, we

aga

in note tha

t the a

nalysis of the

flow th

rough rotating bla

de row

s (rotors) can be

grea

tly sim

plified by w

orking in a fra

me

of refe

rence

so tha

t the rotors a

ppea

r to be a

t rest.

We

reca

ll that the

axia

l velocity

2x

V is the

sam

e in both fra

me

s of refe

rence

and tha

t

U

Vr

VV

rel

rel

+=

Ω+

=,2

,22

θθ

θ

whe

re

Ur

UV

Vre

l−

=2

,2θ

θ

The

refore

, the rotor re

lative

inlet flow

angle

is give

n by

2

2

2

2 ,22

,2ta

nta

nx

xx

rel

V U

V

UV

V

Vre

l−

=−

==

αα

θθ

We

now look a

t the rotor e

xit.

Page 19: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-37

V3

,rel

V3

V2

,rel

α2,re

l

α3,re

l

α2

α3

V2

STA

TO

RR

OT

OR

x

Vθ1

V1

α1V

x1U

3

U2

Blade Speed

Velocity T

riangles for an Axial T

urbine Stage V

iewed R

adially

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-38

At rotor e

xit, we

note tha

t

U

VV

rel +

=,3

θ

and tha

t

3

3

,3

3 3,3

3ta

nta

nx

x rel

xV U

V

UV

V Vre

l +=

+=

αθ

θ

If we

study the ve

locity triangle

s of the turbine

as w

e ha

ve dra

wn the

m, w

e should notice

that

• 1

α>>

and

rel

rel

,2,3

αα

>>

- turbine bla

des m

ake

the flow

more

tange

ntial

• 3

21

xx

xV

VV

≈≈

- this is ve

ry comm

on

• 1

2V

V>>

and

rel

rel

VV

,2,3

>>

- turbine bla

des a

ccele

rate

the flow

- boundary la

yers thin a

nd losses in e

fficiency are

sma

ll

Page 20: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-39

3.3.1 E

xam

ple

The

flow

leavin

g a

n a

xial tu

rbin

e sta

tor b

lade

row

has a

velo

city 700 m

s -1 at a

n a

ngle

of 7

0°. T

he

ro

tor h

as a

bla

de

spe

ed o

f 500 m

s-1. T

he

flow

leavin

g a

roto

r bla

de

row

also

has a

rel

ative

velo

city of

700 m

s -1 at a

rela

tive a

ngle

of -7

0°. N

egle

ct any ra

dia

l ve

locitie

s and a

ssum

e th

at th

e a

xial ve

locity is

consta

nt th

rough th

e sta

ge

Calcu

late

the

rela

tive flo

w a

ngle

at ro

tor in

let a

nd th

e a

bso

lute

flow

angle

at ro

tor e

xit.

The

stator e

xit/rotor inlet a

xial ve

locity is

2

22

cos α V V

x=

= 700 × cos70° =

239.4 ms -1

The

stator e

xit/rotor inlet a

bsolute ta

ngentia

l vel

ocity is

2

22

sin α V V θ

==

700 × sin70° = 657.8 m

s -1

The

stator e

xit/rotor inlet re

lative

tange

ntial ve

locity is

U

V

Vθ,rel θ

−=

22

= 657.8 – 500 =

157.8 ms

-1

The

stator e

xit/rotor inlet re

lative

flow a

ngle is

=

2 ,21

,2ta

nx

rel

rel

V

Vθα

=

°=

4.33

4.239

8.157

tan

1

(sign indica

tes sa

me

direction a

s blade

spee

d)

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-40

The

rotor exit a

xial ve

locity is

VV

xx

23

==

239.4 ms -1

The

rotor exit re

lative

tange

ntial ve

locity is

re

lx

rel

rel

rel

θαV

α V

V,3

3,3

,3,3

tan

sin=

==

239.4 × tan(-70°) =

-657.8 ms -1

(sign indica

tes opposite

direction a

s blade

spee

d)

The

rotor exit a

bsolute ta

ngentia

l velocity is

U

V

V

rel

θθ+

=,3

3=

-657.8 + 500 =

-157.8ms -1

(sign indica

tes opposite

direction a

s blade

spee

d)

The

rotor exit a

bsolute flow

angle

is

°

−=

−=

=

−−

4.33

4.239

8.157

tan

tan

1

3 31

3x θV V

α

(sign indica

tes opposite

direction a

s blade

spee

d)

Page 21: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-41

3.4 Velocity T

riangles for an Axial C

ompressor S

tage (Rotor+

Stator)

For sim

plicity, we

will a

gain a

ssume

that

• the ra

dial com

ponent of ve

locity is negligible

(Vr =

0)

• the va

riation of the

flow in the

radia

l direction i

s sma

ll

• there

is no change

of radius (r) through the

stage

• the bla

de spe

ed (

Ur=

Ω) is consta

nt

• the va

riation of the

flow in the

circumfe

rentia

l dire

ction is sma

ll

• we

can e

xam

ine the

flow by looking a

n unwra

pped (ie de

velopm

ent of) cylindrica

l surface

of re

volution, i.e. by using the

casca

de (x–y or x-r

θ) plane

Now

:

• compre

ssors use rotors to cre

ate

a m

ome

nt of mom

ent

um w

hich is then re

move

d in the sta

tor to cre

ate

a furthe

r pressure

rise.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-42

V1

,rel

V2

,rel

V1

V2

UU

RO

TO

RS

TAT

OR

UBlade Speed

θ

2,re

l

α2

Vθ3

V3

α3V

x3

α1

α1,rel

Velocity T

riangles for an Axial C

ompressor S

tage View

ed Radially

Page 22: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-43

If we

study the ve

locity triangle

s of the com

presso

r as w

e ha

ve dra

wn the

m, w

e notice

that

• 3

α>>

and

rel

rel

,2,1

αα

>>

- compre

ssor blade

s ma

ke the

flow m

ore a

xial

• 3

21

xx

xV

VV

≈≈

- this is ve

ry comm

on

• 3

2V

V>

and

rel

rel

VV

,2,1

>

- compre

ssor blade

s dece

lera

te the

flow (by a

bout 30%

)

- static pre

ssure rise

s

- boundary la

yers thicke

n & se

para

tion is a big ri

sk

- losses in e

fficiency a

re highe

r than in turbine

s

- more

stage

s for sam

e pre

ssure cha

nge cf. turbine

s.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

3-44

3.5 Sum

mary

We

use tw

o fram

es of re

fere

nce tha

t are

rela

ted a

ccording to the

vector e

xpression

a

bsolute ve

locity = re

lative

velocity +

rotationa

l ve

locity

UV

Vre

l +=

,22

θθ

whe

re

Ur

In axia

l flow turbine

s (stator +

rotor):

• blade

s ma

ke the

flow m

ore ta

ngentia

l

• often

32

1x

xx

VV

V≈

• flow a

ccele

rate

s (thin boundary la

yers) so good e

fficie

ncy.

In axia

l flow com

pressors (rotor +

stator):

• blade

s ma

ke the

flow m

ore a

xial

• often

32

1x

xx

VV

V≈

• flow de

cele

rate

s (boundary la

yers thicke

n) so lowe

r e

fficiency

• more

stage

s nee

ded for sa

me

pressure

change

cf. turbine

s.

Page 23: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-45

4 Mass F

low R

ates/Forces/W

ork/SF

EE

4.1 T

he calculation of mass flow

rate in axial turbomachines

The

ability to a

pply the la

w of conse

rvation of m

as

s to a turbom

achine

blade

row is funda

me

ntal to

ma

ny turboma

chine ca

lculations.

Co

ntrol

Volum

e

rel

1

scosα1rel

scosα2rel

s

rel2

Inlet and exit flow areas of an axial com

pressor rotor in x-rθθθ θ plane

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-46

First, w

e e

xam

ine the

flow a

t inlet to a

nd exit fro

m a

2D com

pressor rotor of bla

de spa

n h a

nd blade

pitch s in the

rela

tive fra

me

. We

assum

e tha

t

• the bla

de spa

n h

is sma

ll in rela

tion to the m

ea

n radius

• the ge

ome

try and flow

conditions (velocitie

s and a

ngle

s) are

constant a

cross the spa

n.

Conse

rvation of m

ass give

s for one bla

de pa

ssage

(

)(

),re

l,re

ls

hV

= ρs

hV

ρAV

ρm,re

l,re

l,re

l,re

lp

assa

ge

12

coscos

11

22

22

α=

=&

or, more

gene

rally, if Ax =

hs w

hich is the cro

ss-sectio

na

l or fron

tal a

rea

of the pa

ssage

, then

(

)(

)consta

ntcos

cos=

==

αρ

αρ

xx

rel

pa

ssag

eA

VA

Vm

rel

&

whe

re

• the flow

are

a (

cosx

A is a

lwa

ys me

asure

d perpe

ndicular to the

velocity ve

ctor

• failure

to observe

this importa

nt simple

rule ha

s se

rious conseque

nces w

hen de

aling w

ith com

pressible

flow (you ha

ve be

en w

arne

d!)

