Transmission & Distribution Of Electrical Power

Embed Size (px)

Citation preview

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    1/104

    Scilab Textbook Companion for

    Transmission & Distribution Of Electrical

    Power

    by P. Jain1

    Created byHarpreet Singh

    B TECHElectrical Engineering

    Vyas Institute of Engineering & Technology

    College TeacherNA

    Cross-Checked byK. V. P. Pradeep

    June 1, 2016

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    2/104

    Book Description

    Title: Transmission & Distribution Of Electrical Power

    Author: P. Jain

    Publisher: Ashirwad Publications, Jaipur

    Edition: 1

    Year: 2012

    ISBN: 978-93-80343-73-0

    1

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    3/104

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    4/104

    Contents

    List of Scilab Codes 4

    1 Supply System 5

    2 Distribution System 9

    3 Mechanical Features of Overhead Line 15

    4 Transmission Line Parameters 27

    5 Performance of Short and Medium Transmission Lines 40

    6 Performance of Long Transmission Lines 57

    7 Corona 79

    8 Insulators 85

    9 Underground Cables 91

    3

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    5/104

    List of Scilab Codes

    Exa 1.1 Find the copper saving . . . . . . . . . . . . . . . . . 5Exa 1.4 Calculate volume of conductor required in 1 phase 2 wire

    and 3 phase 3 wire system. . . . . . . . . . . . . . . . 5Exa 1.5 Calculate DC supply voltage . . . . . . . . . . . . . . 7Exa 2.1 Calculate the most economical cross sectional area . . 9Exa 2.2 Calculate the most economical current density . . . . 10Exa 2.3 Calculate the most economical current density and di-

    ameter of conductor . . . . . . . . . . . . . . . . . . . 10Exa 2.4 Calculate the most economical cross sectional area . . 11Exa 2.5 Calculate the most economical cross sectional area . . 12Exa 2.6 Calculate the most economical cross sectional area . . 13Exa 3.1 calculate the weight of the conductor required . . . . . 15Exa 3.2 Calculate the max sag . . . . . . . . . . . . . . . . . . 16

    Exa 3.3 Calculate the hieght above ground at which conductorshould be supported . . . . . . . . . . . . . . . . . . . 16

    Exa 3.4 Calculate horizontal component of tension and max sag 17Exa 3.5 Calculate the max sag in still air and wind pressure. . 18Exa 3.6 Calculate the max sag . . . . . . . . . . . . . . . . . . 19Exa 3.7 Calculate the vertical sag . . . . . . . . . . . . . . . . 19Exa 3.8 Calculate the minimum clearance of conductor and water 20Exa 3.9 Calculate sag from taller of the two supports . . . . . 21Exa 3.10 find the clearance of conductor from ground . . . . . . 22Exa 3.11 Find stringing tension in the conductor . . . . . . . . 23Exa 3.12 find the clearance of conductor from water level at mid

    point . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Exa 3.13 find the clearance of conductor from ground 1 At its

    lowest elevation 2 the min clearance of the line . . . . 24Exa 3.14 Determine Sag and Tension under erection conditions 25

    4

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    6/104

    Exa 4.1 Find the loop inductance and reactance . . . . . . . . 27

    Exa 4.2 Find the loop inductance . . . . . . . . . . . . . . . . 27Exa 4.3 Calculate GMR pf ACSR conductor . . . . . . . . . . 28Exa 4.4 Find the total inductance of the line . . . . . . . . . . 29Exa 4.5 Find the loop inductance . . . . . . . . . . . . . . . . 29Exa 4.6 Find the inductance per phase of 30 km line. . . . . . 30Exa 4.7 Find the inductance of a 3 phase line situated at cornes

    of a triangle. . . . . . . . . . . . . . . . . . . . . . . . 30Exa 4.8 Find the inductance of a 3 phase line arranged in hori-

    zontal plane. . . . . . . . . . . . . . . . . . . . . . . . 31Exa 4.9 Find the loop inductance per phase. . . . . . . . . . . 31Exa 4.10 Find the loop inductance per phase. . . . . . . . . . . 32

    Exa 4.11 Find the inductance of an ASCR 3 phase line . . . . . 33Exa 4.12 Find inductive reactance of 3 phase bundled conductor 34Exa 4.13 Find the capacitance of 1 phase line . . . . . . . . . . 35Exa 4.14 Find the capacitance of 2 wire 1 phase line . . . . . . 35Exa 4.15 Find the capacitance of 3 phase line . . . . . . . . . . 36Exa 4.16 Find the capacitance of 3 phase 3 wire line . . . . . . 36Exa 4.17 Find the capacitance and charging current . . . . . . . 37Exa 4.18 find capacitive reactance to neutral and charging current 37Exa 4.19 Calculate the capacitance per phase . . . . . . . . . . 38Exa 5.1 Find voltage at sending end and percentage regulation

    and transmission efficiency . . . . . . . . . . . . . . . 40Exa 5.2 voltage at sending end and percentage regulation andtotal line losses and transmission efficiency. . . . . . . 41

    Exa 5.3 find sending end voltage and regulation . . . . . . . . 41Exa 5.4 Find sending end voltage and power factor and efficieny

    and regulation . . . . . . . . . . . . . . . . . . . . . . 42Exa 5.5 Find load end voltage and efficieny . . . . . . . . . . . 43Exa 5.6 Find current and voltage of sending end and percentage

    regulation and line losses and sending end power factorand transmission efficiency . . . . . . . . . . . . . . . 44

    Exa 5.7 Find current and voltage of sending end and percentage

    regulation and transmission efficiency . . . . . . . . . 45Exa 5.8 Find current and voltage of sending end and percentage

    regulation . . . . . . . . . . . . . . . . . . . . . . . . . 46Exa 5.9 Find current and voltage of sending end . . . . . . . . 47

    5

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    7/104

    Exa 5.10 Find regulation and charging current using nominal T

    method . . . . . . . . . . . . . . . . . . . . . . . . . . 48Exa 5.11 find sending end voltage and current and power andefficiency . . . . . . . . . . . . . . . . . . . . . . . . . 49

    Exa 5.12 Find ABCD parameters and sending end voltage andcurrent and power factor and transmission eficiency. . 51

    Exa 5.13 find sending end voltage and current and power andefficiency . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Exa 5.14 Determine ABCD constant and sending end power factor 54Exa 6.1 Determine auxiliary constants. . . . . . . . . . . . . . 57Exa 6.2 Determine sending end voltage and current . . . . . . 58Exa 6.3 Determine percentage rise in voltage . . . . . . . . . . 60

    Exa 6.4 alculate constants of equivalent circuit of line . . . . . 61Exa 6.5 calculate constants of equivalent circuit of line. . . . . 62Exa 6.6 calculate Ao and Bo and Co and Do constants . . . . 63Exa 6.7 calculate equivalent T and pi constants . . . . . . . . 65Exa 6.8 find sending end reactive and active power. . . . . . . 66Exa 6.9 find sending end voltage and regulation and recieving

    end rective and synchornous power . . . . . . . . . . . 68Exa 6.10 find sending end voltage and charging current and power 69Exa 6.11 Determine sending end voltage and current and power

    factor and MVA and power angle . . . . . . . . . . . . 71

    Exa 6.12 Find sending end voltage and current and power factor 72Exa 6.13 Find characteristics impedance and propogation con-stant and ABCD constants . . . . . . . . . . . . . . . 74

    Exa 6.14 Determine recieving end voltage and current. . . . . . 75Exa 6.15 Determine the induced voltage in the telephone line . 77Exa 7.1 Determine line voltage for commencing of corona . . . 79Exa 7.2 Determine whether corona will be there or not . . . . 79Exa 7.3 Determine critical discruptive voltage for line . . . . . 80Exa 7.4 Find spacing between the conductor . . . . . . . . . . 81Exa 7.5 Determine critical discruptive voltage for line . . . . . 81Exa 7.6 Determine critical discruptive voltage for line and corona

    loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Exa 7.7 Determine critical disruptive voltage and Visual critical

    voltage and Corona loss . . . . . . . . . . . . . . . . . 82Exa 7.8 Find corona characteristics . . . . . . . . . . . . . . . 83

    6

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    8/104

    Exa 8.1 find voltage distribution across each insulator and string

    efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 85Exa 8.2 find max safe working voltage and string efficiency . . 86Exa 8.3 find ratio of ground to mutual capacitance and system

    line voltage and string efficiency . . . . . . . . . . . . 86Exa 8.4 find system line voltage and string efficiency. . . . . . 87Exa 8.5 find max safe working voltage . . . . . . . . . . . . . . 87Exa 8.7 Find the values of line to pin capacitance . . . . . . . 88Exa 8.8 find string efficiency . . . . . . . . . . . . . . . . . . . 88Exa 8.9 Calculate voltage on line end unit and capacitance Cx

    required . . . . . . . . . . . . . . . . . . . . . . . . . . 89Exa 9.1 Determine insulation resistance . . . . . . . . . . . . . 91

    Exa 9.2 Determine resistivity of dielectric in a cable . . . . . . 91Exa 9.3 Find max and min electrostatic stresses and capacitance

    and charging current . . . . . . . . . . . . . . . . . . . 92Exa 9.4 Find max electrostatic stresses and charging kVA . . . 93Exa 9.5 Determine internal diameter of shealth D and diameter

    of conductor d . . . . . . . . . . . . . . . . . . . . . . 93Exa 9.6 Determine most economical value of diameter and over-

    all diameter of insulation . . . . . . . . . . . . . . . . 94Exa 9.7 Determine most economical value of diameter of single

    core cable . . . . . . . . . . . . . . . . . . . . . . . . . 94

    Exa 9.8 find safe working voltage of cable . . . . . . . . . . . . 95Exa 9.9 find radial thickness and safe working voltage of cable 96Exa 9.10 find the voltage on the intersheaths. . . . . . . . . . . 96Exa 9.11 find the position and voltage on the intersheaths and

    max and min stress . . . . . . . . . . . . . . . . . . . 97Exa 9.12 Calculate the charging current . . . . . . . . . . . . . 99Exa 9.13 Calculate the kVA taken. . . . . . . . . . . . . . . . . 99Exa 9.14 Calculate the charging current . . . . . . . . . . . . . 100

    7

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    9/104

    Chapter 1

    Supply System

    Scilab code Exa 1.1 Find the copper saving

    1 / / Fin d t he c op pe r s a v i ng2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 v 1 = 2 4 0 ; / / v o l t / / i n i t i a l v o l t a g e o f t h e s y s te m

    7 v 2 = 5 0 0 ; // v o l t // f i n a l v o l t a g e o f t he s ys te m8 printf ( Volume a t 2 40 v o l t s ( v o l 1 ) = ( 4P2dl ) / (%d

    W) \n , v 1 ^ 2 / 4 ) ;9 printf ( Volume a t 5 00 v o l t s ( v o l 2 ) = ( 4P2dl ) / (%d

    W) \n , v 2 ^ 2 / 4 ) ;10 printf ( P e r ce n ta g e s a v in g i n c op pe r = ( ( v ol 1v o l 2 )

    1 0 0 ) / v o l 1 \n ) ;11 s = ( ( (1 / v 1 ^ 2 ) - (1 / v 2 ^ 2) ) / ( 1 / v 1 ^ 2) ) * 1 0 0 ;

    12 printf ( The p e r ce n t ag e s a v i ng o f t he c op pe r i s , % . 2 f p e r c e n t , s ) ;

    Scilab code Exa 1.4 Calculate volume of conductor required in 1 phase 2wire and 3 phase 3 wire system

    8

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    10/104

    1 / / C a l c u l a te volume o f c o nd u ct o r r e q u i r e d i n 1 p ha se

    2 w ir e and 3 p ha se 3 w ir e sy st e m2 clear ;3 clc ;

    4 / / s o l u t i o n5 / / g i v e n6 p f = 0 . 8 ; // p ow er f a c t o r7 p M V A = ( 2 . 5 * 1 0 ^ 6 ) ; / / v o l t a mp er e8 v = ( 3 3 * 1 0 ^ 3 ) ; / / v o l t s9 l = 5 0 * 1 0 ^ 3 ; / /m/ / l e n g t h o f t h e l i n e

    10 p = p M V A * p f ; / / w a t t s / / p o we r t r a s m i t t e d = p ow er i n MVAp . f .

