Trajectory Tracking for High Aspect-Ratio Flying Wings

Embed Size (px)

Citation preview

  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    1/18

    Trajectory Tracking for High Aspect-Ratio Flying Wings

    Brijesh Raghavan, Mayuresh Patil and Craig Woolsey

    1Department of Aerospace and Ocean Engineering,

    Virginia Tech.

    AIAA Atmospheric Flight Mechanics Conference and Exhibit

    Honolulu, HI, August 2008

    (Virginia Tech) HALE Trajectory Tracking AFM 08 1 / 18

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    2/18

    Outline

    1 Introduction

    2 Modeling

    3 Results

    4 Conclusions and Future Work

    (Virginia Tech) HALE Trajectory Tracking AFM 08 2 / 18

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    3/18

    Introduction

    Motivation and Overview

    High Altitude Long Endurance (HALE) flying wings designed for highaspect ratio and low structural weight

    Exhibit high flexibility and significant static aeroelastic deformation in

    flight

    Previous work showed that a rigid flying wing model that accounts forstatic aeroelastic deformation at trim captures pre-dominant flight

    dynamic characteristics of the corresponding flexible flying wing

    Current work on design of a flight controller using a non-linear guidance

    law and dynamic inversion for path-following

    Results presented for a curved, rigid flying wing for a straight line and

    circular path

    Modification to controller proposed for flexible flying wings

    (Virginia Tech) HALE Trajectory Tracking AFM 08 3 / 18

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    4/18

    Modeling

    Overview of closed-loop simulation

    Figure: Closed-Loop Schematic

    (Virginia Tech) HALE Trajectory Tracking AFM 08 4 / 18

    d li

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    5/18

    Modeling

    Modeling for simulation

    Flying wing structure is modelled using a geometrically exact, intrinsic

    beam formulation developed by Hodges

    Small strain assumption, uses linear elastic law

    Equations are augmented by intrinsic kinematic equations that relate

    velocity and angular velocity to strain and curvature

    Aerodynamic loads are modelled using a 2-D aerodynamics model

    developed by Peters and Johnson

    Aerodynamic model augmented to account for the effect of skin friction

    dragPropulsive system consists of multiple engines along the span

    Energy conserving, Finite-difference based discretization

    (Virginia Tech) HALE Trajectory Tracking AFM 08 5 / 18

    M d li

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    6/18

    Modeling

    Post-processing of state vector

    State vector from the simulation module has 21 structural variables foreach node, and 6 unsteady aerodynamic variables for each element

    Mass and moment of inertia properties specified for each element in the

    FE model

    Dynamic Inversion for flight control requires calculation of equivalentflight dynamic variables

    These quantities are calculated in the mean reference frame which has its

    origin at the CG

    First part of post-processing module computes the following quantities at

    each time instantr

    cg, Icg, P, HM, Vcg, M

    Second part of post-processing module calculates Euler angles of the

    mean axis and inertial co-ordinates of the CG

    (Virginia Tech) HALE Trajectory Tracking AFM 08 6 / 18

    Modeling

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    7/18

    Modeling

    Controller Design

    Figure: Closed-Loop Schematic

    Figure: Differential Thrust

    (Virginia Tech) HALE Trajectory Tracking AFM 08 7 / 18

    Modeling

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    8/18

    Modeling

    Controller Design: Guidance Module

    Ground path following based on work by Parket al.

    ald = 2

    Vg2

    L1

    sin

    ahd = 2V2

    (hc h)

    L2h 2V

    h

    Lh

    avd = Kvel(Vc V)

    Va

    d = a

    dv cos a

    dh sin

    adladv sin + a

    dh cos

    Figure: Guidance Algorithm

    (Virginia Tech) HALE Trajectory Tracking AFM 08 8 / 18

    Modeling

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    9/18

    Modeling

    Dynamic Inversion

    Equations of motion to be inverted

    Mfaero +Mfg +

    MfT = Mtotal(MVcg +

    MMMVcg)

    MM1MM2MM3

    =

    0 cosmi sinmi cos mi1 0 sin mi

    0 sin mi cosmi cos mi

    mi

    mi

    mi

    Mmaero + MmT = MIcgMM+ MMMIcgMMCalculation of demanded rates

    MVcg +

    M

    M

    MVcg = C

    MV Va

    d

    dmi = K(mic mi)

    dmi = K(mic mi)

    dmi = K( mi)MdM = K(

    MMc MM)

    (Virginia Tech) HALE Trajectory Tracking AFM 08 9 / 18

    Results

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    10/18

    Results

    Parameters of Rigid Flying Wing

    Table: Input parameters

    b = 73.06 m CL = 2 CL = 1 CD0 = 0.01c = 2.44 m Cm0 = 0.025 Cm = 0 Cm = 0.25

    Ixx= 4.15 kg m I

    yy= 0.69 kg m I

    zz= 3.46 kg m = 8.93 kg/m

    L1 = 609.6 m Kvel = 0.001 K = 0.1 K = 1Lh = 6304.8 m CL0 = 0 xac = 0.0 m mex = 22.67 kg