Page 24: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-47

It also ha

ppens tha

t the a

bove ca

n be w

ritten a

s (he

nce the

previous w

arning)

(

)(

)x

xx

xre

lp

assa

ge

AV

AV

AV

mre

αρ

αρ

==

=co

sco

s&

Now

, if there are Z blades, then the total mass flow

rate through the com

pressor rotor is

(

)(

))

Z(cos

cosx

xx

xre

lp

assa

ge

com

pre

ssor

AV

AZ

VA

ZV

mZ

mre

αρ

αρ

==

==

&&

h

Rhub

Rcasing

RS

RS

Axial (r-θ)

θ) θ) θ) and M

eridional (x-r) views of a 1-stage com

pressor

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-48

For the com

pressor, the mean radius defined as

2

sinh

ub

gca

mea

nr

rr

+=

Now

m

ean

rZ

sπ2

=

so the area of the annulus is

(

)()

2hub2casing

hubcasing

hubcasing

2r

rr

rr

rh

r

Zsh

Am

ea

nx

ππ

ππ

−=

+−

==

=

Therefore, w

hether we exam

ine a complete bladerow

or just one blade passage:

xx

rel

xre

lx

AV

A

V

VA

AV

αρ

αρ

ρ=

==

=co

sco

s&

= const

where A

x is the annulus area or the passage area as appropriate.

Page 25: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-49

This is w

hy in compressors:

• flow is turned to be m

ore axial

• Inlet flow area >

Exit flow

Area

• Flow

decelerates

• Static pressure rises in each bladerow

And in turbines:

• Flow

is turned to be more tangential

• Inlet flow area <

Exit flow

Area 2

• Flow

accelerates

• Static pressure falls in each bladerow

2 Th

is is gen

erally true - excep

t for th

e true im

pu

lse ro

tor w

here th

ere is no

chan

ge in

pressu

re and

co

nseq

uen

tly no

ch

ang

e in relative velo

city across th

e roto

r (see sectio

n 5

.3.2

)

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-50

4.1.1 E

xample

Th

e a

xial tu

rbin

e in

Exa

mp

le 3

.3.1

ha

s a co

nsta

nt m

ea

n ra

diu

s of 0

.5 m

an

d th

e b

lad

e sp

an

is con

stan

t a

nd

eq

ua

l to 0

.07

5 m

. Th

e in

let sta

gn

atio

n te

mp

era

tu

re to

the

stag

e is 1

80

0 K

an

d th

e in

let sta

gn

atio

n

pre

ssure

is 30

ba

r. Th

e flo

w is ise

ntro

pic. A

ssum

e

tha

t the

ga

s ha

s the

pro

pe

rties o

f air. N

eg

lect a

ny

ra

dia

l velo

cities.

Ca

lcula

te th

e m

ass flo

w ra

te o

f the

turb

ine

.

We already know

V2

= 700 m

s -1

Vx2

= 239.4 m

s -1

There is no w

ork done in the stator therefore, the S

FE

E

(

)() 21

2 11

222 1

2V

hV

hw

qx

+−

+=

can be written

01

02h

h=

where

22 1

0V

hh

+≡

Page 26: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-51

Therefore

22 1

202

01V

Tc

Tc

Tc

pp

p+

==

The static tem

perature at stator exit is therefore

2.

15561005

7005.

01800

2

2=

×−

=T

K

The density can be obtained from

(

)(

)(

)029.4

1800 2.1556

18005.

287000,

000,3

14.

11

11

02 2

02

021

1

02 202

2=

×=

=

=

−−

−γ

γρ

ρT T

RT P

T Tkg/m

3

The turbine m

ass flow rate is therefore

(

)2

22

22

22

22

cosx

xx

AV

AV

AV

mre

αρ

ρ=

==

&

()

3.227

075.0

5.0

14159.3

24.

239029.4

22

2=

××

××

×=

=h

rV

ρmm

ean

& kg/s

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-52

4.2 Axial and T

angential Forces on a 2D

Blade

We exam

ine the flow at inlet to and exit from

a 2D

compressor blade of span

h and pitch s.

Note that

• The blades and control volum

e have a span h

• The upper and low

er boundaries are streamlines (thi

s is for convenience) and they are exactly one pitch s in the circum

ferential direction

o N

o mass crosses the upper and low

er boundaries

o N

o net pressure forces are exerted on the two bound

aries

• The forces show

n are those on the flow

• The force on each blade is equal and opposite to th

at on the flow in one passage

• The forces are (m

ainly) created by the pressure differences betw

een the suction and pressure surfaces of the blades

Page 27: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-53

Control

Volum

eSuc tion S

urface

s

V1

V2

α2

α1

scosα1

scosα2P

ressure Surface

Fx

Forces on an A

xial Com

pressor Stator

We start by recalling that

F

orce on flow =

rate of change of mom

entum of flow

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-54

Hence, the A

xial Mom

entum E

quation is

(

)12

21

xx

pa

ssag

ex

VV

mh

sp

hs

pF

−=

−+

&

()

()1

21

2x

xp

assa

ge

xx

VV

mA

pp

F−

+−

=&

where

hs

Ax

= and

xx

xx

pa

ssag

eA

VA

Vm

22

11

ρρ

==

&

We note that w

hen the axial velocity remains consta

nt through a bladerow (often true)

• axial force (thrust bearings) mainly a result of th

e inlet to exit pressure difference.

The T

angential Mom

entum E

quation is

(

)12

θθ

θV

Vm

Fp

assa

ge

−=

&

If the mean radius changes, w

e use the analogous Mo

ment of T

angential Mom

entum E

quation

T

orque on fluid = rate of change of m

oment of m

ome

ntum

()1

12

θVr

Vr

mT

To

rqu

ep

assa

ge

−=

=&

Page 28: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-55

4.3 Euler's W

ork Equation

By com

bining the mom

ent of mom

entum equation (radiu

s×tangential mom

entum equation) w

ith the S

FE

E it is possible to derive E

uler's Work E

quation even for the case w

here there is a change of radius.

This is the m

ost important equation in the analysis

of turbomachinery.

r1

r2

Rotor

Control V

olume

τΩ

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-56

We consider a control volum

e which is form

ed by a narrow

streamtube and w

hich contains a row of

rotor blades that

• has a mass flow

rate m &

• has angular velocity Ω

• produces a torque τ

• has a flow w

hich enters at a mean radius

r1

• has a flow w

hich leaves at a mean radius

r2

We first observe that

T

orque exerted by flow on blade row

= shaft output

torque = τ

Therefore:

(

) fluid

of

mom

entum

of

mom

ent

of

change

of

rate

−=

τ

()1

12

θτ

VrV

rm

−−

=&

()Ω

−−

=1

12

θτ

VrV

rm

Wx

&&

[eqn 1]

Page 29: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-57

The S

FE

E is:

(

)(

)2,1

2 11

2,22 1

2re

lre

lx

Vh

mV

hm

WQ

+−

+=

−&

&&

&

For adiabatic flow

(and using stagnation enthalpy), S

FE

E becom

es

(

)01

02h

hm

Wx

−=

−&

&

[eqn 2]

Com

bining these two expressions for the shaft-pow

er gives:

(

)(

)Ω−

−−

11

22

0102

θθx

VrV

rm

=h

hm

=W

&&

&

Now

rΩ =

U =

mean radius blade speed. T

hus Euler's W

ork Equat

ion is:

()

()1

12

201

02θθ

xV

UV

Um

=h

hm

=W

−−

−&

&&

11

22

0102

θθx

VU

V=

Uh

=h

w−

−−

Which m

eans that

To transfer w

ork either from or to a turbom

achine, a change in the m

oment of

mom

entum of the flow

must occur through a rotating

bladerow

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-58

So • turbines use stators to create a m

oment of m

omentum w

hich is then removed in the rotor

• compressors use rotors to create a m

oment of m

oment

um w

hich is then removed in the stator to

create a further pressure rise

and that Euler's w

ork equation is valid for:

(1) steady flow

(or time average of a periodic

flow)

(2) adiabatic flow

(m

ust modify for turbine bl

ade cooling)

(3) com

pressible flow

(any Mach num

ber)

(4) changing stream

line radius ( r1 ≠ r

2 ) (radial or axial m

achines)

(5) viscous flow

in the rotor

(no viscous effect

s on stationary walls)

(6) stators

(no work because

02

01

0

hh

U=

⇒=

)

Note that the S

FE

E can also be w

ritten as:

Roth

alp

y =

=− θUVh0

constant along a streamline

Page 30: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-59

4.3.1 E

xample

Calcu

late

the

rise in

stagnatio

n te

mpe

ratu

re a

cross

a ro

w o

f axia

l com

pre

ssor ro

tor b

lade

s give

n th

at

the

inle

t tange

ntia

l velo

city is 75 m

s-1, th

e e

xit tange

ntia

l velo

city is 175 m

s-1 a

nd th

e m

ean b

lade

spe

ed

is 250 m

s -1 at b

oth

inle

t and e

xit.

Also

de

term

ine

th

e

exit

stagnatio

n

pre

ssure

if

the

in

let

stagnatio

n

conditio

ns

are

1

bar

and

300 K

and th

e ro

tor is ise

ntro

pic.

Euler’s w

ork equation gives

1

12

201

02θθ

xV

UV

=U

h=

h-w

−−

= 250 × ( 175 – 75 ) =

25 kJ/kg

Now

, for air (a perfect gas)

()

()

==

−=

−100525000

0102

0102

pc

hh

TT

24.9 K

Finally, because the rotor is isentropic

(

)132190

300 9.324

105.