    11 w = 0 . 2 * p ; / / w a tt s / / l i n e l o s s e s = 2 0% o f po wert r a n s m i t t e d

    12 d = 2 . 8 5 / 1 0 ^ 8 ; //ohm meter // r e s i s t i v i t y o f aluminiu m13 printf ( 1 p ha se 2 w ir e s ys te m\n ) ;14 i 1 = p M V A / v ;

    15 a 1 = ( 2 * i 1 ^ 2 * d * l ) / w ;

    16 printf ( Load c u r r en t i n 1 p ha se 2 w i re s ys te m= %f ampere \n , i 1 ) ;

    17 printf ( C r o s s s e c t i o n a l a re a o f 1 p h a s e 2 w i resy st e m= %f m2\n , a 1 ) ;

    18 v o l 1 = 2 * a 1 * l ;

    19 printf ( Volume o f a lu min iu m c on d uc to r r e q u i r e d i n 1p ha se 2 w i r e s ys te m = %f m et er c ub e \n\n , v o l 1 ) ;

    20 printf ( 3 p ha se 3 w ir e s ys te m\n ) ;21 i 2 = p M V A / ( 3 ^ 0 . 5 * v ) ;

    22 a 2 = ( 3 * i 2 ^ 2 * d * l ) / w ;

    23 printf ( Load c u r r en t i n 3 p ha se 3 w i re s ys te m= %f ampere \n , i 2 ) ;

    24 printf ( C r o s s s e c t i o n a l a re a o f 3 p h a s e 3 w i resy st e m= %f m2\n , a 2 ) ;

    25 v o l 2 = 3 * a 2 * l ;

    26 printf ( Volume o f a lu mi ni um c o n du c to r r e q u i r e d i n 3p ha se 3 w i re s ys te m = %f m et er cu be , v o l 2 ) ;

    9

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    11/104

    Scilab code Exa 1.5 Calculate DC supply voltage

    1 / / f i n d t h e DC s u p p l y v o l t a g e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 / / c o n s i d e r 1 p h as e AC s y s t em7 p f = 0 . 8 ;

    8 v = ( 3 3 * 1 0 ^ 3 ) ; / / v o l t s9 r 1 = 0 . 1 5 ; //ohm// t o t a l r e s i s t a n c e o f t he 1 p ha se l i n e

    10 P D 1 = 0 . 2 ; // p e r ce n t ag e v o l t a g e d ro p i n 1 p ha se ACs y s t e m

    11 V d = P D 1 * v ; // v o l t // v o l t a g e dr op i n t he l i n e12 I 1 = V d / r 1 ; / / a mp er e / / l o a d c u r r e n t13 p = v * I 1 * p f ; / / w a t ts / / p ow er r e c i e v e d by t h e c on su me r14 P = p / 1 0 ^ 8 ;

    15 printf ( 1 p h a s e AC s y s t em \n ) ;16 printf ( V o l t a g e d ro p= %d v o l t s\n , V d ) ;

    17 printf ( L oa d c u r r e n t = %d a m pe re\n , I 1 ) ;18 printf ( Power r e c i e v e d by c on su me r= %d w a t ts o r= %f

    105 kW \n\n , p , P ) ;19 / / c o n s i d e r DC 2 w i r e s ys te m20 r 2 = 0 . 1 ; //ohm// t o t a l r e s i s t a n c e o f t he DC 2 w ir e l i n e21 P D 2 = 0 . 2 5 ; // p e r ce n t a ge v o l t a g e d ro p i n DC 2 w i re

    s y s t e m22 printf ( DC 2 w i r e s y s te m\n ) ;23 printf ( L oa d c u r r e n t i n DC s y s t e m= %f /V \n , p ) ;24 printf ( V o l t a ge d ro p= L oad c u r r e tl i n e r e s i s t a n c e=

    I 2 R2= (%d/V) %f \n , p , r2 );25 printf ( Given v o l t a g e dr op i s 25 p e rc e n t ag e o f max

    v o l t a g e= . 2 5V \n ) ;26 V = sqrt ( ( p * r 2 ) / P D 2 ) ;

    27 printf ( E q u a t i n g a b ov e e q u a t i o n we g e t V= %f KV ,V

    10

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    12/104

    / 1 0 0 0 ) ;

    11

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    13/104

    Chapter 2

    Distribution System

    Scilab code Exa 2.1 Calculate the most economical cross sectional area

    1 // C a l cu l a t e t he most e co no mi ca l c r o s s s e c t i o n a l a re a2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 i d = 0 . 1 5 ; // i n t e r e s t & d e p r e c i a t i o n c h ar g es

    7 i = 2 6 0 ; / / a m p er e / / max c u r r e n t8 d = 0 . 1 7 3 ; / /ohm/ / r e s i s t a n c e o f c o n du c t or9 c s t = . 0 3 ; // r s // c o s t o f e ne rg y p er u n it

    10 t = ( 3 6 5 * 2 4 ) / 2 ; // t im e o f e ne rg y l o s s11 printf ( Annual c o st o f 2 c or e f e e de r c a b l e i s Rs ( 9 0 a

    + 10 ) p e r m e te r\n ) ;12 P 3 = ( 2 * i ^ 2 * d * t * c s t ) / 1 0 0 0 / /kWh/ / a n n u al c o s t o f e n e r g y

    l o s s13 printf ( E n er g y l o s s p e r annum= P3 / a= %f / a \n , P 3 ) ;14 P 2 = 9 0 * 1 0 0 0 * i d ; / / e n e r g y l o s t p e r annum

    15 printf ( C a p i t a l c o s t = P2a= %da \n , P2 );16 a = sqrt ( P 3 / P 2 ) ;17 printf ( Economic c r o s s s e c t i o n o f c o n du ct o r i s= (

    P3 / P2 ) = %f s q u a r e cm , a ) ;

    12

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    14/104

    Scilab code Exa 2.2 Calculate the most economical current density

    1 // C a l c u l a te t he most e c on o mi c al c u r r e nt d e n s i t y2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 i d = 0 . 1 ; // i n t e r e s t & d e p r e c i a t i o n c ha r ge s7 d = 1 . 7 8 * 1 0 ^ - 8 ; // ohm m// r e s i s t i v i t y8 R = ( d * 1 0 0 0 ) / 1 0 ^ - 4 ; // ohm // r e s i s t a n c e o f c o n du c t or9 c s t = . 5 0 ; // r s // c o s t o f e ne rg y p er u n it

    10 t = ( 3 6 5 * 2 4 ) ; // t im e o f e ne rg y l o s s11 l f = . 7 ; // l o ad f a c t o r o f l o s s e s12 printf ( Annua l c o s t o f c a b l e i s Rs ( 2 8 00 a + 130 0) p e r km

    \n\n ) ;13 printf ( R e s i s t a n c e o f e ac h c o n du c to r= %f /a \n , R ) ;14 P 3 = ( R * t * c s t * l f ) / 1 0 0 0 ; // I 2 / /kWh/ / a n n u a l c o s t o f

    e ne rg y l o s s15 printf ( Annua l c o s t o f e n er g y l o s s = P3 /a= ( %f I 2 ) / a

    \n , P3 );16 P 2 = 2 8 0 0 * i d ; / / e n e r g y l o s t p e r annum17 printf ( Annual c h ar g e o n a c co un t o f i n t r e s t and

    d e p r e c i a t i o n on v a r i a b l e c o st o f l i n e = P2a= %da\n , P 2 ) ;

    18 J = sqrt ( P 2 / P 3 ) ; // c u r r e n t d e n s i t y I / a19 printf ( Economic c u r r e nt d e n s i t y o f c o nd u ct or i s %f

    A/ cm s q u a r e , J ) ;

    Scilab code Exa 2.3 Calculate the most economical current density anddiameter of conductor

    13

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    15/104

    1 // C a l c u l a te t he most e c on o mi c al c u r r e nt d e n s i t y and

    d i am et er o f c on d uc to r2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 i d = 0 . 1 ; // i n t e r e s t & d e p r e c i a t i o n c ha r ge s7 c s t = . 0 2 ; // r s // c o s t o f e ne rg y p er u n it8 d = 0 . 1 7 3 ; / /ohm/ / r e s i s t a n c e o f c o n du c t or9 p f = . 8 ; / / l a g g i n g

    10 P = 1 5 0 0 * 1 0 ^ 3 ; //Wat ts// l oa d11 V = 1 1 0 0 0 ; / / v o l t s / / s u p p l y v o l t a g e

    12 t = 2 0 0 * 8 ; // hou r s13 printf ( an n u a l c o s t o f 3 c or e f e e d e r c ab l e i s Rs

    ( 8 0 0 0 + 2 0 00 0 a ) p e r km\n ) ;14 printf ( R e s i s t a n c e o f e a ch c o n d u c t o r= %. 3 f / a \n , d )

    ;

    15 i = P / ( sqrt ( 3 ) * V * p f ) ; //ampere16 printf ( C u rr en t i n e ac h c o n du c t or= %. 3 f A\n , i ) ;17 P 2 = 2 0 0 0 0 * i d ; / / e n e r g y l o s t p e r annum18 printf ( C a p i t a l c o s t = P2a= %da \n , P2 );19 P 3 = ( 3 * i ^ 2 * d * t * c s t ) / 1 0 0 0 ; / /kWh/ / a n n u al c o s t o f e n e r g y

    l o s s20 printf ( E n er g y l o s s p e r annum= P3 / a= %f / a \n , P 3 ) ;21 a = sqrt ( P 3 / P 2 ) ;

    22 printf ( Economic c r o s s s e c t i o n o f c o n du ct o r i s= (P3 / P2 ) = %f s q u a r e cm \n , a ) ;

    23 printf ( D i a me te r o f c o n d u c t o r= %. 1 f cm \n , sqrt ( 4 * a/ % p i ) ) ;

    24 printf ( C u r r en t d e n s i t y = %f A/cm s q u a r e , i / a) ;

    Scilab code Exa 2.4 Calculate the most economical cross sectional area

    1 // C a l cu l a t e t he most e co no mi ca l c r o s s s e c t i o n a l a re a2 clear ;

    14

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    16/104

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 i d = 0 . 1 ; // i n t e r e s t & d e p r e c i a t i o n c ha r ge s7 p f = . 8 ; / / l a g g i n g8 P = 1 0 ^ 6 ; //Wat ts// l oa d9 V = 1 1 0 0 0 ; / / v o l t s / / s u p p l y v o l t a g e

    10 c s t = . 1 5 ; // r s // c o s t o f e ne rg y p er u n it11 d = 1 . 7 5 * 1 0 ^ - 6 ; / / ohm cm / / s p e c i f i c r e s i s t a n c e12 l = 1 0 0 0 / /m// l e n g t h o f t h e c a b l e13 t = 3 0 0 0 ; // hou r s14 printf ( Annual c o st o f 2 c or e f e e de r c a b l e i s Rs ( 3 0

    + 5 00 a ) p e r m et er \n ) ;15 R = ( d * 1 0 0 0 * 1 0 0 ) ; / /ohm/ / r e s i s t a n c e o f c o n du c t or16 printf ( R e s i s t a n c e o f e ac h c o n du c to r= %f /a \n , R ) ;17 i = P / ( V * p f ) ; //ampe r e18 printf ( C u rr en t i n e ac h c o n du c t or= %f A\n , i ) ;19 P 2 = 5 0 0 * 1 0 ^ 3 * i d ; / / e n e r g y l o s t p e r annum20 printf ( C a p i t a l c o s t = P2a= %da \n , P2 );21 P 3 = ( 2 * i ^ 2 * R * t * c s t ) / 1 0 0 0 ; / /kWh/ / a n n u al c o s t o f e n e r g y

    l o s s22 printf ( E n er g y l o s s p e r annum= P3 / a= %f / a \n , P 3 ) ;23 a = sqrt ( P 3 / P 2 ) ;

    24 printf ( Economic c r o s s s e c t i o n o f c o n du ct o r i s= (P3 / P2 ) = %f s q u a r e cm \n , a ) ;

    25 printf ( D i a me te r o f c o n d u c t o r= %f cm \n , sqrt ( 4 * a /% p i ) ) ;

    Scilab code Exa 2.5 Calculate the most economical cross sectional area

    12 // C a l cu l a t e t he most e co no mi ca l c r o s s s e c t i o n a l a re a3 clear ;

    4 clc ;

    5 // s o l t i o n

    15

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    17/104

    6 / / g i v e n

    7 i d = 0 . 1 ; // i n t e r e s t & d e p r e c i a t i o n c ha r ge s8 p f = . 8 5 ; / / l a g g i n g9 P m = 1 0 ^ 3 ; // Watts //Max Demand

    10 P t = 5 * 1 0 ^ 6 / /kWh/ / T o a t a l e n e r g y c o n s u m p t i o n11 V = 1 1 0 0 0 ; / / v o l t s / / s u p p l y v o l t a g e12 c s t = . 0 5 ; // r s // c o s t o f e ne rg y p er u n it13 d = 1 . 7 2 * 1 0 ^ - 6 ; / / ohm cm / / s p e c i f i c r e s i s t a n c e14 t = ( 3 6 5 * 2 4 ) ; // t im e o f e ne rg y l o s s15 printf ( Annual c o s t o f c a b le i s Rs ( 80 00 0 a + 2 00 00 )

    p e r km\n ) ;16 l f = P t / ( P m * t ) // Annual l o ad f a c t o r

    17 printf ( Annua l l o a d f a c t o r = %f \n , lf );18 l l f = . 2 5 * l f + . 7 5 * l f ^ 2 ; // L os s l oa d f a c t o r19 printf ( L os s l oa d f a c t o r = %f \n , l l f ) ;20 i = P m * 1 0 0 0 / ( sqrt ( 3 ) * V * p f ) ; //ampe r e21 printf ( C u rr en t i n e ac h c o n du c t or= %. 1 f A\n , i ) ;22 P 2 = 8 0 0 0 0 * i d ; / / e n e r g y l o s t p e r annum23 printf ( C a p i t a l c o s t = P2a= %dal \n , P2 );24 R = d * 1 0 0 * 1 0 0 0 ; //ohm25 P 3 = ( 3 * i ^ 2 * R * t * c s t * l l f ) / 1 0 0 0 ; / /kWh/ / a n n u a l c o s t o f

    e ne rg y l o s s26 printf (

    E n er gy l o s s p e r annum= ( P3l ) / a= ( % f l ) / a \n , P 3 ) ;27 a = sqrt ( P 3 / P 2 ) ;

    28 printf ( Economic c r o s s s e c t i o n o f c o n du ct o r i s= (P3 / P2 ) = %f s q u a r e cm \n , a ) ;

    29 //THERE I S TYPOGRAPHICAL ERROR IN THE ANS IN BOOK ITI S 0 . 2 4 0 4 cm 2

    Scilab code Exa 2.6 Calculate the most economical cross sectional area

    1 // C a l cu l a t e t he most e co no mi ca l c r o s s s e c t i o n a l a re a2 clear ;

    3 clc ;

    16

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    18/104

    4 // s o l t i o n

    5 / / g i v e n6 i d = 0 . 1 ; // i n t e r e s t & d e p r e c i a t i o n c ha r ge s7 V = 2 0 0 0 0 ; / / v o l t s / / s u p p l y v o l t a g e8 d = 1 . 7 2 * 1 0 ^ - 6 ; / / ohm cm / / s p e c i f i c r e s i s t a n c e9 c s t = . 6 ; // r s // c o s t o f e ne rg y p er u n it

