25
MODELLING SOLUTE TRANSPORT WITH PREFERENTIAL FLOW PATHS T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, K.-J.S. Kung, J. Boll, C. Darnault, T.J. Gish, L.W. Dekker, C.J.Ritsema, S.O. Aburime, and many others

T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

MODELLING SOLUTE TRANSPORT WITH

PREFERENTIAL FLOW PATHS

T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, K.-J.S. Kung, J. Boll,

C. Darnault, T.J. Gish, L.W. Dekker, C.J.Ritsema, S.O. Aburime, and many others

Page 2: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

For homogeneous For homogeneous soils Darcy’s law is soils Darcy’s law is valid only for valid only for several pores several pores

FactFact

Page 3: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

HypothesisHypothesis

Analogy with Analogy with Darcy’sDarcy’s law law: For: Forheterogeneous soils soluteheterogeneous soils solutetransport can be predicted overtransport can be predicted overseveral preferential flow pathsseveral preferential flow paths

Page 4: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

HypothesisHypothesis

Field scale solute transportField scale solute transportcan not be predicted bycan not be predicted bymodeling individual poresmodeling individual pores

Page 5: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

••Begin with most simple configurationBegin with most simple configuration••Steady state water fluxSteady state water flux••Add solute as a pulseAdd solute as a pulse••Wet subsoilWet subsoil••No uptake of water and solute by soilNo uptake of water and solute by soilmatrix in subsoilmatrix in subsoil

Modeling PhilosophyModeling Philosophy

Page 6: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

In modeling soluteIn modeling solutetransport visualizationtransport visualizationof flow is importantof flow is important

Page 7: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Distribution layer

Conveyance zone

Macropore flow

Page 8: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Finger Flow in Homogenous Sand Distribution layer

cConveyance zone

Page 9: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Finger Flow in Water repellent sand

Distribution layer

Conveyance zone

Page 10: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Funneled Finger Flow

Page 11: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Distribution layer Preferential flow models must have two layers:

- Distribution layer- Conveyance zone

Conveyance zone

Page 12: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Preferential flow model

Page 13: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Preferential flow modelNo flow outside preferential flow path in conveyance zone

C C erfc x VtDt

VxD

t erfc x V tDt

DV

qdtW

o=−

− − −

= − = ∫

12 4 2

14

1 42

exp ( )

,

α λ α

α λ λ

Input parameters for soilW =water content distribution layerV= velocity in preferential flow paths, or

fraction of preferential flow path in soilD= dispersion coefficient

Page 14: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Comparison of the two region and preferential flow model

Page 15: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Predicting chloride breakthrough through undisturbed 39 sandy loam columns

Page 16: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

ExperimentsTwo sets of soil column experiments with were performed. Rain was applied with rainfall simulator.

1) instantaneous Cl application on homogeneous sand columns (fingered flowexperiments)

2) Pulsed application on undisturbed soil columns (macropore flow experiments)

Page 17: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

EXPERIMENTAL SETUPfor studying conveyance zone transport

40 cm long undisturbed clay loam or coarse sand

Rainfall rate varied from 0.002 to 2 cm/hr

Page 18: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

fingered flow

0

0.05

0.1

0.15

0.2

0.25

0.3

Cl/C

lo

0 1 2 3 4 5 6 7 8 9 10Cumulative drainage (cm)

q=0.002

q= 0.002 cm/min v= 0.3 cm/min D= 3cm2/min W= 2

Page 19: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

fingered flow

0

0.05

0.1

0.15

0.2

0.25

Cl/C

lo

0 10Cumulative drainage (cm)

q=0.017

q= 0.017 cm/minv= 0.7 cm/min D= 0.4 cm2/min W= 2.7

Page 20: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

fingered flow

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Cl/C

lo

0 10Cumulative drainage (cm)

q=0.033

• q= 0.033 cm/min v= 0.5 cm/min D= 1.2 cm2/min W= 3.4

Page 21: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Solute transport in structured soil

Page 22: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Preferential flow model for structured soil

−−−

−−

+

−−−

−=

Dttvxerfct

Dxv

DttvxerfcCa

Dttvx

erfctDxv

Dttvx

erfcaCC

mmm

mm

ppp

pp

2)1(

2exp

22)1(

2)1(

2exp

221

0

0

αλα

αλα

Where a is the fraction of the flow through the macro pores

Page 23: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

0

0.2

0.4

0.6

0.8

1

1.2C

l/Clo

0 50 100Cumulative drainage (cm)

Low rate

0

0.2

0.4

0.6

0.8

1

1.2

Cl/C

lo

0 80Cumulative drainage (cm)

High rate

Rate a q vp vm D w αp αm

Low 0.15 0.003 2 0.01 0.01 2.5 0.99 0.721

High 0.38 0.025 2 0.1 0.1 4 0.99 0.866

Page 24: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

Conclusions

• The generalized model was able to describe the breakthrough of solutes with three parameters (v, D, and W)

• Apparent water contents, W, increased proportional to the flow rate

• For fingered flow the velocity was almost independent of flow rate

Page 25: T.S. Steenhuis, Y-J.Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, …soilandwater.bee.cornell.edu/Research/pfweb/educators/... · 2010-08-20 · v x Dt x v t C erfc a Dt x v t

References:Steenhuis, T.S., Y.-J. Kim, J.-Y. Parlange, M.S. Akhtar, B.K. Richards, K.-J.S. Kung, T.J. Gish, L.W.Dekker, C.J. Ritsema, and S.O.Aburime. An equation for describing solute transport in field soils with preferential flow paths. In: Proceeding of the 2nd ASAE International Symposium on Preferential Flow: Water Movement and Chemical Transport in the Environment. Honolulu, HI. January 3-5, 2001.

Kim, Y.J., C.J.G. Darnault, N. Bailey, J.-Y. Parlange, and T.S. Steenhuis. 2003. An equation for describing solute transport in field soils with preferential flow paths. Submitted to Soil Sci. Soc. Am. Journal.