31

01

0201

025

=

=

=−

γγ

T TP

P P

a

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-60

4.3.2 E

xample

Usin

g E

ule

r’s work e

quatio

n, ca

lcula

te th

e w

ork d

on

e p

er kg

of m

ass flo

w a

nd th

e to

tal p

ow

er o

utp

ut o

f

the

axia

l flow

turb

ine

of o

ur p

revio

us e

xam

ple

(see

3.3

.1 a

nd 4

.1.1

)

We already know

that the stator exit/rotor inlet absolute tangential velocity is

2

θV=

657.8 ms -1

the rotor exit absolute tangential velocity is

3

θV =

-157.8 ms -1

and the mass flow

rate is

3.

227=

m & kgs

-1

So, using E

uler’s work equation

(

)(

)=+

×=

==

−−

8.157

8.657

5003

23

32

2θθ

θθx

VV

UV

UV

Uw

407,800 J/kg

and the power output is

=

×=

=800,

4073.

227x

xw

mW

&&

92.7 MW

Page 31: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-61

V3

,rel

V3

V2

,rel

α2,re

l

α3,re

l

α2

α3

V2

STA

TO

RR

OT

OR

x

Vθ1

V1

α1

Vx1

U3

U2

Blade Speed

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-62

4.4 SF

EE

in a rotating frame

It is often easier to analyse the performance of ro

tor blade rows by w

orking in the relative frame.

• a rotor then appears at rest and "looks" very simil

ar to a stator row

Also, w

e know from

Part I therm

odynamics:

• the values of the true thermodynam

ic properties such as pressure, tem

perature and enthalpy are the sam

e in both the absolute and relative frames.

We now

define

• Absolute stagnation enthalpy

22 1

0V

hh

+=

• Relative stagnation enthalpy

22 1

,0re

lre

lV

hh

+=

This m

eans that

• the stagnation conditions are different in the absolute and relative fram

es.

Page 32: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-63

This is alright because w

e already know from

Part I therm

odynamics

• the amount of w

ork (changes in stagnation enthalpy) perceived depends on the fram

e of reference of the observer.

Recall that E

uler's Work equation

1

12

201

02θθVUV

U=

hh

−−

can be written in term

s of the rothalpy:

R

oth

alp

y = θUVh−0

= constant along a stream

line

Therefore:

θ

θU

VV

hU

Vh

−−

+=

22 1

0 =

const

θr

UV

VV

Vh

UV

h−

+

++

=2

22

2 10

θ =

const

()

−+

++

=−

22

22

2 10

UU

VV

Vh

UV

hr

θ =

const

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-64

−+

++

=−

22,

22

2 10

UV

VV

hU

Vh

rel

rx

θθ

= const

22 1

22 1

0U

Vh

UV

hre

−−

+=

= const

co

nst

Uh

UV

hre

=−

=−

22 1

,00

So, the S

FE

E in stationary and rotating fram

es of reference for stators and rotors becom

es

2

2 1,0

0U

hU

Vh

Roth

alp

yre

−=

−=

= constant along stream

line

which for a perfect gas, can also be w

ritten as

co

nst

UT

cU

VT

cre

lp

θp=

−=

−2

2 1,0

0

Page 33: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-65

We note that for stators

• U=

0

• co

nst

UV

h θ=

−0

const

h=

0 ⇒

no work

And for rotors,

• co

nst

Uh

rel

=−

22 1

,0

• If co

nst

r=

const

U=

con

sth

rel =

,0 (often true for axial m

achines).

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-66

4.4.1 E

xample

As in

our p

revio

us e

xam

ple

(see

3.3

.1 a

nd 4

.3.2

), the

flow

leavin

g a

turb

ine

stato

r bla

de

row

has a

ve

locity o

f 700 m

s -1 at a

n a

ngle

of 7

0°. T

he

roto

r has a

bla

de

spe

ed

of 5

00 m

s -1. The

flow

leavin

g th

e

roto

r bla

de

row

has a

rela

tive ve

locity 7

00 m

s-1 a

t a re

lative

angle

of -7

0°. N

egle

ct any ra

dia

l ve

locitie

s and a

ssum

e th

at th

e a

xial ve

locity is co

nsta

nt th

rough th

e sta

ge

The

inle

t stagnatio

n te

mpe

ratu

re to

the

stage

is 18

00 K

. Assu

me

that th

e g

as h

as th

e p

rope

rties o

f air

. C

alcu

late

the

roto

r rela

tive in

let a

nd e

xit stagnat

ion e

nth

alp

ies. A

lso ca

lcula

te th

e ro

tor a

bso

lute

exit

stagnatio

n e

nth

alp

y. Use

this va

lue

to d

ete

rmin

e th

e w

ork d

one

pe

r kg o

f mass flo

w.

We already know

that the stator exit/rotor inlet absolute tangential velocity is

2

θV=

657.8 ms -1

and the rotor exit absolute tangential velocity is

3

θV =

-157.8ms -1

and Euler’s w

ork equation gave

(

)(

)=+

×=

==

−=

−−

8.157

8.657

5003

23

32

201

02θθ

θθx

VV

UV

UV

Uh

hw

407,800 J/kg

Page 34: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-67

V3

,rel

V3

V2

,rel

α2,re

l

α3,re

l

α2

α3

V2

STA

TO

RR

OT

OR

x

Vθ1

V1

α1

Vx1

U3

U2

Blade Speed

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-68

The rotor inlet absolute stagnation enthalpy is

0

0T

ch

p=

=1005 × 1800 =

1,809,000 J/kg

Now

,

co

nst

Uh

UV

hre

=−

=−

22 1

,00

So, the rotor inlet relative stagnation enthalpy is

2

2 12

02,

02U

UV

hh

θre

l+

=−

=

100,

605,1

5000.5

657.8500

-1,809,000

2=

×+

×J/kg

and the rotor exit relative stagnation enthalpy is

100,

605,1

,02

,03

==

rel

rel

hh

So, the rotor exit absolute stagnation enthalpy is

2

2 13

,03

03U

UV

hh

θrel

−+

= =

200,

401,1

5000.5

157.8500

1,605,1002

−×

−J/kg

and the work done

800,

407200,

401,1

000,

809,1

0302

=−

=−

=h

hw

x J/kg

as before.

Page 35: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

4-69

4.5 Sum

mary

The T

angential Mom

entum E

quation is

(

)(

)12

12

xx

pa

ssag

ex

xV

Vm

Ap

pF

−+

−=

&

The T

angential Mom

entum E

quation is

(

)12

θθ

θV

Vm

Fp

assa

ge

−=

&

The M

oment of T

angential Mom

entum E

quation

(

)11

22

θθ

VrV

rm

TT

orq

ue

pa

ssag

e−

==

&

Euler's W

ork Equation is:

(

)(

)11

22

0102

θθx

VU

VU

m=

hh

m=

W−

−−

&&

&

or 1

12

201

02θθ

xV

UV

=U

h=

hw

−−

Rothalpy is defined as

2

2 1,0

0U

hU

Vh

Roth

alp

yre

−=

−=

= constant along a stream

line

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-70

5 Turbom

achinery Design P

arameters

5.1 Flow

Coefficient

Defined as:

U V

x=

φ

it describes the “squareness” of the velocity triangles.

Axial turbines w

ith φφφ φ = 0.37 (solid line)

and φφφ φ = 0.53(dashed line)

where ΛΛΛ Λ

=0.5 &

ΨΨΨ Ψ=

1.0:

Page 36: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-71

5.2 Stage Loading C

oefficient D

efined as:

(

)2

2 0

U UV

U

ψ∆

=∆

It affects the “skew” of the velocity

triangles

V3,rel

V3

V2,rel

V2

U

U

STATOR

ROTO

R

Tw

o axial turbines with Λ

Λ

Λ

Λ

= 0.5 and φφφ φ =

0.5: S

olid line ΨΨΨ Ψ =

1.7; dashed line ΨΨΨ Ψ = 1.0

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-72

5.3 Reaction

Defined as

sta

ge

roto

r

h h

∆ ∆=

Λ

it affects the asymm

etry of velocity triangles and blade shapes

Most axial m

achines have relatively high efficiencies (typically, η >

90%)

so that

• ρ

ρd

pd

hd

pd

hT

ds

≈⇒

−=

and we see that reaction also

describes

changes in pressure across rotor com

pared to across the stage

V3

V2,rel

V2

U

V3,rel

U

V2,rel

Tw

o axial turbines with and φφφ φ =

0.37: S

olid line ΛΛΛ Λ =

0.5, Ψ

Ψ

Ψ

Ψ =

1.0; dashed line ΛΛΛ Λ

= 0.25, ΨΨΨ Ψ

= 1.5

Page 37: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-73

5.3.1 E

xample: T

he 50% R

eaction Turbine

Eva

lua

te th

e d

eg

ree

of re

actio

n fo

r a tu

rbin

e th

at

ha

s symm

etric ve

locity tria

ng

les a

nd

a co

nsta

nt

rad

ius.