    10 p 1 = 1 5 0 0 // k i l o w a t t s11 t 1 = 8 // hour s12 p f 1 = . 8 / / po wer f a c t o r13 p 2 = 1 0 0 0 // k i l o w a t t s14 t 2 = 1 0 // hou r s15 p f 2 = . 9 / / po wer f a c t o r

    16 p 3 = 1 0 0 / / k i l o w a t t s17 t 3 = 6 // hour s18 p f 3 = 1 / / po wer f a c t o r19 t = 3 6 5 / / no . o f d ay s20 i 1 = p 1 * 1 0 0 0 / ( sqrt ( 3 ) * V * p f 1 ) ; / / am pe re / / c u r r e n t a t t i me

    t 121 i 2 = p 2 * 1 0 0 0 / ( sqrt ( 3 ) * V * p f 2 ) ; / / am pe re / / c u r r e n t a t t i me

    t 222 i 3 = p 3 * 1 0 0 0 / ( sqrt ( 3 ) * V * p f 3 ) ; / / am pe re / / c u r r e n t a t t i me

    t 323 R = d * 1 0 0 * 1 0 0 0 ;

    //ohm24 P 2 = 8 0 0 0 * i d ; // L os s l oa d f a c t o r25 printf ( Annual c o s t o f c a b le i s Rs ( 80 00 0 a + 2 00 00 )

    p e r km\n ) ;26 printf ( C a p i t a l c o s t = P2a= %dal \n , P2 );27 P 3 = ( 3 * ( ( i 1 ^ 2 * t 1 ) + ( i 2 ^ 2 * t 2 ) + ( i 3 ^ 2 * t 3 ) ) * R * t * c s t ) / 1 0 0 0 ;

    //kWh// a n n u al c o s t o f e n er g y l o s s28 printf ( E n er gy l o s s p e r annum= ( P3l ) / a= ( % f l ) / a \n

    , P 3 ) ;29 a = sqrt ( P 3 / P 2 ) ;

    30 printf ( Economic c r o s s s e c t i o n o f c o n du ct o r i s= (

    P3 / P2 ) = %f s q u a r e cm \n , a ) ;

    17

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    19/104

    Chapter 3

    Mechanical Features of

    Overhead Line

    Scilab code Exa 3.1 calculate the weight of the conductor required

    1 / / c a l c u l a t e t he w ei gh t o f t he c on du ct or r e q ui r e d2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 p = 3 0 * 1 0 ^ 6 ; / / w a t ts / / p ow er t o b e t r a n s m i t t e d7 v = 1 3 2 * 1 0 ^ 3 ; / / v o l t s / / L i n e v o l t a g e8 l = 1 2 0 * 1 0 ^ 3 ; //m// l e n g th o f 3 p ha se 3 w i re l i n e9 n = 0 . 9 ; // e f f i c i e n y o f t h e t r a n sm i s s i o n l i n e

    10 p f = . 8 ; / / po wer f a c t o r11 d 1 = 1 . 7 8 * 1 0 ^ - 8 ; //ohm m// r e s i s t i v i t y o f co pp er12 d 2 = 2 . 6 * 1 0 ^ - 8 ; //ohm m// r e s i s t i v i t y o f alum inui m13 D 1 = 8 . 9 * 1 0 ^ 3 ; / / ( k g /m 3 ) / / s p e c i f i c g r a v i t y o f t h e

    c o p p e r

    14 D 2 = 2 * 1 0 ^ 3 ; / / ( k g /m 3 ) / / s p e c i f i c g r a v i t y o f t h eal umi ni um15 printf ( Weight o f t he c on d uc to r r e q u i r e d \n\n ) ;16 printf ( W=(3dl 2PD) /( ( 1n ) V 2p f 2 ) k g\n\n\n ) ;17 W 1 = ( 3 * d 1 * l ^ 2 * p * D 1 ) / ( ( 1 - n ) * v ^ 2 * p f ^ 2 ) ;

    18

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    20/104

    18 printf ( W ei gh t o f c o p pp e r r e q u i r e d = %d k g\n\n , round

    ( W 1 / 1 0 0 0 ) * 1 0 0 0 ) ;19 W 2 = ( 3 * d 2 * l ^ 2 * p * D 2 ) / ( ( 1 - n ) * v ^ 2 * p f ^ 2 ) ;

    20 printf ( W ei gh t o f a lu mi nu im r e q u i r e d = %d k g\n\n\n ,round ( W 2 / 1 0 0 ) * 1 0 0 ) ;

    Scilab code Exa 3.2 Calculate the max sag

    1 / / C a l c u l a t e t h e max s a g

    2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W = . 6 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 3 0 0 ; // m et er / / sp an o f t he l i n e8 T = 1 2 0 0 ; // k g // max a l l o w a b l e t e n s i o n9 printf ( Max sa g= (WL2 ) /( 8 T) \n ) ;

    10 s a g = ( W * L ^ 2) / ( 8 * T ) ;

    11 printf ( Sag= %.3 f m , s a g ) ;

    Scilab code Exa 3.3 Calculate the hieght above ground at which conduc-tor should be supported

    1 / / C a l c u l a t e t h e h i e g h t a bo ve g ro un d a t w hi chc o n du c to r s h o ul d be s u p po r t ed

    2 clear ;

    3 clc ;

    4 // s o l t i o n

    5 / / g i v e n6 W = 6 8 0 ; / / k g /km/ / L i n e c o n d u c t o r w e i g h t7 L = 2 4 0 ; // m et er / / sp an o f t he l i n e8 U = 3 2 0 0 ; / / kg / / U l t i m a te s t r e n g t h9 s f = 2 ; // s a f e t y f a c t o r

    19

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    21/104

    10 T = U / s f ; // k g // max a l l o w a b l e t e n s i o n

    11 g c = 8 ; / /m/ / g r o un d c l e a r a n c e12 w = W / 1 0 0 0 ; / / kg /m/ / We ig ht o f c o n d u c t o r i n m et er13 printf ( Max sa g= (WL2 ) /( 8 T) \n ) ;14 s a g = ( w * L ^ 2) / ( 8 * T ) ;

    15 printf ( Sag= %. 2 f m\n , s a g ) ;16 H = g c + s a g ;

    17 printf ( H e i gh t a bo ve w hi ch c o n du c t or s h o u ld bes u p p o r t e d \n= g r ou n d c l e a r a n c e + s a g= %. 2 f m , H ) ;

    Scilab code Exa 3.4 Calculate horizontal component of tension and maxsag

    1 / / C a l c u l a t e h o r i z o n t a l c om po nen t o f t e n s i o n and maxs a g

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W = 7 5 0 ; / / k g /km/ / L i n e c o n d u c t o r w e i g h t

    7 L = 3 0 0 ; // m et er / / sp an o f t he l i n e8 T = 3 4 0 0 ; // k g // max a l l o w a b l e t e n s i o n9 w = W / 1 0 0 0 ; / / kg /m/ / We ig ht o f c o n d u c t o r i n m et er

    10 printf ( Max sa g= (WL2 ) /( 8 Th) \n ) ;11 x = ( w * L ^2 ) / (8 ) ;

    12 printf ( Sag= %. 1 f /Th\n\n , x ) ;13 printf ( Max t e n s i o n = Th + wS\n ) ;14 T h = ( T + sqrt ( T ^ 2 + 4 * w * x ) ) / 2 ;

    15 printf ( H o r i z o n t a l c om po ne nt o f t e n s i o n ( Th )= %. 3 f kg\n , T h ) ;

    16 s a g = ( w * L ^ 2) / ( 8 * T h ) ;17 printf ( Sag= %. 3 f m\n , s a g ) ;18 y = s a g / 2 ;

    19 z = sqrt ( ( 2 * T h * y ) / w ) ;

    20 printf ( P oi nt a t whi ch s ag w i l l be h a l f = %. 3 f m\n ,

    20

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    22/104

    z ) ;

    21 //THERE I S TYPOGRAPHICAL ERROR IN BOOK DUE TO THATTHERE I S A VARIATION22 // IN BOOK Th=3 44 8.1 91 kg23 //MAX SAG=2 .4 46 m24 // P oi nt a t which s ag w i l l be h a l f = 1 0 6 .0 4 5 m

    Scilab code Exa 3.5 Calculate the max sag in still air and wind pressure

    1 / / C a l c u l a t e t h e max s a g i n s t i l l a i r and win dp r e s s u r e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W c = 1 . 1 3 ; / / k g /m/ / L i n e c o n d u c t o r w e i g h t7 P = 3 3 . 7 / / k g /m 2 / / Wind p r e s s u r e8 L = 1 8 0 ; // m et er / / sp an o f t he l i n e9 f u = 4 2 2 0 ; / / kg / / U l t im a t e s t r e s s

    10 s f = 5 ; // s a f e t y f a c t o r

    11 f = f u / s f ; // kg // w o rk in g s t r e s s12 D = 1 . 2 7 ; / /cm // d i a o f c o p p e r13 r = 1 . 2 5 ; //cm// R a di a l t h i c k n e s s o f i c e14 a = ( % p i * D ^ 2 ) / 4 ; //cm 2 // a r ea o f c r o s s s e c t i o n15 printf ( Area o f c r o s s s e c t i o n = %3f cm2\n , a ) ;16 T = f * a ; / / kg / /max a l l o w a b l e t e n s i o n17 printf ( W or ki ng t e n s i o n = %. 2 f k g\n , T ) ;18 s a g 1 = ( W c * L ^ 2) / ( 8 * T ) ; / / s a g i n s t i l l a i r19 printf ( Sag i n s i l l a i r = %. 2 f m\n , s a g 1 ) ;20 W i = 2 8 9 0 . 3 * r * ( D + r ) * 1 0 ^ - 4 ;

    21 printf ( Wei ght o f i c e c o a t i n g = %. 2 f k g \n , W i ) ;22 W w = P * ( D + 2 * r ) * 1 0 ^ - 2 ;23 printf ( Wind f o r c e = %. 5 f k g \n , W w ) ;24 Wr = sqrt ( ( W c + W i ) ^ 2 + W w ^ 2 ) ;

    25 s a g 2 = ( W r * L ^ 2) / ( 8 * T ) ; // s ag i n wind + i c e

    21

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    23/104

    26 printf ( Max Sag= %.3 f m\n , s a g 2 ) ;

    Scilab code Exa 3.6 Calculate the max sag

    1 / / C a l c u l a t e t h e max s a g2 clear ;

    3 clc ;

    4 W c = . 8 5 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t5 L = 2 7 5 ; // m et er / / sp an o f t he l i n e

    6 U = 8 0 0 0 ; / / kg / / U l t i m a te s t r e n g t h7 s f = 2 ; // s a f e t y f a c t o r8 P = 3 9 ; / / k g /m 2 / / Wind p r e s s u r e9 T = U / s f ; // k g // max a l l o w a b l e t e n s i o n

    10 D = 1 9 . 5 ; //mm// di a of c opp e r11 r = 1 3 ; //cm// R a di a l t h i c k n e s s o f i c e12 W i = 9 1 0 * % p i * r * ( D + r ) * 1 0 ^ - 6 ;

    13 W w = P * ( D + 2 * r ) * 1 0 ^ - 3 ; / / Wind f o r c e /m l e n g h t14 Wr = sqrt ( ( W c + W i ) ^ 2 + W w ^ 2 ) ; // r e s u l t a n t s ag15 s a g = ( W r * L ^ 2) / ( 8 * T ) ; // s ag i n wind + i c e16 printf ( Max Sag= %.3 f m\n , s a g ) ;

    Scilab code Exa 3.7 Calculate the vertical sag

    1 / / C a l cu l a t e t he v e r t i c a l s ag2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n

    6 W = 1 1 7 0 ; / / k g /km/ / L i n e c o n d u c t o r w i e g h t7 P = 1 2 2 ; / / k g /m 2 / / Wind p r e s s u r e8 L = 2 0 0 ; // m et er / / sp an o f t he l i n e9 A = 1 . 2 9 ; //cm 2 // c r o s s s e c t i o n a l a r ea

    10 U = 4 2 1 8 * A ; / / kg / / B r e a ki n g s t r e n g t h

    22

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    24/104

    11 s f = 5 ; // s a f e t y f a c t o r

    12 T = U / s f ; // k g // max a l l o w a b l e t e n s i o n13 W c = W / 1 0 0 0 ; / / kg /m/ / Wei gh t o f c o n d u c t o r i n m et er14 D = sqrt ( ( 4 * A ) / % p i ) ; / /cm // d i a m e t e r o f t h e c o n d u c t o r15 printf ( D i a me te r o f t h e c o n d u c t o r= %. 2 f cm\n , D ) ;16 W w = P * ( D ) * 1 0 ^ - 2 ; / / Wind f o r c e /m l e n g h t17 printf ( Wind f o r c e = %. 2 f k g \n , W w ) ;18 Wr = sqrt ( W c ^ 2 + W w ^ 2 ) ; // r e s u l t a n t w ei gh t19 printf ( R e s u l t a n t s a g= %. 2 f k g \n , W r ) ;20 s a g = ( W r * L ^ 2) / ( 8 * T ) ; / /m/ / S l a n t s a g21 printf ( S l a n t S ag= %. 2 f m\n , s a g ) ;22 T h = a t a n d ( W w / W c ) ; / / d e g r e e / / a n g l e b et we en s l a n t s a g

    and v e r t i c a l s ag23 V s a g = s a g * c o s d ( T h ) ; / /m/ / V e r t i c a l s a g24 printf ( V e r t i c a l s a g= %. 3 fm , V s a g ) ;

