20
TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P. Dechatellet (2), D. P. Edwards (3), E. I. Grechko (4), E. Fokeeva (4), A. Dzhola (4), F. Hase (1), I. Kramer (1), E. Mahieu (2), J. Mellqvist (5) , P. C. Novelli (6), J. Notholt (7), H.-E. Scheel (8), A. Strandberg (5), R. Sussmann (8), H. Tanimoto (9), V. Velazco (7), J.R. Drummond (10), J.C. Gille (3) (1) IMK-ISF, Forschungszentrum Karlsruhe, Karlsruhe, Germany (2) University of Liège, Liège, Belgium (3) ACD, NCAR, Boulder, CO, USA (4) Obukhov Institute of Atmospheric Physics, Moscow, Russia (5) Chalmers University of Technology, Göteborg, Sweden (6) CMDL, NOAA, Boulder, Colorado, USA (7) University of Bremen, Bremen, Germany (8) IMK-IFU, Garmisch-Partenkirchen, Germany (9) National Institute for Environmental Studies, Tsukuba, Japan (10) University of Toronto, Toronto, Canada. Carbon monoxide forest fires emissions in the Northern Hemisphere in 1996-2003 retrieved from total column ground-based and satellite measurements using a box model.

TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

TransCom Tsukuba, June 16, 2004

L. N. Yurganov

Frontier Research System for Global Change, Yokohama, Japan, in collaboration with:

T. Blumenstock(1), P. Dechatellet (2), D. P. Edwards (3), E. I. Grechko (4), E. Fokeeva (4), A. Dzhola (4), F. Hase (1), I. Kramer (1), E. Mahieu (2), J. Mellqvist (5) , P. C. Novelli (6), J. Notholt (7), H.-E. Scheel (8), A. Strandberg (5), R. Sussmann (8),

H. Tanimoto (9), V. Velazco (7), J.R. Drummond (10), J.C. Gille (3)

(1) IMK-ISF, Forschungszentrum Karlsruhe, Karlsruhe, Germany (2) University of Liège, Liège, Belgium(3) ACD, NCAR, Boulder, CO, USA(4) Obukhov Institute of Atmospheric Physics, Moscow, Russia(5) Chalmers University of Technology, Göteborg, Sweden

(6) CMDL, NOAA, Boulder, Colorado, USA(7) University of Bremen, Bremen, Germany (8) IMK-IFU, Garmisch-Partenkirchen, Germany (9) National Institute for Environmental Studies, Tsukuba, Japan(10) University of Toronto, Toronto, Canada.

Carbon monoxide forest fires emissions in the Northern Hemisphere in 1996-2003 retrieved from total column ground-based and satellite

measurements using a box model.

Page 2: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

The report is based on three publications that can be found at: http://www.jamstec.go.jp/frsgc/research/d4/papers.htm

L. N. Yurganov, T. Blumenstock, E. I. Grechko, F. Hase, E. J. Hyer, E. S. Kasischke, M. Koike, Y. Kondo, I. Kramer, F.-Y. Leung, E. Mahieu, J. Mellqvist, J. Notholt, P. C. Novelli, C. P. Rinsland, H.E. Scheel, A. Schulz, A. Strandberg, R. Sussmann, H. Tanimoto, V. Velazco, R. Zander, and Y. Zhao, A Quantitative Assessment of the 1998 Carbon Monoxide Emission Anomaly in the Northern Hemisphere Based on Total Column and Surface Concentration Measurements, accepted by J. Geophys. Res

D.P. Edwards, L.K. Emmons, D.A. Hauglustaine, A. Chu, J.C. Gille, Y. J. Kaufman, G. Petron, L.N. Yurganov, L. Giglio, M.N. Deeter, V. Yudin, D.C. Ziskin, J. Warner, J.-F. Lamarque, G. L. Francis, S. P. Ho, D. Mao, J. Chen, E.I. Grechko, and J.R. Drummond, Observations of Carbon Monoxide and Aerosols From the Terra Satellite: Northern Hemisphere Variability, accepted by J. Geophys. Res

L. N. Yurganov, P. Duchatelet, A.V. Dzhola, D. P. Edwards, F. Hase, I. Kramer, E. Mahieu, J. Mellqvist, J. Notholt, P. C. Novelli, A. Rockmann, H. E. Scheel, M. Schneider, A. Schulz, A. Strandberg, R. Sussmann, H. Tanimoto, V. Velazco, J.R. Drummond, J.C. Gille, Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space, submitted to Atmosp. Chem. Phys. Discuss.

Page 3: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

We may conclude that a detection of forest fire signal for CO is 300 times easier, that for CH4 and 400 times easier than for CO2.

Why box model?

It is simple, “transparent”, easily verifiable, and matches the experimental mode

Why CO, not CO2?

Extratropical forest fires emit normally [Andreae & Merlet, 2001]: CO: 68 TgCH4: 3 TgCO2:1004 Tg

Global atmosphere contains:

CO: 370 TgCH4: 4800 Tg CO2: 2.2 millions (!) Tg

Therefore, wild forest fires perturb the global atmosphere by: CO: 18%CH4: 0.06%CO2: 0.045%

But!