V3

,rel

V3

V2

,rel

α2

,rel

α3,re

l

α2

α3

V2

STA

TO

RR

OT

OR

x

Vθ1

V1

α1

Vx1

U3

U2

Blade Speed

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-74

Now

reaction is

(

)(

)(

)32

21

32

hh

hh

hh

hh

h

h h

roto

rsta

tor ro

tor

stag

e

roto

r

−+

−−

=∆

+∆

∆=

∆ ∆=

Λ

For the stator

(

)0

22 1

0=

+∆

=∆

Vh

hsta

tor

212 1

122

2 12

Vh

Vh

+=

+

212 1

222 1

21

VV

hh

−=

For the rotor (U

=const):

co

nst

Uh

rel

=−

22 1

,0

rel

rel

hh

,02

,03

=

2,22 1

22,3

2 13

rel

rel

Vh

Vh

+=

+

2,22 1

2,32 1

32

rel

rel

VV

hh

−=

Page 38: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-75

Hence

(

)(

)()

2,22 1

2,32 1

222 1

212 1

2,22 1

2,32 1

rel

rel re

lre

l

VV

VV

VV

−+

−=

Λ

But, by sym

metry

a

nd

13

23

2V

V V

VV

,rel

,rel

==

=

()

()(

)5.

021

2221

22

2122

=−

+−

−=

ΛV

VV

V

VV

i.e. the turbine has 50% reaction

In fact:

All turbines and com

pressors with sym

metric velocit

y triangles have 50% reaction

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-76

5.3.2 E

xample: T

he impulse turbine

An

axia

l turb

ine

stag

e h

as a

roto

r in w

hich

the

inl

et a

nd

exit ve

locitie

s are

ide

ntica

l. Th

is is kno

wn

as

an

“imp

ulse” sta

ge

. Fin

d th

e d

eg

ree

of re

actio

n o

f such

a sta

ge

. Fo

r simp

licity, you

ma

y assu

me

tha

t th

e flo

w is a

xial a

t inle

t to a

nd

exit fro

m th

e stag

e.

Consider the follow

ing velocity diagram. W

e note that

re

lre

lV

V,2

,3=

We w

ill assume that there is no change of radius. S

o, from the rothalpy equation

co

nst

Uh

rel

=−

22 1

,0

rel

rel

hh

,02

,03

=

2,22 1

22,3

2 13

rel

rel

Vh

Vh

+=

+

02,2

2 12,3

2 13

2=

−=

−re

lre

lV

Vh

h

Page 39: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-77

So

0)

(

)(

31

32

=− −

=∆ ∆

hh

hh

h h

stag

e

roto

r

We also note that for an isentropic

rotor,

ρρ

dp

dh

dp

dh

Td

s≈

⇒−

=

So, m

any people refer (incorrectly) to an im

pulse rotor as one where there is

no static pressure change.

V3

,rel

V3

V2

,rel

V2

U

U

Velocity triangles for an im

pulse turbine with no

inlet or exit swirl

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-78

5.3.3 E

xample

Eva

lua

te th

e re

actio

n, th

e flo

w co

efficie

nt a

nd

the

stag

e lo

ad

ing

coe

fficien

t of th

e tu

rbin

e in

exa

mp

le

s 3

.3.1

, 4.1

.1,4

.3.2

an

d 4

.4.1

. No

te th

at th

e a

bso

lut

e flo

w a

ng

le a

t inle

t to th

e sta

tor is th

e sa

me

as

the

a

bso

lute

flow

an

gle

at ro

tor e

xit.

Since the turbine has sym

metric velocity triangles,

Λ

= 50%

Also,

479.0

500 4.239

==

=U V

and

63.1

500

407,800

22

2 0=

==

∆≡

U w

U

hx

ψ

Page 40: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

5-79

5.4 Sum

mary

Sta

ge de

sign is about se

lecting

ψ, φ a

nd Λ a

t the de

sign point.

The

flow coe

fficient

U Vx

describe

s the “squa

rene

ss” of the ve

locity triangle

s

The

stage

loading coe

fficient

2 0

U

h∆

define

s "skew

ness" of the

velocity tria

ngles

The

rea

ction sta

ge

roto

r

h h

∆ ∆=

Λde

scribes

• asym

me

try of velocity tria

ngles/bla

de sha

pes

• approx. cha

nges in pre

ssure a

cross rotor compa

red to the

sta

ge

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-80

6 The S

caling of Incompressible T

urbomachines

6.1 Introduction W

e sha

ll

• form non-dim

ensiona

l groups and

• invoke the

principles of ge

ome

tric and dyna

mic sim

ilari

ty

to: • repre

sent the

perform

ance

of turboma

chines in a

wa

y which

is convenie

nt and ra

tional

• describe

the ope

rating point of a

compre

ssor & turbine

• perform

scaling ca

lculations for a

llow for cha

nges in cond

itions or size

We

will de

al w

ith (low M

ach num

ber) incom

pressible

flow

ma

chines. E

xam

ples a

re:

• Industrial fa

ns

• Hydra

ulic pumps/turbine

s

• High pre

ssure ste

am

turbines

Page 41: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-81

We

will not conside

r the e

ffects of:

• change

s in Re

ynolds numbe

r

• compre

ssibility

• cavita

tion

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-82

6.2 Turbine C

haracteristics E

uler’s w

ork equa

tion for an a

xial turbine

with consta

nt a

xial ve

locity and bla

de spe

ed (ra

dius)

(

)(

)0

VV

Uh

hh

32

0301

0>

−=

−=

∆θ

θ

ma

y be w

ritten a

s

(

)(

)U

tanV

tanV

Uh

rel,3

x2

x0

−α

−α

=∆

and the

stage

loading is

(

)1

tantan

U VU h

rel,3

2x

2 0−

α−

α=

∆=

ψ

()

1tan

tanrel

,32

−α

−α

φ=

ψ

Page 42: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-83

V1

χ1

V2

α2

α1

7270

Incidence, i=-

αχ1

1

-300

+30

Exit Flow Angle α2

Cascade test results for an axial

flow turbine

V3

,rel

V3

V2

,rel

V2

U

U

STA

TO

R

RO

TO

R

Vx

Vx

α2

α3,rel

α3

V2

U

V3

,rel

V3

U

Effect of changing blade speed U

on velocity triangles

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-84

We

note from

the pre

vious page

that

• 0

a

nd

0,3

2<

>re

α a

nd both are

approxim

ate

ly constant

and tha

t changing φ

• change

s ()

rel

,23

1

and

α

αα

= but not

rel

,32

a

nd

αα

so • ψ incre

ase

s with φ

• whe

n ψ =

0, no work is e

xtracte

d so ma

x. rpm

rea

ched for give

n ma

ss flow (

run

aw

ay

con

ditio

n )

ψ

φ0-1

Ideal Turbine C

haracteristic

Page 43: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-85

6.3 Fan/P

ump C

haracteristics E

uler’s w

ork equa

tion for an a

xial pum

p with consta

nt ax

ial ve

locity and bla

de spe

ed (ra

dius)

(

)12

θV

VU

h−

=∆

ma

y be w

ritten a

s

(

)(

)1,2

0ta

nta

αx

rel

xV

UV

Uh

−+

=∆

and the

stage

loading be

come

s

(

)(

)re

lre

lx

U V

U

h,2

11

,22 0

tan

tan

11

tan

tan

αα

φα

αψ

−−

=+

−=

∆=

Te

st results show

that

• the e

xit flow a

ngles

rel

,21

a

nd

αα

are

approxim

ate

ly constant

and the

velocity tria

ngles show

that

• changing φ cha

nges

2,1

a

nd

αα

rel

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-86

V1

χ1

V2

α2

α1

3230

Incidence, i=-

αχ1

1

-300

+30

Exit Flow Angle α2

34 36

Cascade test results for an axial flow

com

pressor

V2,rel

V1

V2

U

U

RO

TO

R

STA

TO

R

α1,rel

α2,rel

α1

α2

V1,rel

Effect of changing blade speed on axial

compressor velocity triangles

Page 44: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-87

Now

,

• 0

a

nd

01

,2>

αre

l

• ψ de

crea

ses w

ith φ

Now

, for incompre

ssible flow

,

d

p/ ρ dh

Td

s −

=

isen

hs

Th

P,0

00

∆=

∆−

∆=

∆ρ

ψ

φ0 1

actual ideal

so that

ηψ

==

⇒=

=2 0

2 0

0 0

0

0

U h

ηρU P

ρ h

P

h

h

η,ise

n

The

refore

• whe

n φ = 0, m

ax. pre

ssure rise

should occur

• in practice

this is limite

d by sepa

ration of the

bounda

ry laye

rs (stall).

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-88

6.4 More “usual” incom

pressible stage parameters

We

have

alre

ady se

en tha

t only one inde

pende

nt para

me

ter

UV

x=

φ de

term

ines

• the ope

rating point of a

g

iven sta

ge.