    Scilab code Exa 3.8 Calculate the minimum clearance of conductor andwater

    1 / / C a l c u l a t e t h e minimum c l e a r a n c e o f c o n du c to r and

    w a t e r2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W = 1 . 5 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 5 0 0 ; // m et er / / sp an o f t he l i n e8 T = 1 6 0 0 ; // k g // max a l l o w a b l e t e n s i o n9 T 1 = 3 0 ; / /m// h e i g h t o f t h e t ow er 1

    10 T 2 = 9 0 ; / /m// h e i g h t o f t h e t ow er 2

    11 h = T 2 - T 1 ; / /m/ / d i f f e r e n c e i n t h e b et we en s u p po r t12 printf ( D i s t a n c e o f s u p po r t T1 f ro m O ( L ow es t p o i n t )be x1\n ) ;

    13 printf ( D i s t a n c e o f s u p po r t T2 f ro m O ( L ow es t p o i n t )be x2\n ) ;

    23

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    25/104

    14 printf ( x1+x2= %dm\n , L ) ;

    15 d i f = ( ( h * 2 * T ) / ( W * L ) ) ; //x2x116 printf ( x2x1= %dm\n , d i f ) ;17 x 2 = ( L + d i f ) / 2 ; //m18 x 1 = L - x 2 ; //m19 printf ( x1= %dm, x2= %dm\n , x 1 , x 2 ) ;20 s a g = ( ( W * x1 ^ 2 ) / ( 2 * T ) ) ;//m21 printf ( S a g ( From t o w e r 1 ) = %d m\n , round ( s a g ) ) ;22 C = T 1 - s a g ; / / C l e a r a n c e23 printf ( C l ea r a nc e o f t he l o we s t p o in t from w a te r

    l e v e l = %dm\n , C ) ;

    Scilab code Exa 3.9 Calculate sag from taller of the two supports

    1 / / C a l c u l a t e s a g f ro m t a l l e r o f t h e two s u p p o r t s2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W c = 1 . 9 2 5 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t

    7 L = 6 0 0 ; // m et er / / sp an o f t he l i n e8 h = 1 5 //m//T1T29 W i = 1 // k g // W ieg ht o f t h e i c e

    10 W r = W i + W c ; // r e s u l t a n t w ei gh t11 A = 2 . 2 //cm212 U = 8 0 0 0 * A ; / / kg / / B r e a ki n g s t r e n g t h13 s f = 5 ; // s a f e t y f a c t o r14 T = U / s f ; // k g // max a l l o w a b l e t e n s i o n15 printf ( x1+x2= %dm\n , L ) ;16 d i f = ( ( h * 2 * T ) / ( W r * L ) ) ; //x2x1

    17 printf ( x2x1= %dm\n , d i f ) ;18 x 2 = ( L + d i f ) / 2 ; //m19 x 1 = L - x 2 ; //m20 printf ( x1= %dm, x2= %dm\n , round ( x 1 ) , round ( x 2 ) ) ;21 s a g = ( ( W r *( round ( x 2 ) ) ^ 2 ) / ( 2 * T ) ) ; //m

    24

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    26/104

    22 printf ( S ag ( f ro m t a l l e r o f t h e t wo s u p p o r t s )= %. 3 f m

    \n , s a g ) ;

    Scilab code Exa 3.10 find the clearance of conductor from ground

    1 / / f i n d t he c l e a r a n c e o f c on d uc to r from g ro un d2 clear ;

    3 clc ;

    4 // s o l t i o n

    5 / / g i v e n6 W = 1 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 3 0 0 ; // m et er / / sp an o f t he l i n e8 T = 1 5 0 0 ; // k g // max a l l o w a b l e t e n s i o n9 T 1 = 2 2 - 2 ; //m// e f f e c t i v e h e i g ht o f t he t o we rs

    10 g = 1 / 2 0 ; // s i n // g r ad i e n t11 h = L * g / /m/ / v e r t i c a l d i s t a n c e b et we en two t o w er s12 printf ( x 1+ x 2 %dm\n , L ) ;13 d i f = ( ( h * 2 * T ) / ( W * L ) ) ; //x2x114 printf ( x2x1= %dm\n , d i f ) ;15 x 2 = ( L + d i f ) / 2 ; //m

    16 x 1 = L - x 2 ; //m17 printf ( x1= %dm, x2= %dm\n , round ( x 1 ) , round ( x 2 ) ) ;18 s a g = ( ( W * x2 ^ 2 ) / ( 2 * T ) ) ;//m19 printf ( Sag= %. 3 f m\n , s a g ) ;20 T 2 = T 1 + h ; / /m/ / h i e g h t o f t h e s e c o nd t o we r21 g f = x 1 * t a n d ( a s i n d ( 1 / 2 0 ) ) ; //m// e l e v a t i o n o f t h e

    g r o u n d a t max s a g22 O G = T 2 - s a g - g f ; / /m/ / g r o un d c l e a r a n c e23 printf ( C l e a ra n ce o f t he l o w es t p o i nt O fro m g ro un d

    i s % . 2 f m , O G ) ;

    24 //SINCE THERE I S NO REFRENCE OF WATERLEVEL IN THEQUESTION THEREFORE THE EXTRA SOLUTION I S ANTYPOGRAPHICAL ERROR

    25

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    27/104

    Scilab code Exa 3.11 Find stringing tension in the conductor

    1 // Find s t r i n g i n g t e n s i o n i n t he c on du ct or2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W = 0 . 7 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 2 5 0 ; // m et er / / sp an o f t he l i n e8 T 1 = 2 5 ; / /m// h e i g h t o f t h e t ow er 19 T 2 = 7 5 ; / /m// h e i g h t o f t h e t ow er 2

    10 h = T 2 - T 1 ; / /m/ / d i f f e r e n c e i n t h e b et we en s u p po r t11 T m = 4 5 ; / /m/ / h i e g h t o f midway b e tw e en t h e t o w e r s12 h m = T m - T 1 ; / /m/ / midway p o i n t b e tw e en t h e t wo t o w e r s13 L m = L / 2 ; / /m/ / h a l f o f t h e s pa n14 printf ( We know th at \nh=(WL( L2x ) ) /( 2T) \n ) ;15 printf ( Fo r t h e two t o w er s \n%d=(%. 1 f%d(%d2x ) ) /( 2

    T) \n , h , W , L , L ) ;16 printf ( Fo r t h e mid p o i n t \n%d=(%. 1 f%d(%d2x ) ) /( 2

    T) \n , h m , W , L m , L m ) ;17 x = - ( 2 * L ) + ( 2 . 5 * L m ) ;

    18 printf ( By a b ov e e q u a t i o n x= %d m\n , x ) ;19 T = ( W * L * ( L - 2 * x ) ) / ( 2 * h ) ;

    20 printf ( S t r i n g i n g T e n s i o n ( T)=% . 2 f k g ,T )

    Scilab code Exa 3.12 find the clearance of conductor from water level atmid point

    1 / / f i n d t he c l e a r a n c e o f c on du ct or from w at er l e v e la t mid p o i nt

    2 clear ;

    3 clc ;

    26

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    28/104

    4 // s o l t i o n

    5 / / g i v e n6 W = . 8 4 4 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 3 0 0 ; // m et er / / sp an o f t he l i n e8 T = 1 8 0 0 ; // k g // max a l l o w a b l e t e n s i o n9 T 1 = 4 0 ; / /m// h e i g h t o f t h e t ow er 1

    10 T 2 = 8 0 ; / /m// h e i g h t o f t h e t ow er 211 h = T 2 - T 1 ; / /m/ / d i f f e r e n c e i n t h e b et we en s u p po r t12 x = L / 2 - ( T * h ) / ( W * L ) ;

    13 printf ( D i s t a n c e b et we en m i dp o in t and l o w e s t p o i n t=% . 2 f m\n , ( L / 2 ) - x ) ;

    14 S m i d = ( W * ( L / 2 - x ) ^ 2 ) / ( 2 * T ) ;

    15 printf ( H e i gh t b et we en m i dp o in t and l o w e s t p o i n t= %. 3 f m\n , S m i d ) ;

    16 S 2 = ( W * ( L - x ) ^ 2 ) / ( 2 * T ) ;

    17 printf ( H e i g h t b et we en t a l l e r t o we r and l o w e s t p o i n t= % . 3 fm\n , S 2 ) ;

    18 C = T 2 - ( S 2 - S m i d ) ;

    19 printf ( C l ea r a nc e o f c on du ct or from w at er l e v e l a tmid p o i n t = %. 3 fm ,C )

    Scilab code Exa 3.13 find the clearance of conductor from ground 1 Atits lowest elevation 2 the min clearance of the line

    1 // f i n d t he c l e a r a n c e o f c on d uc to r from g ro un d i ) Ati t s l o w e s t e l e v a t i o n i i ) t h e min c l e a r a nc e o f t hel i n e

    2 clear ;

    3 clc ;

    4 // s o l t i o n

    5 / / g i v e n6 W = . 8 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 3 0 0 ; // m et er / / sp an o f t he l i n e8 T = 1 5 0 0 ; // k g // max a l l o w a b l e t e n s i o n9 T 1 = 3 0 ; / /m/ / h e i g h t o f t h e t o w e r s

    27

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    29/104

    10 g = 1 / 2 0 ; // t a n // gr ound s l o p e

    11 h = L * g / /m/ / v e r t i c a l d i s t a n c e b et we en two t o w er s12 T 2 = T 1 + h ; //m// h e i g ht o f t he t ow er a l on g t he s l o p e13 x 1 = L / 2 - ( T * h ) / ( W * L ) ;

    14 printf ( D i s t a n c e b et we en t o we r on g ro un d and s a g=x1=% . 2 f m\n , x 1 ) ;

    15 S 1 = ( W * x 1 ^ 2 ) / ( 2 * T ) ;

    16 printf ( S ag f o r t o we r on g ro un d ( S 1 )= %. 5 fm\n , S 1 ) ;17 S 2 = ( W * ( L - x 1 ) ^ 2 ) / ( 2 * T ) ;

    18 printf ( S ag f o r t o we r on h i l l ( S 2 )= %. 5 fm\n , S 2 ) ;19 C = T 1 - S 1 - x 1 * g ;

    20 printf ( C l ea r a nc e o f c on du ct or from l o we s t e l e v a t i o n

    = % . 5 fm\n , C ) ;21 x = poly (0 , x ) ;22 C1 = poly ( [ C - g W / (2 * T ) ], x , c ) ;23 d = derivat ( C 1 ) ;

    24 xa = roots ( d ) ;

    25 C a = C - g * x a + W / ( 2 * T ) * x a ^ 2 ;

    26 printf ( Minimum c l e a r a n c e f r om gr ound= %dm , C a ) ;

    Scilab code Exa 3.14 Determine Sag and Tension under erection condi-tions

    1 // D et er mi ne Sag & T en si on u nd er e r e c t i o n c o n d i t i o n s2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 W = . 9 ; / / k g /m/ / L i n e c o n d u c t o r w i e g h t7 L = 3 0 0 ; // m et er / / sp an o f t he l i n e

    8 a = 2 . 4 0 * 1 0 ^ - 4 //m2/ / ar ea9 D = 1 9 . 5 //mm// di a me te r10 U = 8 0 0 0 ; / / kg / / U l t i m a te s t r e n g t h11 s f = 2 ; // s a f e t y f a c t o r12 P = 3 8 . 5 ; / / k g /m 2 / / Wind p r e s s u r e

    28

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    30/104

    13 T 1 = U / s f ; / / kg / /max a l l o w a b l e t e n s i o n

    14 E = 9 3 2 0 * 1 0 ^ 6 ; // kg/m2/ / Young s Modulus15 a l p = 1 8 . 4 4 * 1 0 ^ - 6 ; / / 1/ C / / L i n e a r e x p an s i o n16 t 1 = 5 // C // t e m pe r a tu r e u nd er n or ma l c o n d i t i o n17 t 2 = 3 5 / / C / / t e mp e r at u r e u nd er w o rs t c o n d i t i o n18 d t = t 2 - t 1 ; // C // d i f f e r e n c e i n t em p er at u re19 f 1 = T 1 / a ;

    20 W w = P * ( D ) * 1 0 ^ - 3 ; / / w e i g ht d ue t o wi nd21 printf ( Wind f o r c e = %. 2 f k g \n , W w ) ;22 Wr = sqrt ( W ^ 2 + W w ^ 2 ) ; // r e s u l t a n t w ei gh t23 C 1 = W ^ 2 * L ^ 2 * E / ( 2 4 * a ^ 2 ) ;

    24 C 2 = - f 1 + W r ^ 2 * L ^ 2 * E / ( 2 4 * f 1 ^ 2 * a ^ 2 ) + d t * a l p * E ;

    25 p = poly ([ - C1 0 C2 1] , f2 , c ) ;26 r = roots ( p ) ;

    27 f 2 = 1 1 9 51 2 9 2; // a c ce p te d v a lu e o f f 228 s a g = ( W * L ^ 2 ) / ( 8 * f 2 * a ) ;

    29 printf ( Sag a t e r e c t i o n = %. 3 f m , s a g ) ;30 / /The b ook h as u s e d i n c o r r e c t v al ue o f f 2 and i n i t

    t h e s a g i s 2 . 1 21m

    29

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    31/104

    Chapter 4

    Transmission Line Parameters

    Scilab code Exa 4.1 Find the loop inductance and reactance

    1 / / Fin d t he l o op i n d uc t an c e and r e a c t a n ce2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = ( 1 . 2 1 3 * 1 0 ^ - 2 ) / 2 ; / /m/ / r a d i u s o f t h e c o n d u c t o r

    7 d = 1 . 2 5 ; //m// sp ac in g8 f = 5 0 ; //Hz // f r e q9 r e = r * exp ( - 1 / 4 ) ;