Page 4: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Measurements

mol/cm 2

BL

FT

BL

FTIR

Sampling

10 km

1.5 km

MOPITT

Page 5: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Location and methods

(operational since 1996 or earlier)

NOAA CMDL Carbon Cycle Greenhouse Gases Other in situ programs

Data from two Japanese stations are supplied by Dr. H. Tanimoto (NIES) and Japanese Meteorological Agency, stations at Shetland Isl. and near Vancouver are managed by CSIRO, measurements at Zugspitze (Germany) are conducted by Dr. Scheel (FZK, IMK-IFU), in situ data from Jungfraujoch are supplied by EMPA. Most of the data are based on weekly sampling.

Spectroscopic stations (Hokkaido until 2001, Tenerife after 1999)

FTIR spectrometers (7 sites) are parts of the NDSC (Network for Detection of

Stratospheric Change). Grating spectrometer is in use at Zvenigorod, Russia,

LOCATIONS

MOPITT – full coverage

Page 6: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

● Our first task is to determine as accurately as possible the CO burden (total mass) in the HNH. We should use all

available information about CO in the boundary layer, in the free troposphere and in the total column.

● We will consider anomalies of CO burden in spite of absolute burdens.

Page 7: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Total column CO in the Northern Hemisphere measured from the ground and from space

(mol/cm2, monthly averages, blue solid lines are averages over the reference period)

1.0E+18

2.0E+18

3.0E+18

4.0E+18

1996 1998 2000 2002 2004

Zvenigorod

5.0E+17

1.0E+18

1.5E+18

2.0E+18

1996 1998 2000 2002 2004

Jungfraujoch5.0E+17

1.0E+18

1.5E+18

2.0E+18

2.5E+18

3.0E+18

1996 1998 2000 2002 2004

Kiruna

5.0E+17

1.0E+18

1.5E+18

2.0E+18

2.5E+18

3.0E+18

2000 2001 2002 2003 2004

MOPITT, HNH

HNH = 30º N – 90º N

Designates the reference period (March 2000 – February 2001).SwedenSwiss Alps

Central Russia High Northern Hemisphere

Page 8: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Zonal average CO total column measured by MOPITT [Edwards et al., 2004]

HNH

LNH

LSH

HSH

Page 9: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Relative anomalies of CO abundance, both total columns and BL mixing ratios

Symbols are for spectroscopic total column measurements, orange line is for CMDL data in the BL, MOPITT total column measurements were averaged for 30º N – 90º N.

1.E+18

2.E+18

3.E+18

4.E+18

5.E+18

6.E+18

7.E+18

8.E+18

1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct

CO

co

lum

n a

mo

un

t, m

ol/c

m2

Zvenigorod, 2002

2.1 (Sept., 2002, Zvenigorod)

Peatland fires occurred near Moscow in July – September, 2002. Extreme values were omitted for hemispheric estimates of emissions.

Hokkaido data until December 2001 according to [Yurganov et al., 2004] Reference period

Peat fires

Page 10: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

1.E+18

2.E+18

3.E+18

4.E+18

5.E+18

6.E+18

7.E+18

8.E+18

2-Jul 1-Aug 1-Sep

CO

co

lum

n a

mo

un

t, m

ol/c

m2

Zvenigorod, 2002

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900

CO, ppb

Alti

tud

e,

km

17%

1.15 ppm in BL

1.5 km

60 km60 km

Simultaneous ground- and space-based measurements in Russia in period of peat fires

ZvenigorodZvenigorod

MoscowMoscow

Peat firesPeat fires

MOPITT

Ground-based spectrometer

Vertical sensitivities and a priori profiles

Page 11: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

CO in situ anomalies for low altitude stations in HNH (Novelli et al., 2003, JGR; Yurganov et al., 2004, JGR, accepted)

-40

-20

0

20

40

60

80

100

120

140

160

180

1996 1997 1998 1999 2000 2001 2002

CO

mix

ing

ratio

ano

mal

y, p

pb

cold bay barrVancouv WisconBermuda AlertAzores Iceland"M" Ny AlesundKazakhstan RishiriRyori ShemyaShetland Mace Headmean

Reference period

The anomaly of 1998 was clearly visible at most of BL locations, however, CO was perturbed at Japanese stations Rishiri and Ryori

Page 12: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

CO anomalies expressed as mean mixing ratio in selected boxes: boundary layer (below 1.5 km), free troposphere (1.5 – 10 km), and total column (0 – 10 km), 30º N – 90º N.

-20

-10

0

10

20

30

40

50

60

70

80

1996 1997 1998 1999 2000 2001 2002 2003 2004

Ano

mal

y of

mix

ing

ratio

, ppb

BL (in-situ)

TC (FTIR)

FT (FTIR+in-situ)

TC (MOPITT)

Indonesia

Mexico

Canada & Siberia

?