In the ca

se of a

compre

ssor3, this is be

cause

U

Vx

fixes

• the re

lative

flow a

ngle in to the

rotor

• the flow

patte

rn in the rotor

• the re

lative

flow a

ngle &

losses out of the

rotor

• the flow

angle

into the sta

tor

• the flow

patte

rn in the sta

tor

• the flow

angle

& losse

s out of the sta

tor

• the non-dim

ensiona

l opera

ting point of the sta

ge/m

ach

ine

3 Th

e argu

men

t for a tu

rbin

e is very similar

Page 45: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-89

In context of ove

rall pe

rforma

nce, a

nd espe

cially during t

he initia

l design proce

ss, it is more

usual to

work w

ith a diffe

rent de

finition of the flow

coefficie

nt:

U V

AR

VA

D m

D Qx

xm

ea

n xx

33

αρ

ρα

ρφ

ΩΩ

=&

as this a

lso define

s the ope

rating point of the

ma

chine

. Note

that Q is the

volume

tric flow ra

te.

Sim

ilarly, w

e pre

fer the

powe

r coefficie

nt ξ

to the sta

ge loa

ding coefficie

nt 2 0

U

h∆

whe

re

2 0

22

20

53

x

D

DD

D

wm

U

h

U Vh

VA

xx

x∆

ΩΩ

∆=

Ω=

αρ

ρρ

ξ&

Fina

lly, we

note tha

t for incompre

ssible flow

,

0 0

0 isen0,

h P

h

hp

um

p∆ ∆

=∆

∆=

ρη

whe

re the

efficie

ncy depe

nds on the R

eynolds num

ber.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-90

The

refore

, we

often re

place

the pow

er coe

fficient by the

efficie

ncy and the

pressure

coefficie

nt

2 0

22

02

2 01

D

1

DU

hh

P∆

∝Ω ∆

=Ω ∆

ηρ

ψ

The

se dim

ensionle

ss groups apply e

qually to a

xial

ma

chines a

nd radia

l flow m

achine

s (whe

re

D is

usually the

outer dia

me

ter of the

rotor)

0 1

D

22

0

Ωρ

P

3

Theoretical

Actual

Useful range

Typical characteristic for a centrifugal fan

Page 46: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

6-91

6.5 Sum

mary

Cha

nging the flow

coefficie

nt φ =

Vx /U

change

s the incide

nce onto the

stator a

nd rotor blad

es.

In term

s of velocity tria

ngles, w

e se

e tha

t:

o S

tage

Loading C

oeffice

nt

()φ

ψf

U Vf

U

hx

=

=∆

=2 0

o E

fficiency

()φ

ηf

U Vf

x=

=

or o P

ressure

Rise

Coe

fficient

()φ

ρψ

fD Q

fP

= Ω

=Ω ∆

=3

22 0D

o E

fficiency

()φ

ηf

D Qf

= Ω

=3

o P

owe

r Coe

fficient

()φ

ρξ

fD Q

fw

mx

= Ω

=3

53D

&

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-92

7 Radial F

low M

achines (Pum

ps, Com

pressors and Turbines)

7.1 Introduction M

any type

s & configura

tions

• Most com

mon turbom

achine

- the

centrifuga

l pump or co

mpre

ssor

• Less w

ell unde

rstood -

more

comple

x 3-D flow

s than in axia

ls

• Low cost

- ca

st, fabrica

ted, m

achine

d from solid

• Short de

velopm

ent cycle

-

optimize

d designs for low

volum

e production

• Me

chanica

lly robust -

low m

ainte

nance

/haza

rdous environm

ents

• Large

frontal a

rea

-

limits a

ero a

pplications to sm

all e

ngines

• Pre

ssure ra

tios -

typically 3:1 or gre

ate

r

Page 47: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-93

To be

gin with, w

e note

that for ra

dial m

achine

s:

V

x <<

Vr a

t the oute

r radius

V

x >>

Vr or V

x <<

Vr a

t the inne

r radius

For e

xam

ple, the

turbocharge

r has a

turbine rotor (a

nd a co

mpre

ssor rotor) whe

re

V

x <<

Vr a

t the oute

r radius (i.e

. 0

Vx

≈)

But

V

x >>

Vr a

t the inne

r radius (i.e

. 0

Vr ≈

)

The

radia

l fan how

eve

r often ha

s

V

x <<

Vr a

t the oute

r radius (i.e

. 0

Vx

≈)

and

V

x <<

Vr a

t the inne

r radius (i.e

. 0

Vx

≈)

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-94

7.2 Application of E

uler’s Work E

quation to a Radial R

otor T

hough we

have

so far e

xam

ined E

uler’s w

ork equa

tion in the

context of a

xial m

achine

s, the proof w

as

not restricte

d to this type of m

achine

.

He

re, w

e re

call tha

t the flow

• ente

rs at a

me

an ra

dius r1

• lea

ves a

t a m

ea

n radius r

2

so that

• 2

1U

U≠

We

also note

that E

uler's W

ork Equa

tion is:

r1

r2

Rotor

Control V

olume

τΩ

(

)(

)11

22

0102

θθx

VU

VU

m=

hh

m=

W−

−−

&&

&

or

1

12

201

02θθ

xV

UV

U=

hh

w−

−=

and tha

t

co

nst

Uh

Uh

VU

hV

Uh

Ro

tha

lpy

rel

rel

θθ

=−

=−

=−

=−

=22

2 1,

0221

2 1,

012

202

11

01

Page 48: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-95

7.3 Velocity T

riangles for a 90 degree Radial Inflow

Turbine

Scroll

StatorR

otor

12

3F

lowV

3

V2,rel

V2

Radial V

iewR

otor Exit

U2

U1

V3,rel

Axial V

iewR

otor Inlet

Velocity triangles for a radial inflow

turbine with stator vanes

Note

that

• the e

xit velocity tria

ngle looks ve

ry simila

r to that

from a

n axia

l flow turbine

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-96

From

velocity tria

ngles a

t design conditions

V

θ2 = U

2 &

Vθ3 =

0

∴ E

uler's W

ork Equa

tion reduce

s to

W

x = ∆

h0 =

UV

θ2 = U

2 2 ⇒

h0

U2 2 =

1.0

In fact, it is usua

lly found that

• work done

is ma

inly a ƒ n of the

square

of the im

pelle

r tip spee

d U2 2

A sim

ilar a

nalysis show

s that

Λ

≈ 12

Page 49: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-97

7.4 Velocity T

riangles for a 90 degree Centrifugal C

ompressor

Scroll

Diffuser

Rotor

1

2 3

Flow

V1

,rel

V1

V2

,rel

V2

U2

U1

Axial V

iewR

otor Exit

Radial V

iewR

otor Inlet

Velocity triangles for a centrifugal com

pressor with a “radial” rotor and stator vanes

Note

that

• the inle

t velocity tria

ngle is sim

ilar to tha

t from the 1

st stage

of an a

xial flow

compre

ssor

• exit re

lative

velocity doe

s not quite follow

blade

sha

pe – this is know

n as “slip”

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-98

7.5 Application of S

FE

E to a R

adial Rotor

We

can conside

r a com

pressor or turbine

. Whiche

ver w

e cho

se, the

Rotha

lpy equa

tion is

consta

nt

22 1

00

==

=U

hU

Vh

Ro

tha

lpy

-,re

l-

θ

If we

take

the rota

ting fram

e pa

rt, the a

bove ca

n be w

ritte

n as

consta

nt

22 1

0=

Uh

-,re

l

22 1

,0re

lre

lV

hh

+=

constant

2

2 12

2 1=

+U

-V

hre

l

22 1

0V

hh

−=

constant

2

2 12

2 12

2 10

=+

U-

V)

V-

(hre

l

(

) 22 1

22 1

22 1

0V

VU

hre

l +−

− =

constant

So,

hh

wx

0203

−=

− =

()

()2

22 1

22 1

22 1

32

2 12

2 12

2 1V

VU

VV

Ure

lre

l+

−−

+−

Page 50: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-99

So for a

radia

l inflow turbine

:

)

V(V

)V

(V)

U(U

wre

lre

lx

2223

2 122

232 1

2223

2 1−

+−

−−

=−

< 0

U3 <

U2

Ra

dial IN

flow

M

inimise

2 1V2

,rel 2 ⇒

α

2,rel ≈ 0°

M

inimise

2 1V3 2

α3 ≈ 0°

And for com

pressors/pum

ps

)

V(V

)V

(V)

U(U

-wre

lre

lx

2122

2 121

222 1

2122

2 1−

+−

−−

= > 0

U2 >

U1

Ra

dial O

UT

flow

M

inimise

2 1V2

,rel 2 ⇒

α

2,rel ≈ 0°

M

inimise

2 1V1 2

α1 ≈ 0°

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-100

7.6 Exam

ple In

a ra

dia

l turb

ine

, the

flow

leavin

g th

e rin

g o

f stato

r bla

de

s has a

static te

mpe

ratu

re o

f 1000 K

an

d

velo

city 600 m

s -1 at a

n a

ngle

of 7

0° to

the

radia

l dire

ction. A

t e

ntry to

the

roto

r whe

el th

e b

lade

sp

ee

d is 5

00 m

s -1 whilst a

t flow

exit it is 1

00 m

s -1. Calcu

late

the

rela

tive sta

gnatio

n te

mpe

ratu

re a

t

entry a

nd e

xit of th

e ro

tor w

he

el

Rotor

2

3F

lowV

3

V2,rel

V2

Radial V

iewR

otor Exit

U2

U1

V3,rel

Axial V

iewR

otor Inlet

Stator

2

Page 51: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-101

At e

ntry the flow

is radia

l-tange

ntial a

nd at e

xit the

flow is a

xial-ta

ngentia

l

1

12

20570

cos600

cos-

r m

s.