    10 L = 4 * 1 0 ^ - 7 * log ( d / r e ) ;

    11 L k m = L * 1 0 0 0 ;

    12 printf ( I n d u c t a n c e p e r km ( L )=% . 2 f 10 4 H/Km\n ,Lkm* 1 0 ^ 4 ) ;

    13 X = 2 * % p i * f * L k m ;

    14 printf ( Re ac ta nc e (X)= %. 1 f ohm/km, X ) ;

    Scilab code Exa 4.2 Find the loop inductance

    30

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    32/104

    1 / / Fin d t he l o op i n d uc t an c e

    2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = ( 1 * 1 0 ^ - 2 ) / 2 ; / /m/ / r a d i u s o f t h e c o n d u c t o r7 d = 2 ; //m// sp ac in g8 u = 5 0 // r e l a t i v e p e r m e ab i l i t y o f s t e e l and c o pp er9 L = ( 1 + 4 * log ( d / r ) ) * 1 0 ^ - 7 * 1 0 0 0 ;

    10 L m H = L * 1 0 0 0 ;

    11 printf ( I n d u c t a n c e p e r km ( L ) c o p p e r c o n d u c t o r =%. 3 f mH\n , L m H ) ;

    12 L r = ( u + 4 * log ( d / r ) ) * 1 0 ^ - 7 * 1 0 0 0 ;13 printf ( I n d u c t a n c e p e r km (L ) s t e e l c o n d u c t o r=%. 3 f mH

    \n , L r * 1 0 0 0 ) ;

    Scilab code Exa 4.3 Calculate GMR pf ACSR conductor

    1 // C a l c ul at e GMR pf ACSR c on duc t or2 clear ;

    3 clc ;4 // s o l t i o n5 / / g i v e n6 r = 3 ; / /mm/ / r a d i u s o f t h e c o n d u c t o r7 r e = r * exp ( - 1 / 4 ) ;

    8 d 1 1 = r e ;

    9 d 1 2 = 2 * r //=d17=d16 ;10 d 1 4 = 4 * r ;

    11 d 1 3 = sqrt ( d 1 4 ^ 2 - d 1 2 ^ 2 ) ; //=d1512 D s 1 = ( d 1 1 * d 1 2 * d 1 3 * d 1 4 * d 1 3 * d 1 2 * d 1 2 ) ;

    13 D s 1 _ = D s 1 / ( r ^ 7 ) ;14 printf ( D s1= ( % f ) ( 1 / 7 ) r \n , D s 1 _ ) ;15 d 7 1 = 2 * r ; //=d72=d73=d74=d75=d7616 D s 7 = ( d 7 1 ^ 6 * r e ) ;

    17 D s 7 _ = D s 7 / ( r ^ 7 ) ;

    31

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    33/104

    18 printf ( D s7= ( % f ) ( 1 / 7 ) r \n , D s 7 _ ) ;

    19 D s = ( D s 1 ^ 6 * D s 7 ) ^ ( 1 / 4 9 ) ;20 printf ( GMR= %. 4 fmm , D s ) ;

    Scilab code Exa 4.4 Find the total inductance of the line

    1 // Find t h e t o t a l i nd uc ta nc e o f t h e l i n e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 1 . 4 ; / /cm/ / r a d i u s o f t h e c o n du c t or7 r e = r * exp ( - 1 / 4 ) ;

    8 d 1 2 = 2 0 ; //cm// sp ac i n g b/w 1&29 d 1 1 _ = 2 0 + 1 2 0 ; / / cm / / s p a c i n g b /w 1 &1

    10 d 1 2 _ = 2 0 + 1 2 0 + 2 0 ; / / cm // s p a c i n g b /w 1 &2 11 d 2 1 _ = 1 2 0 ; / /cm / / s p a c i n g b /w 2 &1 12 d 2 2 _ = 2 0 + 1 2 0 ; / / cm / / s p a c i n g b /w 2 &2 13 D m = ( d 1 1 _ * d 1 2 _ * d 2 1 _ * d 2 2 _ ) ^ ( 1 / 4 ) ;

    14 printf ( Mut ua l GMD= %. 2 fcm \n , D m ) ;

    15 Ds = floor ( ( r e * d 1 2 * r e * d 1 2 ) ^ ( 1 / 4 ) * 1 0 0 ) / 1 0 0 ;16 printf ( S e l f GMD= %. 2 fcm\n , D s ) ;17 L = 0 . 4 * log ( D m / D s ) ;

    18 printf ( L oo p I n d u c t a n c e o f l i n e = %. 5 f mH/km , L ) ;

    Scilab code Exa 4.5 Find the loop inductance

    1 / / Fin d t he l o op i n d uc t an c e

    2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 1 / 2 ; / /cm/ / r a d i u s o f t h e c o n du c t or

    32

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    34/104

    7 r e = r * exp ( - 1 / 4 ) ;

    8 d 1 2 = 2 0 0 ; //cm// sp ac i n g b/w 1&29 d 1 1 _ = 3 0 0 ; / /cm / / s p a c i n g b /w 1 &1 10 d 1 2 _ = sqrt ( ( 3 0 0 ) ^ 2 + ( 2 0 0 ) ^ 2 ) ; / / cm // s p a c i n g b /w 1 &2 11 d 2 1 _ = d 1 2 _ ; / / cm // s p a c i n g b /w 2 &1 12 d 2 2 _ = 3 0 0 ; / /cm / / s p a c i n g b /w 2 &2 13 D m = ( d 1 1 _ * d 1 2 _ * d 2 1 _ * d 2 2 _ ) ^ ( 1 / 4 ) ;

    14 printf ( Mut ua l GMD= %. 3 fcm \n , D m ) ;15 D s = ( r e * d 1 2 * r e * d 1 2 ) ^ ( 1 / 4 ) ;

    16 printf ( S e l f GMD= %. 3 fcm\n , D s ) ;17 L = 0 . 4 * log ( D m / D s ) ;

    18 printf ( Loop I n d u c t a n c e o f l i n e = %. 3 fmH/km\n , L ) ;

    Scilab code Exa 4.6 Find the inductance per phase of 30 km line

    1 / / Find t he i n du c t a nc e p er p ha se o f 30 km l i n e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n

    6 r = ( 1 5 ) / 2 ; / /mm/ / r a d i u s o f t h e c o n d u c t o r7 r e = r * exp ( - 1 / 4 ) ;

    8 d = 1 . 5 * 1 0 0 0 ; //mm// sp a c i n g9 L = 0 . 2 * log ( d / r e ) ;

    10 printf ( L oo p I n d u c t a n c e o f l i n e = %. 2 f mH/km\n , L ) ;11 L l = L * 3 0 / 1 0 0 0 ;

    12 printf ( I n d uc t an c e p er p ha se o f 30 km l o ng l i n e = %. 4f H , L l ) ;

    Scilab code Exa 4.7 Find the inductance of a 3 phase line situated atcornes of a triangle

    1 // Find t he i n du c t a nc e o f a 3 p ha se l i n e ( t r i a n g l e )

    33

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    35/104

    2 clear ;

    3 clc ;4 // s o l t i o n5 / / g i v e n6 r = 1 ; //cm/ / r a d i u s o f t h e c o n du c t or7 r e = r * exp ( - 1 / 4 ) ;

    8 d 1 = 6 0 0 ; // cm/ / s p a c i n g o f t h e t r i a n g u l a r s ha pe d s ys te m9 d 2 = 7 0 0 ; // cm/ / s p a c i n g o f t h e t r i a n g u l a r s ha pe d s ys te m

    10 d 3 = 8 0 0 ; // cm/ / s p a c i n g o f t h e t r i a n g u l a r s ha pe d s ys te m11 L = 0 . 2 * log ( ( ( d 1 * d 2 * d 3 ) ^ ( 1 / 3 ) ) / r e ) ;

    12 printf ( L oo p I n d u c t a n c e o f l i n e = %. 4 f mH/km\n , L ) ;

    Scilab code Exa 4.8 Find the inductance of a 3 phase line arranged inhorizontal plane

    1 // F in d t he i n d uc t an c e o f a 3 p ha se l i n e ( p l an e )2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n

    6 r = 1 ; //cm/ / r a d i u s o f t h e c o n du c t or7 r e = r * exp ( - 1 / 4 ) ;

    8 d = 3 0 0 ; / /cm // s p a c i n g b /w c o n d u c t o r s9 C 1 = 0 . 2 * [ log ( d / r e ) + 0 . 5 * log ( 2 ) ] ;

    10 C 2 = 0 . 2 * ( ( sqrt ( 3 ) ) / 2 ) * log ( 2 ) ;

    11 L a = c o m p l e x ( C 1 , - C 2 ) ;

    12 L b = 0 . 2 * log ( d / r e ) ;

    13 L c = c o m p l e x ( C 1 , C 2 ) ;

    14 printf ( La= (%. 2 f %. 2 f j )mH\n , real ( L a ) , imag ( L a ) ) ;15 printf ( Lb= %. 4 fmH\n , L b ) ;16 printf ( Lc= (%.2 f +%. 2 f j )mH\n , real ( L c ) , imag ( L c ) ) ;

    Scilab code Exa 4.9 Find the loop inductance per phase

    34

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    36/104

    1 / / Fin d t he l o op i n d uc t an c e p er p ha se

    2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 5 ; / /mm/ / r a d i u s o f t h e c o n d u c t o r7 r e = r * exp ( - 1 / 4 ) ;

    8 d = 3 5 0 0 ; //mm// sp a c i n g9 L = 2 * 1 0 ^ ( - 7 ) * log ( d / r e ) ;

    10 L _ = L * 1 0 ^ 6 ;

    11 printf ( I n d u c t a n c e p e r km ( L )=% . 4 f 10 6 H\n , L _ ) ;12 printf ( Lav=210 7{ l o g ( dp/r ) +1/3l o g ( 2 )}\n ) ;

    13 printf ( Lav= L\n ) ;14 Z=(L /(2*10^ -7) -1/3* log ( 2 ) ) ;

    15 d p = r e * exp ( Z ) ;

    16 d p _ = d p / 1 0 0 0 ;

    17 printf ( A f t e r s o v i n g a bo ve e q u a t i on \n ) ;18 printf ( S p ac in g b et we en t he c o n du c to r s i n t he p l an e (

    dp) = %. 3f m , d p _ ) ;

    Scilab code Exa 4.10 Find the loop inductance per phase

    1 / / Fin d t he l o op i n d uc t an c e p er p ha se2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 2 0 ; / /mm/ / r a d i u s o f t h e c o n d u c t o r7 r e = r * exp ( - 1 / 4 ) ;

    8 d = 7 0 0 0 ; //mm// sp a c i n g

    9 L = 0 . 1 * log (( sqrt ( 3 ) ) * d / ( 2 * r e ) ) ;10 printf ( I n d u c t a n c e p e r km ( L )=% . 4 f mH\n , L ) ;

    35

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    37/104

    Scilab code Exa 4.11 Find the inductance of an ASCR 3 phase line

    1 // F in d t he i n d uc t an c e o f an ASCR 3 p ha se l i n e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 5 / 2 ; / /mm/ / r a d i u s o f t h e c o n d u c t o r7 r e = r * 2 . 1 7 7 * 1 0 ^ - 3 ; //m8 d x = 6 ; / /m/ / s p a c i n g i n X d i r e c t i o n9 d y = 8 ; / /m/ / s p a c i n g i n Y d i r e c t i o n

    10 d a a _ = sqrt ( d x ^ 2 + ( 2 * d y ) ^ 2 ) ;

    11 d b b _ = 6 ;12 d c c _ = d a a _ ;

    13 d a b = 8 ;

    14 d a b _ = sqrt ( d x ^ 2 + d y ^ 2 ) ;

    15 d b c = 8 ;

    16 d b c _ = sqrt ( d x ^ 2 + d y ^ 2 ) ;

    17 d c a _ = 6 ;

    18 d c a = 1 6 ;

    19 D s a = sqrt ( r e * d a a _ ) ;

    20 D s b = sqrt ( r e * d b b _ ) ;

    21 D s c = sqrt ( r e * d c c _ ) ;

    22 D s = ( D s a * D s b * D s c ) ^ ( 1 / 3 ) ;

    23 printf ( S e l f GMD or GMR, Ds= %.4 fm\n , D s ) ;24 D a b = sqrt ( d a b * d a b _ ) ;

    25 D b c = sqrt ( d b c * d b c _ ) ;

    26 D c a = sqrt ( d c a * d c a _ ) ;

    27 D m = ( D a b * D b c * D c a ) ^ ( 1 / 3 ) ;

    28 printf ( GMD, Dm= %. 2 fm\n , D m ) ;29 L = 0 . 2 * log ( D m / D s ) ;

    30 printf ( I n d u c t a nc e o f 1 00 km l i n e ( L)=%. 4 f H\n ,L* 0 . 1 ) ;

    31 L _ = 0 . 1 * log ( ( 2 ^ ( 1 / 3 ) ) * ( d y / r e ) * ( ( d x ^ 2 + d y ^ 2 ) / ( 4 * d y ^ 2 + d x^ 2 ) ) ^ ( 1 / 3 ) ) ;

    32 printf ( I n d u c t a n c e ( By a n o t h e r metho d ) p e r p h a se p e rkm( L)=%. 4 f H\n , L _ * . 1 ) ;

    36

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    38/104

    Scilab code Exa 4.12 Find inductive reactance of 3 phase bundled con-ductor

    1 / / Find i n d u c t i v e r e ac t a nc e o f 3 p ha se bu nd le dc o n d u c t o r

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 1 . 7 5 * 1 0 ^ - 2 ; / /m/ / r a d i u s o f t h e c o n d u c t o r7 r e = r * exp ( - 1 / 4 ) ;

    8 d = 7 ; / / s p a c i n g9 S = 0 . 4 ; / / s p a c i n g b et we en s u b c o n d u c t o r s