W. Russia & Siberia Siberia?

Page 13: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Alternatives to the biomass burning

TOTAL GLOBAL EMISSIONS = 2780 Tg

Various fuels = 700

Methane oxidation =

800

Biomass burning = 700

Non-methane HC oxidation =

400

Page 14: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

Box model

Low Northern Hemisphere (LNH)

(volumes of two boxes are equal)

High Northern Hemisphere (HNH)

MLNH MHNH

0 km

10 kmEquator

90º N

30º N

L transp

CO + OH → CO2 + H

P'HNH = dM'HNH/dt + M'HNH / TAU chem + (M'HNH – M'LNH)/ TAU trans

TAU chem. = 1/ k [OH]k = 1.5 E-13 x (1+0.6 atm)cm3 mol-1 s-1 [Demore et al., 1997]; [OH] ~ [Spivakovsky et al. 2000]

TAU trans was calculated using the GEOS-CHEM model

Page 15: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

1 2 3 4 5 6 7 8 9 10 11 120.00E+000

5.00E+010

1.00E+011

1.50E+011

MHNH

- MLNH

CO burdens, kg

CO flux, kg/s

Months

CO

bu

rden

, kilo

gra

ms

CO, HNH, kg CO, LNH, kg HNH - LNH

0

5000

10000

15000

CO

flu

x, k

ilog

ram

s/se

con

d

1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

6

7

8

9

10

TAUtrans

= MYNY

- MLNH

/flux

TA

Utr

ans,

mo

nth

s

Months

TAUtrans was calculated by Fok-Yan-Leung (Harvard University) using

GEOS-CHEM model for 1998 meteorology (Yurganov et al., 2004)

TAUchem was calculated as 1/k [OH] with [OH] field according to

Spivakovsky et al., 2000

TAUchem

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Months

TA

U, m

onth

s

These life-times were assumed valid for all years. A corresponding uncertainty was estimated less than ± 20% (Yurganov et al., 2004)

Page 16: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

1996 1997 1998 1999 2000 2001 2002 2003 2004-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

Ano

mal

y of

HN

H b

urde

n, T

g

-20

-10

0

10

20

30

40

50

60

70

80

90 BL+FT TC, FTIR MOPITT

Em

issi

on a

nom

aly,

Tg/

mon

th

Anomalies of total tropospheric CO burden in the HNH (top panel) were calculated from CMDL BL data added by FT data (both in situ and Alpine FTIRs), directly

from low altitude FTIRs, and from MOPITT. Box model was applied and emission anomalies are displayed on bottom panel. (Yurganov et al.,ACPD, 2004, submitted)

-100

-80

-60

-40

-20

0

20

40

60

80

100

1996 1997 1998 1999 2000 2001

Em

issi

on

an

om

aly,

Tg

van der Werf et al., 2004

Yurganov et al. 2004

A comparison with GEOS-CHEM inversion by van der Werf et al., Science, 2004.

Page 17: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

-10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

Months

HN

H e

mis

sio

n r

ate

, Tg

/mo

nth

1996

1998

2002

2003

2000(MOZART)

Emission anomaly, can be converted in absolute emission if we assume some reference “normal” emissions, e.g., the inventory for MOZART-2 model (M.Schultz,

personal communication) with 50.7 Tg CO emitted in 2000.

A comparison of emissions during four years with strong fires.

A comparison with 1998 inventories

Page 18: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

-20

0

20

40

60

80

100

120

140

160

180

1996 1997 1998 1999 2000 2001 2002 2003

HN

H e

mis

sio

n a

no

mal

y, T

g/y

ear P'(FTIR)

P(BL1.5+FT)

Average

P'(MOP)

CO2 emission HNH anomaly derived from CO emission anomaly

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

1996 1997 1998 1999 2000 2001 2002 2003HN

H e

mis

sio

n a

no

mal

y, P

g/y

ear

CO emission HNH anomaly

Page 19: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

ESTIMATES OF CARBON DIOXIDE AND METHANE BURDEN PERTURBATIONS.

Forest fires emit directly 14.7 times more CO2, 22.7 times less CH4, and 400 times less N2O than CO [Andreae and Merlet, 2001].

In 2002 – 2003 CO excess emission from NH boreal fires was (98 + 142) = 240 Tg. It was almost immediately chemically converted into 240 x 44/28 = 377 Tg CO2.

Direct emission of CO2 was 3530 Tg. If we assume that 20% of CO2 was removed during two years, then

global CO2 burden increased by 0.14%.

Methane global burden was increased by 0.20%.

Nitrous oxide global burden was increased by 0.03%.

Page 20: TransCom Tsukuba, June 16, 2004 L. N. Yurganov Frontier Research System for Global Change, Yokohama, Japan, in collaboration with: T. Blumenstock(1), P

CONCLUSIONS

● A consideration of HNH burden anomalies allows one to estimate imbalance between sources and sinks. This imbalance is treated as a result of anomalies of CO source, namely, anomalies of boreal fire emissions.

● CO measurements from the ground and from space are a good tool for monitoring fire activity. Moreover, perturbations of other gases may be assessed using available information about their relative contributions into fire emissions.