α V V

==

1

18

56370

sin600

sin-

θ m

s.

α V V

==

ms

..

UV

V-

,rel

11

18

63500

8563

=−

==

−θ

θ

Now

:

co

nst

Uh

,rel

=−

22 1

0

(

)()p

,rel

θrre

lc

/V

V

T

T2

2121

101

++

=

(

) K

./

..

Tre

l97

10221005

28

632

205(

1000)

22

01=

×+

+=

Re

arra

nging SF

EE

in rela

tive fra

me

:

(

)(

)pre

lp

,rel

cU

Tc

UT

22

22,

0221

01−

=−

(

)()p

,rel

rel

cU

UT

T2

2221

01,

02−

−=

K

/-

.T

rel

57.

903)

10052(

)500

100(

971022

22

,02

+=

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

7-102

7.7 Sum

mary

In radia

l ma

chines

• Applica

tion of SF

EE

lea

ds to turbines w

here

most w

ork is obta

ined for:

Ra

dial Inflow

N

ea

r radia

l blade

s at rotor inle

t (α

2,rel ≈ 0°)

No e

xit swirl (α

3 ≈ 0°)

and for com

pressors/pum

ps:

Ra

dial O

utflow

Ne

ar ra

dial bla

des a

t rotor exit (α

2,rel ≈ 0°)

No e

xit swirl (α

1 ≈ 0°)

• Work e

xchange

is ma

inly a ƒ n of the

square

of the im

pelle

r tip spee

d

Page 52: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-103

8 Losses In Turbom

achines 8.1 Introduction S

trictly, we

should define

the losse

s in term

s of the e

ntropy crea

ted but, w

e usua

lly dete

rmine

the losse

s from

stagna

tion pressure

me

asure

me

nts and, w

hen

co

nst

h=

0

we

find that

0

00

dp

dh

ds

T−

=

00

dp

ds

T−

=

and in the

particula

r case

of incompre

ssible flow

(con

st=

ρ)

ρ

00

ps

T∆

−=

So viscous e

ffects (including those

due to shock w

ave

s) a

re usua

lly quantifie

d using

• Sta

gnatio

n P

ressu

re L

oss C

oe

fficients

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-104

Developm

ent of blade surface boundary layers and wakes in an axi

al compressor

Page 53: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-105

8.2 The 2D

(Linear) Cascade

Linea

r or 2D ca

scade

s

• produced by de

velopm

ent of cylindrica

l surface

s

provide da

ta on

• me

an flow

angle

s

• losses

but only valid w

hen in the

turboma

chine

• radius cha

nge is sm

all from

inlet to e

xit of blade

row

• effe

cts of twist, le

an, sw

ee

p, rotation a

re sm

all

there

fore

• can only re

ally a

pply to axia

l ma

chines

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-106

Exam

ple of linear cascade wind tunnel

In a

ca

scade

e

xperim

ent,

at

exit,

the

pitchwise

(ie

ta

ngentia

l) va

riation

of ve

locity, flow

a

ngle,

stagna

tion pressure

and sta

tic pressure

are

usually m

ea

sure

d.

Dow

nstrea

m of the

blade

row the

stagna

tion pressure

is pitchw

ise non-uniform

and be

low the

isentropic

value

. The

ave

rage

exit sta

gnation pre

ssure ca

n be de

fined by:

∫+−

+−=

2/2/2

2

2/2/02

22

02

)(

)(

)(

)(

)(ss

x

ssx

dy

yV

y

dy

yP

yV

y

P

ρ

ρ

Page 54: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-107

Note

s:

• Flow

acce

lera

tes a

s e

xpecte

d for a turbine

• Be

twe

en the

wa

kes, flow

is ise

ntropic (no shock w

ave

s in this case

)

• Losses a

ppea

r only in the

wa

kes

• Exit flow

is alm

ost pa

ralle

l so static pre

ssure

is uniform

01

0.0

0.1

0.8

0.9

1.0

2.5

3.0

P-P

P- p

010 (y)

01 2

p-p

P- p

12 (y)

01 2

VV21

ys

01

2

01

2 2

Typical m

idspan wake traverse results

for a turbine cascade (4A3 C

ascade Experim

ent)

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-108

8.3 Stagnation pressure Loss C

oefficients T

he sta

gnatio

n p

ressu

re lo

ss coe

fficient

is define

d as

Pre

ssure

Dyna

mic

c)

(Isentropi

R

efe

rence

ilityirre

versib

to

due

pressure

S

tagna

tion

(rela

tive)

of

Loss

=

Yp

Since

the

sta

gnation

pressure

ca

n cha

nge

due

to adia

batic+

reve

rsible=

isentro

pic

change

s in

the

stagna

tion entha

lpy (or stagna

tion tem

pera

ture),

• the loss is e

valua

ted re

lative

to the ise

ntropic case

in

o the

absolute

fram

e of re

fere

nce for sta

tors/casca

des

o the

rotating fra

me

of refe

rence

for rotors

The

re a

re m

any diffe

rent de

finitions for loss coefficie

nt so ta

ke ca

re w

hen consulting te

xt books and

other publishe

d works.

The

loss coefficie

nt definitions use

d in this course a

re:

Page 55: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-109

• For com

pressors

- w

e a

re inte

reste

d in how m

uch is costs to slow dow

n the

flow a

cross a bla

derow

- loss coe

fficients a

lwa

ys base

d on inlet

conditions

- m

ost comm

on is:

101

0201

101

02,

02

- pP

- PP

= - p

P

- PP

Yusu

ally

isen

p≡

• For turbine

s

- we

are

intere

sted in how

much is costs to spe

ed up the

flow a

cross a bla

derow

- alw

ays ba

sed on e

xit conditions

- most com

mon a

re

2

02

0201

202

02,

02

- pP

- PP

=- p

P

- PP

Yu

sua

llyise

np

≡ IIA

Paper 3A

3 Fluid M

echanics II: Turbom

achinery/HP

H

8-110

V2

α2

3230

0.08

0.04

0.00-300

+30

Incid

enc

e, i=

χ11

-300

+30

Exit Flow Angle α2Profile Loss Coefficient Yp

34

36

Typical cascade test results for an axial

flow com

pressor

V1

ROTO

R

χ1

V2

α2

α1

7270

0.08

0.04

0.00-300

+30

Incid

enc

e, i=-

αχ1

1

-300

+30

Exit Flow Angle α2Profile Loss Coeffic ient Yp

Typical cascade test results for an axial flow

turbine

Page 56: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-111

Note

that w

hen the

losses re

fer only to those

due to t

he bla

de surfa

ce bounda

ry laye

rs and w

ake

s (e.g.,

at the

mid-spa

n of a 2-D

casca

de) the

n we

often ca

ll the sta

gnation pre

ssure loss coe

fficient the

profile

loss coefficie

nt.

We

note tha

t changing 1

α

• results in a

change

of incidence

1

α−

=i

• does not cha

nge 2

α (until the

boundary la

yers se

para

te a

t high i)

• does not cha

nge the

losses (until the

boundary la

yers

sepa

rate

at high i)

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-112

8.3.1 E

xam

ple

At a

particu

lar o

pe

ratin

g p

oin

t, an a

xial tu

rbin

e r

oto

r bla

de

row

has re

lative

inle

t Mach

num

be

r M1

,rel

= 0

.6, a

rela

tive e

xit Mach

num

be

r M2,rel =

1.0

5 a

nd a

loss co

efficie

nt Yp =

0.0

5. If th

e re

lative

sta

gnatio

n p

ressu

re a

t inle

t to th

e ro

tor ro

w is 8

.0 b

ar, ca

lcula

te th

e re

lative

stagnatio

n p

ressu

re a

t exit.

The

loss co

efficie

nt is d

efin

ed a

s

Since

we

have

a rotor bla

de row

, we

will w

ork with re

lat

ive flow

quantitie

s. We

will a

ssume

that the

re

is no change

in radius

2,

02

,02

,01

2,

02

02,

,02

- PP

- PP

- PP

- PP

Yre

l

rel

rel

rel

isen

rel

p=

1

1

,

022

,02

,01

rel

rel

rel

pP

P -

- P

P Y

=

1

1

,02 2

,02 ,01

+=

rel

pre

l

rel

P

P -

YP P

Page 57: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-113

But

re

lP

P

,02 2

=

)1(

222

11

−−

γγ

rM

= ()

5.3

205.1

2.0

1−

×+

= 0.4979

()

025.1

4979.0

105.0

1,

02 ,01

=+

= -

P P

rel

rel

80.7

025.1

/8

025.1

/,

01,

02=

==

rel

rel

PP

bar

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

8-114

8.4 Sum

mary

The

crea

tion of entropy is usua

lly dete

rmine

d from the

losse

s of stagna

tion pressure

Linea

r or 2D ca

scade

s apply to a

xial m

achine

s only an

d provide da

ta on

• me

an flow

angle

s

• losses

The

stagnatio

n p

ressu

re lo

ss coe

fficient

is eva

luate

d rela

tive to the

ise

ntro

pic ca

se a

nd is define

d as

Pre

ssure

Dyna

mic

c)

(Isentropi

R

efe

rence

ilityirre

versib

to

due

pressure

S

tagna

tion

of

Loss

=

Yp

Com

pressor losse

s are

norma

lised by inle

t conditions

Turbine

losses a

re norm

alise

d by exit conditions

Page 58: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-115

9 Com

pressible Flow

through Turbom

achines M

any turbom

achine

s involve com

pressibility e

ffects (M

ach

> 0.3).