    10 Ds = sqrt ( r e * S ) ; //GMR11 d a b = 7 ;

    12 d a b _ = 7 . 4 ;

    13 d a _ b = 6 . 6 ;

    14 d a _ b _ = 7 ;

    15 D a b = ( d a b * d a b _ * d a _ b * d a _ b _ ) ^ . 2 5 ;

    16 D b c = D a b ;17 d c a = 1 4 ;

    18 d c a _ = 1 3 . 6 ;

    19 d c _ a = 1 4 . 4 ;

    20 d c _ a _ = 1 4 ;

    21 D c a = ( d c a * d c a _ * d c _ a * d c _ a _ ) ^ . 2 5 ;

    22 D m = ( D a b * D c a * D b c ) ^ ( 1 / 3 ) ; //GMD23 L = 0 . 2 * log ( D m / D s ) ;

    24 printf ( In du ct an ce (L )=%.4 f mH/km\n , L ) ;25 X l = 2 * % p i * 5 0 * L * 1 0 ^ - 3 ;

    26 printf ( I n d u c t i ve r e a c t a n ce= %. 1 f /km\n , X l ) ;27 r1 = sqrt ( 2 * ( ( r * 1 0 ^ 2 ) ^ 2 ) ) ;

    28 r e 1 = r 1 * exp ( - 1 / 4 ) ;

    29 D a b 1 = 7 ;

    30 D b c 1 = 7 ;

    37

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    39/104

    31 D c a 1 = 1 4 ;

    32 D m 1 = ( D a b 1 * D b c 1 * D c a 1 ) ^ ( 1 / 3 ) ; / /GMD o f s i n g l e c o n d u c t o rl i n e33 L 1 = 0 . 2 * log ( D m 1 / ( r e 1 * 1 0 ^ - 2 ) ) ;

    34 printf ( In du ct an ce (L )=%.3 f mH/km\n , L 1 ) ;35 X l 1 = 2 * % p i * 5 0 * L 1 * 1 0 ^ - 3 ;

    36 printf ( I n d u c t i ve r e a c t a n ce= %. 3 f /km , X l 1 ) ;

    Scilab code Exa 4.13 Find the capacitance of 1 phase line

    1 // Find t he c a p ac i t a n c e o f 1 p ha se l i n e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 1 5 / 2 ; / /mm/ / r a d i u s o f t h e c o n d u c t o r7 d = 1 5 0 0 ; //mm// sp a c i n g8 L = 3 0 0 0 0 ; / /m/ / l e n g t h o f t h e l i n e9 E o = 8 . 8 5 * 1 0 ^ - 1 2 // p e r mi t i v i t y o f t h e a i r

    10 C = % p i * E o * L / ( log ( d / r ) ) ;

    11 C _ = C * 1 0 ^ 6 ;12 printf ( C a pa ci ta nc e o f 30km l i n e = %f F , C _ ) ;

    Scilab code Exa 4.14 Find the capacitance of 2 wire 1 phase line

    1 / / Find t h e c a pa c it a nc e o f 2 w ir e 1 p h a s e l i n e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 0 . 2 5 ; // cm/ / r a d i u s o f t h e c o n du c to r7 d = 1 5 0 ; //cm// sp ac i n g8 L = 5 0 0 0 0 ; / /m/ / l e n g t h o f t h e l i n e

    38

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    40/104

    9 h = 7 0 0 / /cm// h e i g h t o f c o n du c t or a bo ve e a r t h

    10 E o = 8 . 8 5 4 * 1 0 ^ - 1 2 // p e r m i t i v i t y o f t he a i r11 C = % p i * E o * L / ( log (120/( sqrt ( 1 + ( d ^ 2 / ( 2 * h ) ^ 2 ) ) * r ) ) ) ;12 C _ = C * 1 0 ^ 6 ;

    13 printf ( C a p a c it a n ce o f 5 0km l i n e = %. 3 f F , C _ ) ;

    Scilab code Exa 4.15 Find the capacitance of 3 phase line

    1 // Find t he c a p ac i t a n c e o f 3 p ha se l i n e

    2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 r = 1 ; //cm/ / r a d i u s o f t h e c o n du c t or7 d = 2 5 0 ; //cm// sp ac i n g8 L = 1 0 0 0 0 0 ; //m// l e n g t h o f t h e l i n e9 E o = 8 . 8 5 4 * 1 0 ^ - 1 2 // p e r m i t i v i t y o f t he a i r

    10 C = 2 * % p i * E o * L / ( log ( d / r ) ) ;

    11 C _ = C * 1 0 ^ 6 ;

    12 printf ( C a p a c it a n ce o f 1 00km l i n e = %. 4 f F , C _ ) ;

    Scilab code Exa 4.16 Find the capacitance of 3 phase 3 wire line

    1 / / Find t h e c a pa c it a nc e o f 3 p h a s e 3 w ir e l i n e2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n

    6 r = 0 . 0 1 ; / /m/ / r a d i u s o f t h e c o n d u c t o r7 d 1 = 3 . 5 ; //m// sp ac in g8 d 2 = 5 ; //m// sp ac in g9 d 3 = 8 ; //m// sp ac in g

    10 L = 1 0 0 0 ; //m/ / l e n g t h o f t h e l i n e

    39

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    41/104

    11 E o = 8 . 8 5 4 * 1 0 ^ - 1 2 // p e r m i t i v i t y o f t he a i r

    12 d e = ( d 1 * d 2 * d 3 ) ^ ( 1 / 3 )13 C = 2 * % p i * E o * L / ( log ( d e / r ) ) ;

    14 C _ = C * 1 0 ^ 6 ;

    15 printf ( C ap ac it an ce o f l i n e = %. 4 f F , C _ ) ;

    Scilab code Exa 4.17 Find the capacitance and charging current

    1 / / Fin d t he c a p a c i t a n ce and c h a rg i n g c u r r e n t

    2 clear ;3 clc ;

    4 // s o l t i o n5 / / g i v e n6 f = 5 0 ; / / f r e q u e n c y7 V p h = 2 2 0 * 1 0 0 0 / sqrt ( 3 ) ; // p h as e v o l t a g e8 r = 0 . 0 1 ; / /m/ / r a d i u s o f t h e c o n d u c t o r9 d 1 = 3 ; //m// sp ac in g

    10 d 2 = 3 ; //m// sp ac in g11 d 3 = 6 ; //m// sp ac in g12 L = 1 0 0 0 ; //m/ / l e n g t h o f t h e l i n e

    13 E o = 8 . 8 5 4 * 1 0 ^ - 1 2 // p e r m i t i v i t y o f t he a i r14 d e = ( d 1 * d 2 * d 3 ) ^ ( 1 / 3 )

    15 C = 2 * % p i * E o * L / ( log ( d e / r ) ) ;

    16 C _ = C * 1 0 ^ 9 ;

    17 printf ( C a p ac it a nc e o f l i n e = %. 4 f 1012F\n , C _ ) ;18 I c = 2 * % p i * f * C * V p h ;

    19 printf ( C h ar gi ng c u r r e n t p e r p ha s e i s = %. 3 fmA , I c ) ;

    Scilab code Exa 4.18 find capacitive reactance to neutral and chargingcurrent

    1 / / f i n d c a p a c i t i v e r e a ct a n ce t o n e u t r a l and c h ar g in gc u r r e n t

    40

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    42/104

    2 clear ;

    3 clc ;4 // s o l t i o n5 / / g i v e n6 r = 1 . 2 5 * 1 0 ^ - 2 ; / /m/ / r a d i u s o f t h e c o n d u c t o r7 f = 5 0 / / f r e q u e n c y8 V p h = 1 3 2 * 1 0 0 0 / sqrt ( 3 ) ; // p h as e v o l t a g e9 E o = 8 . 8 5 * 1 0 ^ - 1 2 // p e r mi t i v i t y o f t h e a i r

    10 d r r _ = sqrt ( 7 ^ 2 + ( 4 + 4 ) ^ 2 ) ;

    11 d b b _ = d r r _ ;

    12 d y y _ = 9 ;

    13 D s r = sqrt ( r * d r r _ ) ;

    14 D s y = sqrt ( r * d y y _ ) ;15 D s b = sqrt ( r * d b b _ ) ;

    16 D s = ( D s r * D s y * D s b ) ^ ( 1 / 3 ) ;

    17 d r y = sqrt ( 4 ^ 2 + ( 4 . 5 - 3 . 5 ) ^ 2 ) ;

    18 d r y _ = sqrt ( ( 9 - 1 ) ^ 2 + 4 ^ 2 ) ;

    19 D r y = sqrt ( d r y * d r y _ ) ;

    20 D y b = D r y ;

    21 D b r = sqrt ( 8 * 7 ) ;

    22 D m = ( D y b * D b r * D r y ) ^ ( 1 / 3 ) ;

    23 C = 2 * % p i * E o / ( log ( D m / D s ) ) ;

    24 printf ( C a p a c i t a n c e p e r p h a se= %. 2 f 10 9 F/km\n

    ,C

    * 1 0 ^ 1 2 ) ;

    25 C r = 1 / ( 2 * % p i * f * C * 1 0 0 0 ) ;

    26 printf ( C a p a c it a n ce p e r p ha s e= %. 2 f k \n , C r / 1 0 0 0 ) ;27 I c = ( 2 * % p i * f * C * 1 0 0 0 ) * V p h ;

    28 printf ( C h a r g i n g c u r r e n t = % . 4 f A/km , I c ) ;

    Scilab code Exa 4.19 Calculate the capacitance per phase

    1 // C a l c u l a te t he c a p a c i t a n ce p er p ha se2 clear ;

    3 clc ;

    4 // s o l t i o n

    41

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    43/104

    5 / / g i v e n

    6 E o = 8 . 8 5 * 1 0 ^ - 1 2 // p e r mi t i v i t y o f t h e a i r7 V p h = 1 3 2 * 1 0 0 0 / sqrt ( 3 ) ; // p h as e v o l t a g e8 d 1 = 8 ; / /m/ / d i s t a n c e s9 d 2 = 6 ; //m

    10 r = 3 * 2 . 5 * 1 0 ^ - 3 ; //m// r a d i u s o f c o n du c t or i n m11 C = 4 * % p i * E o / log ( ( 2 ^ ( 1 / 3 ) ) * ( d 1 / r ) * ( ( d 2 ^ 2 + d 1 ^ 2 ) / ( 4 * d 1

    ^ 2 + d 2 ^ 2 ) ) ^ ( 1 / 3 ) ) ;

    12 C _ = C * 1 0 0 * 1 0 0 0 ;

    13 printf ( C a p ac it a nc e o f 1 00 km l i n e = %. 3 f f , C_* 1 0 ^ 6 ) ;

    42

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    44/104

    Chapter 5

    Performance of Short and

    Medium Transmission Lines

    Scilab code Exa 5.1 Find voltage at sending end and percentage regula-tion and transmission efficiency

    1 // Find v o l t a g e a t s e n di ng end , p e rc e nt a ge r e g u l a t i o nand t r an s m i s s i o n e f f i c i e n c y

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 P = 3 3 0 0 ; //kW//power7 V r = 3 3 0 0 0 ; //kV/ / r e c i e v i n g v o l t a g e8 p f = 0 . 8 ; // p ea k f a c t o r9 R = 2 ; / /ohm // r e s i s t a n c e

    10 X = 3 ; / /ohm // l o o p r e a c t a n c e11 I = P * 1 0 0 0 / ( V r * p f ) ;

    12 Vs = sqrt ( ( V r * p f + I * R ) ^ 2 + ( ( V r * s i n d ( a c o s d ( p f ) ) ) + I * X ) ^ 2 ) ;

    13 printf ( V o l t a g e a t s e n d i n g en d ( Vs )= %. 3 fV\n , V s ) ;14 P r = ( ( V s - V r ) * 1 0 0 ) / V r ;15 printf ( P e r ce n ta g e r e g u l a t i o n = %f p e r ce n t \n , P r ) ;16 L l = I * I * R / 1 0 0 0 ; // l i n e l o s s e s17 n t = P * 1 0 0 / ( P + L l ) ;

    43

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    45/104

    18 printf ( T r a ns m is s io n e f f i c i e n c y = %. 2 f p e r ce n t , n t )

    Scilab code Exa 5.2 voltage at sending end and percentage regulation andtotal line losses and transmission efficiency

    1 // v o l t a g e a t s e nd i ng end , p e r ce n t a ge r e g u l a t i o n ,t o t a l l i n e l o s s e s and t r a n s m i s s i o n e f f i c i e n c y

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 P = 5 0 0 0 ; //kW//power7 V = 2 2 0 0 0 ; / /kV// r e c i e v i n g v o l t a g e8 p f = 0 . 8 ; // p ea k f a c t o r9 R = 4 ; / /ohm // r e s i s t a n c e

    10 X = 6 ; / /ohm // l o o p r e a c t a n c e11 V r = V / sqrt ( 3 ) ;

    12 I = P * 1 0 0 0 / ( 3 * round ( V r ) * p f ) ;

    13 Vs = round ( V r ) + ( I * R * p f ) + ( I * X * s i n d ( a c o s d ( p f ) ) ) ;

    14 V s l = sqrt ( 3 ) * V s ;

    15 printf ( S e n di n g end l i n e v o l t a g e = %. 3 fkV\n ,Vsl/1000)

    16 P r = ( ( V s l - V ) * 1 0 0 ) / V ;

    17 printf ( P e r ce n ta g e r e g u l a t i o n = %. 2 f p e r ce n t \n , P r ) ;18 L l = 3 * ( round ( I ) ) ^ 2 * R / 1 0 0 0 ; // l i n e l o s s e s19 printf ( T o t a l L i n e L o s s e s = %. 3 fkW\n , L l ) ;20 n t = P * 1 0 0 / ( P + L l ) ;

