40
Transcription

Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Embed Size (px)

Citation preview

Page 1: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Transcription

Page 2: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic
Page 3: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Table 13-1

Page 4: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Structure of RNA polymerases

Prokaryotic Eukaryotic

Page 5: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Transcription phases

Page 6: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Sigma 70 promoters

Transcription start site

Page 7: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Frequency of nucleotides in various sigma 70 promoters

Page 8: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Table 13-1

Page 9: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Bacterial RNA polymerase holoenzyme

Sigma subunit

Promoter binding by the bacterial RNA polymeraserequires a sigma subunit

Page 10: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Binding of sigma 70 to promoter elements

Page 11: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Carboxy terminal domain Non- template domain

Page 12: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Transcription phases

Page 13: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Sigma 70 promotes melting of DNA by flipping twobases out of the double helix

Page 14: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

The open complex and its channels

Page 15: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Models for abortive transcription

Page 16: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

The elongation process

Page 17: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Figure 12.13 Genomes 3 (© Garland Science 2007)

Cleavage is promotedby proteins GreA and GreB

Page 18: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

The rho protein is required for rho-dependenttermination of transcription in bacteria

Page 19: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Figure 12.7 Genomes 3 (© Garland Science 2007)

Page 20: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Rho-independent transcription termination requires a sequence of dyad symmetry followed by 8 A/T bp

Page 21: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Disruption of the ternary DNA-RNA-RNA polymerasecomplex by a termination stem-loop structure

Page 22: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Table 13-1

Page 23: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Eukaryotic RNA polymerase II promoters are complex

Page 24: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Table 13-2

Page 25: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Initiation of transcriptionat RNA polymerase IIpromoters

Page 26: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

The TATA-binding protein bends the DNA

Page 27: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

TBP recruits TFIIB to the promoter

TFIIB

TBP

Page 28: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

The preinitiation complex interacts with activatorsand chromatin modeling factors via a mediator complex

Page 29: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Mediator complexes consist of many subunits thatprobably interact with different activators

Page 30: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Phosphorylation of the C-terminal domain tail is required for promoter escape of RNA polymerase II

Page 31: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Elongation factors increase the processivity ofRNA polymerases

Page 32: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

FACT disassembles and assembles nucleosomesduring transcription

FACT

Page 33: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

RNA processing proteins are attached to the CTDtail of RNA polymerase II

Page 34: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Addition of a 5’ cap occurs after promoterescape

Page 35: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

RNA processing proteins are attached to the CTDtail of RNA polymerase II

Page 36: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Termination of transcriptionis linked to polyadenylationof transcripts

Page 37: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Two models for termination of transcription in eukaryotes

Page 38: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Table 11.3 Genomes 3 (© Garland Science 2007)

Page 39: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Elements in RNA polymerase I promoters

(RNA polymerase I transcribes rRNA genes)

Page 40: Transcription. Table 13-1 Structure of RNA polymerases ProkaryoticEukaryotic

Elements in RNA polymerase III promoters