To ca

lculate

the pe

rforma

nce of the

se m

achine

s, very simila

r me

thods are

used a

s those for ca

ses w

here

the

flow is conside

red incom

pressible

.

The

most re

leva

nt compre

ssible flow

rela

tions, which a

re a

ll tabula

ted a

s functions of Ma

ch numbe

r for γ=

1.4 and γ=

1.333, are

:

12

02

11

−+

=M

T Tγ

1

1

2

02

11

−−

+=

γγ

ρ ρM

1

2

02

11

−−

+=

γ γγ

Mp p

2 1

2

02

11

1−

+−

=M

MT

c Vp

γγ

− +−

+−

=1 1

2 1 2

0

0

2

11

1γ γ

γγ γ

MM

Ap

Tc

mp

&

2 1

20

2

11

1

+−

=M

MA

p Tc

mp

γγ γ

&

The

most im

portant is

0

0

Ap

Tc

mp

&

since w

e usua

lly know m & a

nd 0

p a

nd 0

T a

re ofte

n constant

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-116

Ma

ch N

umb

er

− +−

+−

=1 1

2 1

2

0

0

2

11

1

γ γγ

γ γM

MA

p

Tc

mp

&

12

02

11

−+

=M

T Tγ

1

1

2

02

11

−−

+=

γγ

ρ ρM

12

02

11

−−

+=

γ γγ

Mp p

Page 59: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-117

9.1 Relative F

low Q

uantities W

e ha

ve a

lrea

dy observe

d that in the

absolute

fram

e of re

fere

nce tha

t

• 0

T T,

0p p

, 0

0

Ap

Tc

mp

&

, 0

Tc Vp

, …..

()

Mf

=

• T and p (in fa

ct all sta

tic quantitie

s) are

the sa

me

in both the

absolute

and re

lative

fram

es

The

refore

, in the re

lative

fram

e

rel

T

T,0,

rel

p

p,0,

rel re

lp

Ap

Tc

m

,0

,0&

, re

lp

rel

Tc V

,0, …

.. (

)re

lM

f=

So, w

e ca

n use the

sam

e ta

bles for both a

bsolute a

nd re

lative

flows providing

• we

use the

appropria

te sta

gnation qua

ntities (e

.g. 0

T or

rel

T,0

)

• we

use the

appropria

te M

ach num

bers(

M or

rel

M)

• A is the

effe

ctive flow

are

a m

ea

sured N

OR

MA

L to the a

ppropria

te flow

vector (V

or re

lV

)

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-118

9.2 Com

pressibility and Conservation of M

ass

Co

ntrol

Volum

e

rel

1

scosα1rel

scosα2rel

s

rel2

Inlet and exit flow areas of am

axial compressor rotor in x-rθθθ θ plane

Page 60: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-119

Conse

rvation of m

ass give

s for one bla

de pa

ssage

(

)(

),re

l,re

lhs

V= ρ

hs

V ρm

,rel

,rel

pa

ssag

e1

2cos

cos1

12

α=

&

or, more

gene

rally, if

xA

is the cross-se

ctional a

rea

(

)(

ρα

ρcos

cosx

xre

lA

VA

Vm

rel

==

&

whe

re

• the e

ffective

flow a

rea

()

αcos

xA

A= is a

lwa

ys me

asure

d perpe

ndicular to the

velocity ve

ctor.

• failure

to observe

this importa

nt simple

rule ha

s serious conse

quence

s whe

n dea

ling with

compre

ssible flow

beca

use

00

Ap

Tc

mp

& de

pends on the

true flow

are

a

We

will e

xam

ine the

flow a

t inlet to a

nd exit from

a c

ompre

ssor rotor of pitch s a

nd constant spa

n h in

rela

tive fra

me

.

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-120

Conse

rvation

of m

ass

also

me

ans

that

in a

bsence

of

radi

us cha

nge

(re

lre

lT

T,

02,

01=

) a

nd loss

(re

lre

lP

P,

02,

01=

)

(

)()

rel

rel

rel

rel

rel

rel

rel

p

rel

rel

rel

p

Ph

s

Tc

m Ph

s

Tc

m

,1 ,2rel

2,,1 ,2

,02

,2

,02

rel1,

,01

,1

,01

cos

cos )

F(M

cos

cos

cos=

)F

(M =

cos

α αα α

α

α

=&

&

This is use

ful beca

use

• we

can find

rel

M,2

given

rel

M,1

,.re

l,1

α a

nd re

l,2

α

or • we

can find

rel

,2α

given

rel

M,1

,.re

l,1

α.a

nd re

lM

,2

or ……

Page 61: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-121

9.3 Exam

ple: Flow

Through an A

xial Com

pressor Rotor

Fo

r the

hig

h M

ach

nu

mb

er co

mp

resso

r roto

r bla

de

de

scrib

ed

be

low

, find

the

static p

ressu

re ra

tio (p

2 /p1 )

acro

ss the

roto

r, the

ab

solu

te e

xit flow

an

gle

2 ) an

d th

e e

xit Ma

ch n

um

be

r (M2 ).

Ge

ome

trical D

ata

:

m

ea

n radius (consta

nt) r

0.300 m

bla

de he

ight (span, consta

nt) h

0.050 m

annulus cross-se

ctional a

rea

A

x 0.0942 m

2

Ope

rating C

onditions:

bla

de spe

ed

U

250 ms -1

m

ass flow

rate

m .

16.0 kgs -1

inle

t stagna

tion pressure

(abs)

p0

1 1.4 ba

r

inle

t stagna

tion tem

pera

ture (a

bs) T

01

340 K

a

bsolute inle

t swirl

α1

10°

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-122

Bla

de P

erform

ance

(at a

bove ope

rating point):

rotor pre

ssure loss coe

fficient

Yp

0.034

rotor re

lative

exit a

ngle

α2

,rel -35.0°

Assum

e tha

t the w

orking fluid is air w

ith

γ=

1.4

R=

287 Jkg -1K-1

cp =

1005 Jkg -1K-1

Page 62: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-123

Ste

p 1

First, w

e dra

w ve

locity triangle

s:

V1,rel

V2,rel

V1

V2

UU

RO

TO

R UBlade Speed

Note

tha

t the

ve

locities

(and

the

velocity

triangles)

ma

y be

conve

rted

to M

ach

numbe

rs (a

nd ge

ome

trically e

quivale

nt triangle

s) by dividing by the

local sound spe

ed γR

T .

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-124

We

note tha

t the flow

are

a norm

al to the

flow ve

ctor (this is ve

ry importa

nt) is given by

1

cosα

xA

A=

The

n, in the a

bsolute fra

me

, we

find the inle

t flow conditions using

01

1 01

01 01

cosp

A

Tc

m

Ap

Tc

m

x

pp

α&

&

==

5

104.

110

cos0942.0

3401005

16

××°

××

× =

0.720

Using the

table

s gives

M

1 = 0.350

and

V

1 /01

p Tc

= 0.219

V

1 = 128.0 m

s -1

T

1 /T0

1 = 0.976

T

1 = 331.8 K

P

1 /P0

1 = 0.919

P

1 = 1.287 ba

r

Page 63: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-125

Ste

p 2

From

the tria

ngles, w

e obse

rve tha

t

Vx1 =

V1 cosα

1 = 126.1 m

s -1

Vθ1 =

V1 sinα

1 = 22.2 m

s -1

Vθ1

,rel = V

θ1 – U =

–227.8 ms -1

V1

,rel = 260.4 m

s -1

α1

,rel = -61.0°

M1

,rel = V

1 /1

p Tc

= 0.713

From

the T

able

s, we

find that:

T1 /T

01,rel =

0.908 ⇒

T

01,rel =

365.4 K

P1 /P

01,rel =

0.713 ⇒

P

01,rel =

1.805 bar

Note

that w

e could a

lso have

used

T0

1,rel = T

1 + (V

1,rel ) 2/2c

p = 365.5 K

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-126

Ste

p 3

He

re, w

e e

xam

ine the

rotor in the re

lative

fram

e, a

pplying the loss a

nd flow turning

Now

, a fixe

d radius com

bined w

ith the R

othalpy e

quation (

constant

22 1

,00

=−

=−

Uh

UV

hre

)

T0

1,rel =

T0

2,rel =

365.4 K

He

nce

P

02

,rel ,isen = P

01

,rel = 1.805 ba

r

Loss C

oefficie

nt (given)

Y

P =

1rel,

01

rel,

02rel,

01

PP

PP

− − =

0.034

P0

2,rel =

1.787 bar

Exit a

ngle (give

n)

α

2,rel =

-35°

Page 64: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-127

Ste

p 4

He

re, w

e find the

rotor exit conditions in the

rela

tive fra

me

:

re

lre

lx

rel

p

PA

Tc

m

,0

2,2

,0

2

cosα&

=

510

787.1

)35

cos(0942.0

4.365

100516

××

°−

××

× =

0.703

Using the

table

s (γ=1.4) give

s: M2,rel =

0.340

The

other flow

propertie

s are

obtaine

d (from ta

bles

):