    21 printf ( T r a ns m is s io n e f f i c i e n c y = %. 3 f p e r ce n t , n t )

    Scilab code Exa 5.3 find sending end voltage and regulation

    1 // f i n d s e n di n g end v o l t a g e and r e g u l a t i o n2 clear ;

    44

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    46/104

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 P = 5 0 0 0 ; //kW//power7 V = 1 1 0 0 0 ; / /kV// r e c i e v i n g v o l t a g e8 p f = 0 . 8 ; // p ea k f a c t o r9 L = 1 . 1 * 1 0 ^ - 3 / /H p e r km p e r p h as e / / L i n e i n d u c t a n c e

    10 L l = 0 . 1 2 * P * 1 0 0 0 ;

    11 V r = V / sqrt ( 3 ) ;

    12 I = P * 1 0 0 0 / ( 3 * round ( V r ) * p f ) ;

    13 R = L l / ( 3 * I ^ 2 ) ;

    14 X = 5 . 1 8 3 6 ;

    15 Vs = round ( V r ) + ( round ( I ) * R * p f ) + ( I * X * s i n d ( a c o s d ( p f ) ) ) ;16 V s l = sqrt ( 3 ) * V s ;

    17 printf ( L i n e v o l t a g e a t s e n d i n g end= %. 3 f kV\n ,Vsl/ 1 0 0 0 ) ;

    18 P r = ( ( V s l - V ) * 1 0 0 ) / V ;

    19 printf ( P e r ce n ta g e r e g u l a t i o n = %. 3 f p e r ce n t \n , P r ) ;

    Scilab code Exa 5.4 Find sending end voltage and power factor and effi-

    cieny and regulation

    1 // Find s e n di n g end v ol t a g e , power f a c t o r , e f f i c i e n yand r e g u l a t i o n

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 S = 1 2 0 0 0 ; / /kVA/ / p o w er s u p p l i e d7 p f = 0 . 8 ; // p ow er f a c t o r

    8 d e l = 1 . 7 3 * 1 0 ^ - 6 ;9 d = 1 4 0 / /cm// d i s t a n c e o f t h e c o n du c to r10 l = 5 0 * 1 0 ^ 3 ;

    11 V r l = 3 3 0 0 0 ; / /V/ / r e c i e v i n g en d v o l t a g e12 I = S * 1 0 0 0 / ( sqrt ( 3 ) * V r l ) ;

    45

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    47/104

    13 L l = 0 . 1 5 * S * 1 0 0 0 * p f ;

    14 R = L l / ( 3 * I * I ) ;15 a = d e l * l * 1 0 0 / ( R ) ;

    16 r = sqrt ( a / % p i ) ;

    17 r e = r * exp ( - 1 / 4 ) ;

    18 L = 0 . 2 * 5 0 * ( 1 0 ^ - 3 ) * log ( d / r e ) ;

    19 X = 2 * % p i * 5 0 * L ;

    20 X_ = floor ( X * 1 0 0 ) / 1 0 0 ;

    21 V s = V r l / sqrt ( 3 ) + ( I * R * p f ) + ( I * X _ * s i n d ( a c o s d ( p f ) ) ) ;

    22 V s l = sqrt ( 3 ) * V s ;

    23 printf ( S e n di n g end l i n e v o l t a g e = %. 4 fkV\n ,Vsl/1000)

    24 s p f = ( V r l * p f / sqrt ( 3 ) + I * R ) / V s ;25 printf ( S e n di n g end p ower f a c t o r = %. 3 f l a g g i n g\n ,

    s p f ) ;

    26 n t = S * p f * 1 0 0 / ( S * p f + ( L l / 1 0 0 0 ) ) ;

    27 printf ( T r a ns m is s io n e f f i c i e n c y = %. 3 f p e r ce n t \n , n t )28 P r = ( ( V s l - V r l ) * 1 0 0 ) / V r l ;

    29 printf ( P e r ce n ta g e r e g u l a t i o n = %. 3 f p e r ce n t \n , P r ) ;

    Scilab code Exa 5.5 Find load end voltage and efficieny

    1 // Find l oa d end v o l t a g e and e f f i c i e n y2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 P = 3 0 0 0 //kW//output7 V s l = 1 1 0 0 0 / / v o l t s8 p f = 0 . 8 / / l a g g i n g / / p ow er f a c t o r

    9 R = 3 * 0 . 4 ; / /ohm/ / r e s i s t a n c e o f e ac h c o n du c t or10 X = 3 * 0 . 8 ; / /ohm // r e a c t a n c e o f e a ch c o n d u c t o r11 V s = V s l / sqrt ( 3 ) ;

    12 Z = ( R * p f + X * s i n d ( a c o s d ( p f ) ) ) ;

    13 V s _ = round ( V s ) ;

    46

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    48/104

    14 printf ( Vr=%d % . 1 f I\n , V s _ , Z ) ;

    15 I _ = P * 1 0 0 0 / ( 3 * p f )16 Vr = poly (0 , Vr ) ;17 printf ( I=%. 0 f /Vr\n , I _ ) ;18 A = 2 . 4 * I _ - V s _ * V r + V r ^ 2

    19 a n s w = roots ( A ) ;

    20 V r = 5 8 3 7 . 0 4 1 ;

    21 V r l = sqrt ( 3 ) * V r ;

    22 printf ( L i n e v o l t a g e a t t h e end ( V rl )= %d V\n , V r l ) ;23 I = I _ / V r ;

    24 L l = 3 * I * I * R ;

    25 n t = P * 1 0 0 0 * 1 0 0 / ( P * 1 0 0 0 + L l ) ;

    26 printf ( T r a ns m is s io n e f f i c i e n c y = %. 1 f p e r ce n t , n t )

    Scilab code Exa 5.6 Find current and voltage of sending end and percent-age regulation and line losses and sending end power factor and transmissionefficiency

    1 / / Fin d c u r r e nt and v o l t a g e o f s e nd i ng end ,p e rc e n t ag e r e g u la t i o n , l i n e l o s s e s , s en d in g end

    power f a c t o r and t r an s m i s s i o n e f f i c i e n c y2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 R = 0 . 6 1 2 5 * 1 0 0 ; / /ohm/ / t o t a l r e s i s t a n c e7 X = 1 * 1 0 0 ; //ohm// r e ac t a nc e8 Y = 1 7 . 5 * 1 0 ^ - 4 ; / /S // t o t a l s u s e c p t a n c e9 V r = 6 6 * 1 0 0 0 ; //V

    10 p f = 0 . 8 ; // p ow er f a c t o r

    11 P = 2 0 * 1 0 ^ 6 ; // wat ts12 I r = ( P / ( V r * p f ) ) * c o m p l e x ( p f , - 0 . 6 ) ;13 I c = c o m p l e x ( 0 , Y * V r ) ;

    14 I s = I r + I c ;

    15 t h e t a 1 = a t a n d ( ( imag ( I s ) / real ( I s ) ) ) ;

    47

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    49/104

    16 printf ( S en di ng end c u r r e nt= %. 2 f % . 3 f A \n , abs (

    I s ) , t h e t a 1 ) ;17 V s = V r + I s * ( c o m p l e x ( R , X ) ) ;

    18 t h e t a 2 = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    19 printf ( S e n di n g end v o l t a g e = %. 3 f % . 2 f V o l t s\n ,abs ( V s ) , t h e t a 2 ) ;

    20 p h i = t h e t a 2 - t h e t a 1 ;

    21 printf ( s e n d i n g e nd p ow er f a c t o r = %. 3 f ( l a g ) \n , c o s d (p h i ) ) ;

    22 P r = ( ( abs ( V s ) - V r ) * 1 0 0 ) / V r ;

    23 printf ( P e r ce n ta g e r e g u l a t i o n = %. 1 f p e r ce n t \n , P r ) ;24 L l = ( abs ( I s ) ) ^ 2 * R / 1 0 0 0 ; // l i n e l o s s e s

    25 printf ( T o t a l L i n e L o s s e s = %. 3 fkW\n , L l ) ;26 n t = P * 1 0 0 / ( P + L l * 1 0 0 0 ) ;

    27 printf ( T r a ns m is s io n e f f i c i e n c y = %. 2 f p e r ce n t , n t )

    Scilab code Exa 5.7 Find current and voltage of sending end and percent-age regulation and transmission efficiency

    1 / / Fin d c u r r e nt and v o l t a g e o f s e nd i ng end a nd

    p e r c e nt ag e r e g u l a t i o n and t r an s m i s s i o n e f f i c i e n c y2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 R = 0 . 2 * 1 5 0 ; / /ohm/ / t o t a l r e s i s t a n c e7 X = 0 . 5 * 1 5 0 ; //ohm// r e ac t a nc e8 Y = 1 5 0 * 3 * 1 0 ^ - 6 ; // S // t o t a l s u s e c p t a n c e9 V r l = 1 3 2 * 1 0 0 0 ; //V

    10 p f = 0 . 8 ; // p ow er f a c t o r

    11 P = 4 0 * 1 0 ^ 6 ; //MVA12 V r = V r l / sqrt ( 3 ) ;13 I r _ = ( P / ( sqrt ( 3 ) * V r l ) ) ;

    14 I r = I r _ * c o m p l e x ( p f , - 0 . 6 ) ;

    15 Z = c o m p l e x ( R , X ) ; //ohm//Load impeda nce

    48

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    50/104

    16 V _ = V r + I r * ( Z / 2 ) ;

    17 I c = V _ * ( % i ) * Y ;18 I s = I r + I c ;

    19 t h e t a 1 = a t a n d ( ( imag ( I s ) / real ( I s ) ) ) ;

    20 printf ( S e n di n g end c u r r e n t= %. 3 f % . 2 f A\n , abs (I s ) , t h e t a 1 ) ;

    21 V s = V _ + I s * ( Z / 2 ) ;

    22 t h e t a 2 = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    23 V l s = sqrt ( 3 ) * abs ( V s ) / 1 0 0 0 ;

    24 printf ( S e n di n g end l i n e v o l t a g e = %. 2 fkV\n , V l s ) ;25 P r = ( ( abs ( V s ) - V r ) * 1 0 0 ) / V r ;

    26 printf ( P e r ce n ta g e v o l t a g e r e g u l a t i o n = %. 1 f p e r ce n t \

    n , P r ) ;27 p h i = t h e t a 2 - t h e t a 1 ;

    28 n t = ( V r l * I r _ * p f * 1 0 0 ) / ( V l s * 1 0 0 0 * abs ( I s ) * c o s d ( p h i ) ) ;

    29 printf ( T r a ns m is s io n e f f i c i e n c y = %. 2 f p e r ce n t , n t ) ;

    Scilab code Exa 5.8 Find current and voltage of sending end and percent-age regulation

    1 / / Fin d c u r r e nt and v o l t a g e o f s e nd i ng end a ndp e rc e n t ag e r e g u l a t i o n

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 R = 0 . 1 4 2 5 * 2 0 0 ; / /ohm/ / t o t a l r e s i s t a n c e7 X = 0 . 4 9 * 2 0 0 ; //ohm// r e ac t a nc e8 Y = 8 * 1 0 ^ - 4 ; / /S // t o t a l s u s e c p t a n c e9 V r l = 1 3 2 * 1 0 0 0 ; //V

    10 p f = 0 . 8 ; // p ow er f a c t o r11 P = 5 0 * 1 0 ^ 6 ; //MVA12 Vr = round ( V r l / sqrt ( 3 ) ) ;

    13 I r _ = ( P / ( sqrt ( 3 ) * V r l ) ) ;

    14 I r = I r _ * c o m p l e x ( p f , - 0 . 6 ) ;

    49

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    51/104

    15 I c r = 0 . 5 * ( % i * Y ) * V r ;

    16 I l = I r + I c r ;17 Z = c o m p l e x ( R , X ) ; //ohm//Load impeda nce18 V s = V r + I l * ( Z ) ;

    19 t h e t a = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    20 printf ( S en di ng end v o l t a g e= %. 3 f % . 3 f \n , abs ( Vs) , t h e t a ) ;

    21 V l s = sqrt ( 3 ) * abs ( V s ) / 1 0 0 0 ;

    22 printf ( S e n di n g end l i n e v o l t a g e = %. 2 fkV\n , V l s ) ;23 M = 1 + 0 . 5 * ( % i * Y ) * Z ; //THE BOOK HAS USED 0 . 9 9 6 2 BUT IT

    I S 0 . 96 224 V r l o = V l s / abs ( M ) ;

    25 P r = ( ( V r l o * 1 0 0 0 - V r l ) * 1 0 0 ) / V r l ;26 printf ( P e r ce n ta g e v o l t a g e r e g u l a t i o n = %. 1 f p e r ce n t \

    n , P r ) ;27 //THE ANS OF THE REGULATION I S 2 1 . 4% BECAUSE OF

    TYPOLOGICAL ERROR

    Scilab code Exa 5.9 Find current and voltage of sending end

    1 / / Find c u r r e nt and v o l t a g e o f s en d in g end2 clear ;

    3 clc ;

    4 // s o l t i o n5 / / g i v e n6 R = 0 . 1 * 1 5 0 ; / /ohm/ / t o t a l r e s i s t a n c e7 X = 0 . 5 * 1 5 0 ; //ohm// r e ac t a nc e8 Y = 3 * 1 5 0 * 1 0 ^ - 6 ; // S // t o t a l s u s e c p t a n c e9 V r l = 1 1 0 * 1 0 0 0 ; //V

    10 p f = 0 . 8 ; // p ow er f a c t o r

    11 P = 5 0 * 1 0 ^ 6 ; //M w at t s12 Vr = floor ( V r l / sqrt ( 3 ) ) ;13 I r _ = ( P / ( sqrt ( 3 ) * V r l * p f ) ) ;

    14 I r = I r _ * c o m p l e x ( p f , - 0 . 6 ) ;

    15 I c 1 = V r * ( % i * Y / 2 ) ;

    50

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    52/104

    16 I l = I r + I c 1 ;

    17 Z = c o m p l e x ( R , X ) ;18 V s = V r + I l * Z ;

    19 t h e t a = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    20 V l s = sqrt ( 3 ) * abs ( V s ) / 1 0 0 0 ;

    21 printf ( S en di ng end l i n e v o l t a g e= %. 2 f kV\n , V l s ) ;22 I c 2 = V s * ( % i * Y / 2 ) ;

    23 I s = I l + I c 2 ;

    24 printf ( S e n d i n g e nd c u r r e n t ( I s )= %. 1 f A , abs ( I s ) ) ;

    Scilab code Exa 5.10 Find regulation and charging current using nominalT method

    1 // F in d r e g u l a t i o n and c h a rg i n g c u r r e n t u s i ng n om in alT method

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 //FUNCTIONS6 function [ z ] = r x r ( A , B ) / / F u nc ti o n f o r t h e

    m u l t i p l i c a t i o n o f r e c t a n gu l a r7 z ( 1 ) = A ( 1 ) * B ( 1 )

    8 z ( 2 ) = A ( 2 ) + B ( 2 )

    9 e n d f u n c t i o n

    10

    11 function [ a ] = r 2 p ( z ) // F un ct io n f o r r e c t a n g u l a r t op o l a r

    12 a = z ( 1 ) * c o m p l e x ( c o s d ( z ( 2 ) ) , s i n d ( z ( 2 ) ) )

    13 e n d f u n c t i o n

    14

    15 / / g i v e n16 P = 5 0 * 1 0 ^ 6 ; //M w at t s17 V r l = 1 3 2 * 1 0 0 0 ; //V18 p f = 0 . 8 //pow e r f a c t i r19 V r = [ floor ( V r l / sqrt ( 3) ) 0 ];

    51

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    53/104

    20 I r = [ floor ( P / ( sqrt ( 3) * V r l * p f ) ) - a c os d ( p f ) ] ;

    21 A = [ 0 . 95 1 . 4] ;22 B = [ 9 6 7 8] ;

    23 C = [ 0 . 0 0 15 9 0 ];

    24 D = A ;

    25 Z 1 = r x r ( A , V r ) ;

    26 Z 2 = r x r ( B , I r ) ;

    27 A V = r 2 p ( Z 1 ) ;

    28 B I = r 2 p ( Z 2 ) ;

    29 V s = A V + B I ;

    30 t h e t a 1 = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    31 printf ( S e n di n g e nd v o l t a ge= %. 0 f % . 2 f V ol ts \n ,

    abs ( V s ) , t h e t a 1 ) ;32 Y 1 = r x r ( C , V r ) ;

    33 Y 2 = r x r ( D , I r ) ;

    34 C V = r 2 p ( Y 1 ) ;

    35 D I = r 2 p ( Y 2 ) ;

    36 I s = C V + D I ;

    37 I r a = r 2 p ( I r ) ;

    38 I c = I s - I r a ;

    39 t h e t a 2 = a t a n d ( imag ( I c ) / real ( I c ) ) ;

    40 I c _ = sqrt ( round ( imag ( I c ) ) ^ 2 + round ( real ( I c ) ) ^ 2 ) ;

    41 printf ( Ch a r g i n g c ur r e nt= %. 1 f % f A\n

    , I c _ ,

    t h e t a 2 ) ;

    42 P r = ( ( abs ( V s ) / A ( 1 ) - V r ) * 1 0 0 ) / V r ;

    43 printf ( P e r ce n ta g e r e g u l a t i o n = %. 0 f p e r ce n t \n , P r ) ;44 / / 1 . The M ag ni tu de o f S en d in g en d v o l t a g e i s 9 4 06 6 ,

    i t i s due t o r o un di ng some o f t he v a lu e s45 // 2 . The a n g le i n t h e b ook i s 9 3. 1 i n c ha rg in g

    c u r r e n t

    Scilab code Exa 5.11 find sending end voltage and current and power andefficiency

    52

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    54/104

    1 // f i n d s e nd i n g end v o l t a g e and c u r r e n t and power and

    e f f i c i e n c y2 clear ;3 clc ;

    4 // s o l t i o n5 //FUNCTIONS6 function [ z ] = r x r ( A , B ) / / F u nc ti o n f o r t h e

    m u l t i p l i c a t i o n o f r e c t a n gu l a r7 z ( 1 ) = A ( 1 ) * B ( 1 )

    8 z ( 2 ) = A ( 2 ) + B ( 2 )

    9 e n d f u n c t i o n

    10

    11 function [ a ] = r 2 p ( z ) // F un ct io n f o r r e c t a n g u l a r t op o l a r

    12 a = z ( 1 ) * c o m p l e x ( c o s d ( z ( 2 ) ) , s i n d ( z ( 2 ) ) )

    13 e n d f u n c t i o n

    14 / / g i v e n15 P = 5 0 * 1 0 ^ 6 ; //VA16 V r l = 1 1 0 * 1 0 0 0 ; //V17 p f = 0 . 8 //pow e r f a c t i r18 V r = [ V r l / sqrt ( 3) 0 ];

    19 I r = [ P / ( sqrt ( 3) * V r l ) - a c os d ( p f ) ] ;

    20 A = [0 .9 8 3 ];

    21 B = [ 1 1 0 7 5 ];

    22 C = [ 0 . 0 0 05 8 0 ];

    23 D = [0 .9 8 3 ];

    24 Z 1 = r x r ( A , V r ) ;

    25 Z 2 = r x r ( B , I r ) ;

    26 A V = r 2 p ( Z 1 ) ;

    27 B I = r 2 p ( Z 2 ) ;

    28 V s = A V + B I ;

    29 t h e t a 1 = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    30 printf ( S e n di n g end v o l t a g e = %. 0 f V\n , abs ( V s ) ) ;

    31 Y 1 = r x r ( C , V r ) ;32 Y 2 = r x r ( D , I r ) ;

    33 C V = r 2 p ( Y 1 ) ;

    34 D I = r 2 p ( Y 2 ) ;

    35 I s = C V + D I ;

    53

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    55/104

    36 t h e t a 2 = a t a n d ( imag ( I s ) / real ( I s ) ) ;

    37 printf ( M ag ni tu de o f s e n d i ng end c u r r e n t= %d A\n ,abs ( I s ) ) ;38 phis= theta2 -theta 1;

    39 P s = 3 * abs ( V s ) * abs ( I s ) * c o s d ( p h i s ) ;

    40 printf ( Sen din g end power=%.1fMW\n , floor ( P s / 1 0 ^ 5 )/ 1 0 ) ;

    41 P r = P * p f ;

    42 n = P r * 1 0 0 / ( floor ( P s / 1 0 ^ 5 ) * 1 0 ^ 5 ) ;

    43 printf ( T r a n s m i ss i o n E f f i c i e n c y = %. 1 f p e r c e n t , n ) ;44 // The v al ue o f v o l t a g e i s 8 74 27 V

    Scilab code Exa 5.12 Find ABCD parameters and sending end voltageand current and power factor and transmission eficiency

    1 / / F in d ABCD p a r a m e t e r s and s e n d i n g en d v o l t a g e a ndc u r r e nt and power f a c t o r and t r a n s m i s s i o ne f i c i e n c y

    2 clear ;

    3 clc ;

    4 // s o l t i o n5 //FUNCTIONS6 function [ z ] = r x r ( A , B ) / / F u nc ti o n f o r t h e

    m u l t i p l i c a t i o n o f r e c t a n gu l a r7 z ( 1 ) = A ( 1 ) * B ( 1 )

    8 z ( 2 ) = A ( 2 ) + B ( 2 )

    9 e n d f u n c t i o n

    10

    11 function [ a ] = r 2 p ( z ) // F un ct io n f o r r e c t a n g u l a r t op o l a r

    12 a = z ( 1 ) * c o m p l e x ( c o s d ( z ( 2 ) ) , s i n d ( z ( 2 ) ) )13 e n d f u n c t i o n

    14

    15 / / g i v e n16 P = 8 0 * 1 0 ^ 6 ; // wat ts

    54

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    56/104

    17 V r l = 2 2 0 * 1 0 0 0 ; //V

    18 p f = 0 . 8 //pow e r f a c t i r19 V r = [ V r l / sqrt ( 3) 0 ];20 I r _ = [ P / ( sqrt ( 3) * V r l * p f ) - a c o sd ( p f ) ] ;

    21 I r = r 2 p ( I r _ ) ;

    22 Z = [ 2 0 0 8 0 ];

    23 Y = [ 0 . 0 0 13 9 0 ];

    24 a = r x r ( Z , Y ) ;

    25 A c = 1 + r 2 p ( a ) / 2 ;

    26 A =[ abs ( A c ) a ta nd ( ( imag ( A c ) / real ( A c ) ) ) ] ;

    27 D = A ;

    28 printf ( A=D= %.3 f % .1 f \n , A ( 1 ) , A ( 2 ) ) ;

    29 b = r x r ( Z , Y ) ;30 B c = 1 + r 2 p ( b ) / 4 ;

    31 B =[ abs ( B c ) a ta nd ( ( imag ( B c ) / real ( B c ) ) ) ] ;

    32 B = r x r ( Z , B ) ;

    33 printf ( B= %. 1 f % . 2 f ohm\n , B ( 1 ) , B ( 2 ) ) ;34 C = Y ;

    35 printf ( C=%. 4 f % d s i em en s \n , C ( 1 ) , C ( 2 ) ) ;36 Z 1 = r x r ( A , V r ) ;

    37 Z 2 = r x r ( B , I r _ ) ;

    38 A V = r 2 p ( Z 1 ) ;

    39 B I = r 2 p ( Z 2 ) ;

    40 V s = A V + B I ;

    41 t h e t a 1 = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    42 V s l = sqrt ( 3 ) * abs ( V s ) ;

    43 printf ( S e n d i n g e nd v o l t a g e = %dkV\n , round ( V s l / 1 0 0 0 )) ;

    44 Y 1 = r x r ( C , V r ) ;

    45 Y 2 = r x r ( D , I r _ ) ;

    46 C V = r 2 p ( Y 1 ) ;

    47 D I = r 2 p ( Y 2 ) ;

    48 I s = C V + D I ;

    49 t h e t a 2 = a t a n d ( imag ( I s ) / real ( I s ) ) ;50 printf ( S en di ng end c u r r e nt= %. 1 f % . 1 f A \n , abs (

    I s ) , t h e t a 2 ) ;

    51 phis= theta2 -theta 1;

    52 P s = 3 * abs ( V s ) * abs ( I s ) * c o s d ( p h i s ) ;

    55

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    57/104

    53 printf ( Sen din g end power=%.2fMW\n , P s / 1 0 ^ 6 ) ;

    54 n = P * 1 0 0 / P s ;55 printf ( T r a n s m i ss i o n E f f i c i e n c y = %. 1 f p e r c e n t , n ) ;

    Scilab code Exa 5.13 find sending end voltage and current and power andefficiency

    1 // f i n d s e nd i n g end v o l t a g e and c u r r e n t and power ande f f i c i e n c y

    2 clear ;3 clc ;

    4 // s o l t i o n5 //FUNCTIONS6 function [ z ] = r x r ( A , B ) / / F u nc ti o n f o r t h e

    m u l t i p l i c a t i o n o f r e c t a n gu l a r7 z ( 1 ) = A ( 1 ) * B ( 1 )

    8 z ( 2 ) = A ( 2 ) + B ( 2 )

    9 e n d f u n c t i o n

    10

    11 function [ a ] = r 2 p ( z ) // F un ct io n f o r r e c t a n g u l a r t o

    p o l a r12 a = z ( 1 ) * c o m p l e x ( c o s d ( z ( 2 ) ) , s i n d ( z ( 2 ) ) )

    13 e n d f u n c t i o n

    14 / / g i v e n15 P = 5 0 * 1 0 ^ 6 ; //VA16 V r l = 1 1 0 * 1 0 0 0 ; //V17 p f = 0 . 8 //pow e r f a c t i r18 V r = [ V r l / sqrt ( 3) 0 ];

    19 I r = [ P / ( sqrt ( 3) * V r l ) - a c os d ( p f ) ] ;

    20 A = [0 .9 8 3 ];

    21 B = [ 1 1 0 7 5 ];22 C = [ 0 . 0 0 05 8 0 ];

    23 D = [0 .9 8 3 ];

    24 Z 1 = r x r ( A , V r ) ;

    25 Z 2 = r x r ( B , I r ) ;

    56

  • 7/26/2019 Transmission & Distribution Of Electrical Power

    58/104

    26 A V = r 2 p ( Z 1 ) ;

    27 B I = r 2 p ( Z 2 ) ;28 V s = A V + B I ;

    29 t h e t a 1 = a t a n d ( ( imag ( V s ) / real ( V s ) ) ) ;

    30 printf ( S e n di n g end v o l t a g e = %. 0 f V\n , abs ( V s ) ) ;31 Y 1 = r x r ( C , V r ) ;

    32 Y 2 = r x r ( D , I r ) ;

    33 C V = r 2 p ( Y 1 ) ;

    34 D I = r 2 p ( Y 2 ) ;

    35 I s = C V + D I ;

    36 t h e t a 2 = a t a n d ( imag ( I s ) / real ( I s ) ) ;

    37 printf ( M ag ni tu de o f s e n d i ng end c u r r e n t= %d A\n ,

    abs ( I s ) ) ;38 phis= theta2 -theta 1;

    39 P s = 3 * abs ( V s ) * abs ( I s ) * c o s d ( p h i s ) ;

    40 printf ( Sen din g end power=%.1fMW\n , floor ( P s / 1 0 ^