V

2,rel /

rel,

02p T

c =

0.213 ⇒

V

2,rel =

129.1 ms -1

T

2 /T0

2,rel =

0.977

T

2 = 357.0 K

P

2 /P0

2,rel =

0.923

P

2 = 1.649 ba

r

Note

that w

e could a

lso have

used

V2

,rel = M

2,rel ×

γRT

2 = 128.8 m

s -1

The

static pre

ssure ra

tio is then give

n by

P

2

P1 =

1.6491.287 =

1.28

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-128

Ste

p 5

He

re, w

e, conve

rt back to a

bsolute flow

conditions dow

nstrea

m of the

rotor

Vx2 =

V2

,rel cosα2

,rel = 105.8 m

s -1 < V

x1 due to com

pressibility

Vθ2

,rel = V

2,rel sinα

2,rel =

-74.0 ms -1

Vθ2 =

Vθ2

,rel + U

= 176.0 m

s -1

V2 =

205.4 ms -1

α2 =

59.0°

M2 =

V2 /

2p T

c=

0.542

From

the T

able

s (γ=1.4), w

e find tha

t:

T

2 /T0

2 = 0.945 ⇒

T

02 =

377.8 K

∆T

0 = 377.8 – 340 =

37.8 K

Using E

uler's W

ork Equa

tion, we

can che

ck this resu

lt:

h

02 – h

01 =

U(V

θ2 – Vθ1 ) =

38.45 kJkg -1 ⇒ ∆

T0 =

38.3 K

Page 65: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

9-129

9.4 Sum

mary

• The

functions of Ma

ch numbe

r

0

T T,

0p p

, 0

0

Ap

Tc

mp

&,

0T

c Vp

can be

used in a

bsolute or re

lative

fram

es so long

as corre

ct value

s (absolute

or rela

tive) a

re use

d.

• Re

me

mbe

r:

E

ffective

flow a

rea

= A

=

αcos

xA

• Conse

rvation of m

ass m

ea

ns that if w

e know

02

0201

01

and

,

,P

TP

T, w

e ca

n use

(

)(

)1 2

01

02

02 012

1 2

01

02

02 01

022 02

101

1 01

cos

cos

cos

cos

coscos

α α P P

T T)

f(Mα α

P P T T

P

αA Tc

m) =

f(M

PαA T

cm

x

p

x

p=

=&

&

to find

o

rel

M,2

given

rel

M,1

,.re

l,1

α a

nd re

l,2

α

o

rel

,2α

given

rel

M,1

,.re

l,1

α.a

nd re

lM

,2 …

… e

tc

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-130

10 Hub-T

ip Variations

10.1 Introduction

So fa

r, we

have

ma

de significa

nt progress using

• 1-D m

ea

n-line a

nalyse

s turboma

chine

The

next sta

ge is to use

• Sim

ple R

adia

l Equilibrium

theory or

• Stre

am

line C

urvature

calcula

tions

to exa

mine

the hub-tip va

riations in, for e

xam

ple,

the circum

fere

ntial a

vera

ges of

• the ve

locities Vx , V

r and V

θ

• flow a

ngle α

at the

inlet a

nd exit of e

ach bla

derow

.

Page 66: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-131

10.2 S

imple R

adial Equilibrium

W

e w

ill assum

e

• Ana

lysis applie

s in stationa

ry fram

e (i.e

. all ve

locitie

s are

absolute

, eve

n for a rotor)

• Axisym

me

tric flow (

0=

∂∂

θ)

• Curva

ture of the

strea

mline

s in the M

eridiona

l (x-r) pla

ne is ne

gligible (no a

ccele

rations norm

al to

the stre

am

surface

)

• Ra

dial ve

locity r

V is ne

gligible

• Isentropic F

low 4

rr

θ

x

4 Sim

ple R

adial E

qu

ilibriu

m th

eory d

oes n

ot req

uire

this b

ut th

is is a con

venien

t and

com

mo

n sim

plific

ation

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-132

r

dr

p+dp

p

Unde

r these

circumsta

nces, w

e a

re de

aling w

ith the

equilibrium

of a sw

irling flow w

here

the pre

ssure

forces cre

ate

the ce

ntripeta

l acce

lera

tion:

r V

dr

dp

21

θρ

=

Now

, for isentropic flow

0

=−

=ρ dp

dh

Td

s

Page 67: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-133

r V

dr

dp

dr

dh

21

θρ

==

Now

if 0

=r

V

2

2 10

Vh

h+

22 1

22 1

0θ V

Vh

hx

++

=

dr

dV

Vd

r

dV

Vd

r

dh

dr

dh

xx

θθ

++

=0

Substituting for dh

/dr give

s

dr

dV

Vd

r

dV

Vr V

dr

dh

xx

θθ

θ+

+=

20

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-134

This ca

n be re

-arra

nged to give

the S

imple

Ra

dial E

quilibrium e

quation for ise

ntropic flow

(

)d

r rVd

r V

dr

dV

Vd

r

dh

xx

θθ

+=

0

For incom

pressible

flow, the

above

becom

es

(

)d

r rVd

r V

dr

dV

Vd

r

dp

xx

θθ

ρ+

=0

1

We

see

that for a

given ra

dial distribution of sta

gna

tion entha

lpy (or stagna

tion pressure

)

• θ

rV (w

hich results from

the ra

dial distribution of w

ork a

ccording to Eule

r’s equa

tion)

• x

V

• the flow

angle

(

)xV

Vθα

1ta

n −=

are

all de

pende

nt on ea

ch other

Page 68: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-135

10.3 E

xample: F

ree Vortex C

ompressor R

otor “F

ree

vortex” m

ea

ns

θ

rV =

constant

The

ma

jority of axia

l ma

chines do not de

viate

far f

rom a

free

vortex de

sign.

Conside

r the ca

se w

here

the sta

gnation e

nthalpy is ra

dially uniform

at inle

t

r

x

RS

12

3

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-136

In this case

we

have

co

nst

h=

01

1

1C

con

strV

==

θ

2

2C

con

strV

==

θ

Now

, upstrea

m of the

rotor, the S

RE

gives

(

)d

r

rVd

r V

dr

dV

Vd

r

dh

xx

11

11

01θ

θ+

=

dr

dV

Vx

x1

10

=

con

stV

x=

1

The

specific w

ork at a

radius

r is given by E

uler’s w

ork equa

tion

(

)(

)(

)21

21

CC

rVrV

UV

wx

−Ω

=−

Ω=

∆=

θθ

θ =

constant

But

02

01h

hw

x−

=

Page 69: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-137

con

sth

=02

The

refore

, by the sa

me

argum

ent a

s above

,

con

stV

x=

2

Conse

rvation of m

ass for incom

pressible

flow the

ref

ore give

s

con

stV

VV

xx

x=

==

21

Fina

lly, the ra

dial distributions of the

absolute

and re

lative

flow a

ngles a

re give

n by

=

=

−−

xx

V

rC

V V1

11

11

tan

tan

θα

Ω

−=

Ω

−=

=

−−

xx

x rel

rel

V

rr

C

V

rV

V

V1

11

1,1

1,1

tan

tan

tan

θθ

α

=

=

−−

xx

V

rC

V V2

12

12

tan

tan

θα

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-138

Ω

−=

Ω

−=

=

−−

xx

x rel

rel

V

rr

C

V

rV

V

V2

12

1,2

1,2

tan

tan

tan

θθ

α

V1

,rel

V2

,rel

V1

U1

U2

V2

RO

TO

R

Blade Speed

2,re

l

α2

α1

α1,re

l

Mean line rotor velocity triangles

Page 70: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-139

So, a

free

vortex de

sign has

• a uniform

work distribution a

cross the spa

n

• constant a

xial ve

locity

• varying bla

de sha

pe (inle

t and e

xit angle

s) along the

span

ME

AN

Hu

b

Me

an

Tip

TIP

HU

B

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-140

Exa

mple

:

=1

α0

and a

t me

an ra

dius:

408.0

2 0=

∆=

U

952.0

==

U Vx

φ

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

0.40.5

0.60.7

0.80.9

1r/rtip

angle

Abs Inlet

Abs E

xit

Rel Inlet

Rel E

xit

rmean

Page 71: Turbo Machinery, Lecture Notes Physics Prof T P Hynes

IIA P

aper 3A3 F

luid Mechanics II: T

urbomachinery/H

PH

10-141

10.4 S

umm

ary T

he S

imple

Ra

dial E

quilibrium e

quation for ise

ntropic flow

is

(

)d

r rVd

r V

dr

dV

Vd

r

dh

xx

θθ

+=

0

For incom

pressible

flow, the

above

becom

es

(

)d

r rVd

r V

dr

dV

Vd

r

dp

xx

θθ

ρ+

=0

1

So the

radia

l distributions of

• θ

rV

• x

V

• the flow

angle

s (

)rV

Vθα

1ta

n −=

cannot be

chosen inde

pende

ntly

As a

result of the

above

• blade

shape

s (i.e. inle

t and e

xit angle

s) vary a

long the

span.