    Wing tip dihedral 5

    Position of wing tip dihedral 12.19 m from wing tip

    Aileron position outboard 12.19 m from wing tip

    Radius of curvature of wing 219.45 m

    (Virginia Tech) HALE Trajectory Tracking AFM 08 10 / 18

    Results

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    11/18

    Curved Rigid Wing: Straight Line path

    0 100 200 300 400 500 60032

    32.5

    33

    33.5

    34

    time in s

    TinN

    Thrust

    (a) Thrust

    0 100 200 300 400 500 6009.1

    9.15

    9.2

    9.25

    9.3

    time in s

    flapi

    n

    flap deflection

    (b) Flap

    0 100 200 300 400 500 6000.5

    0

    0.5

    time in s

    aileron

    in

    aileron deflection

    (c) Aileron

    0 100 200 300 400 500 6001

    0.5

    0

    0.5

    1

    time in s

    TinN

    Redistributed thrust

    (d) T(Virginia Tech) HALE Trajectory Tracking AFM 08 11 / 18

    Results

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    12/18

    Curved Rigid Wing: Straight Line path

    0 100 200 300 400 500 6000.04

    0.03

    0.02

    0.01

    0

    0.01

    0.02

    0.03

    0.04

    time in s

    in

    roll angle of mean axis

    (e) Roll

    0 100 200 300 400 500 6003.78

    3.79

    3.8

    3.81

    3.82

    3.83

    time in s

    in

    pitch angle of mean axis

    (f) Pitch

    0 100 200 300 400 500 6001.5

    1

    0.5

    0

    0.5

    1

    1.5

    time in s

    in

    yaw angle of mean axis

    (g) Yaw

    0 100 200 300 400 500 6005

    0

    5

    10

    15

    time in s

    ycoordinm

    Y coord

    flight path

    commanded trajectory

    (h) Y co-ord

    0 100 200 300 400 500 6000

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    time in s

    heightinm

    altitude in m

    (i) Altitude(Virginia Tech) HALE Trajectory Tracking AFM 08 12 / 18

    Results

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    13/18

    Curved Rigid Wing: Circular path

    0 100 200 300 400 500 60032

    32.5

    33

    33.5

    34

    34.5

    35

    35.5

    36

    time in s

    TinN

    Thrust

    (j) Thrust

    0 100 200 300 400 500 6009.1

    9.15

    9.2

    9.25

    9.3

    time in s

    flapi

    n

    flap deflection

    (k) Flap

    0 100 200 300 400 500 6006

    5

    4

    3

    2

    1

    0

    time in s

    aileron

    in

    aileron deflection

    (l) Aileron

    0 100 200 300 400 500 60012

    10

    8

    6

    4

    2

    0

    time in s

    TinN

    Redistributed thrust

    (m)

    T(Virginia Tech) HALE Trajectory Tracking AFM 08 13 / 18

    Results

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    14/18

    Curved Rigid Wing: Circular path

    0 100 200 300 400 500 6000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    time in s

    in

    roll angle of mean axis

    (n) Roll

    0 100 200 300 400 500 6003.65

    3.7

    3.75

    3.8

    3.85

    3.9

    time in s

    in

    pitch angle of mean axis

    (o) Pitch

    0 100 200 300 400 500 6000

    20

    40

    60

    80

    100

    120

    140

    time in s

    in

    yaw angle of mean axis

    (p) Yaw

    0 1000 2000 3000 4000 5000 60000

    1000

    2000

    3000

    y coord in m

    xcoordinm

    ground track

    flight path

    commanded trajectory

    (q) Ground Track

    0 100 200 300 400 500 6002

    0

    2

    4

    6

    8

    10

    time in s

    heightinm

    altitude in m

    (r) Altitude(Virginia Tech) HALE Trajectory Tracking AFM 08 14 / 18

    Results

    http://find/http://goback/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    15/18

    Flexible Wing: Straight Line path

    0 0.5 1 1.5 2 2.5 3 3.50

    50

    100

    150

    200

    250

    300

    350

    time in s

    T

    inN

    Thrust

    (s) Thrust

    0 0.5 1 1.5 2 2.5 3 3.50

    10

    20

    30

    40

    50

    60

    time in s

    aileroni

    n

    aileron deflection

    (t) Aileron

    Figure: Control deflections for straight and level flight

    (Virginia Tech) HALE Trajectory Tracking AFM 08 15 / 18

    Results

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    16/18

    Proposed Modification for Flexible Flying Wings

    Figure: Closed-Loop Schematic for Flexible Flying Wings

    Similar modification done by Gregory for a HSCT configuration

    (Virginia Tech) HALE Trajectory Tracking AFM 08 16 / 18

    Conclusions and Future Work

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    17/18

    Conclusions and Future Work

    Conclusions

    Path-following controller designed for a high-aspect ratio flying wing

    using multi-step dynamic inversion and a non-linear guidance law

    Results presented for a curved, rigid-wing case for tracking a straightline and a circular path

    Future Work

    Modify controller to make it work on the flexible flying wing

    Augment controller for Gust Load Alleviation

    (Virginia Tech) HALE Trajectory Tracking AFM 08 17 / 18

    Conclusions and Future Work

    http://find/
  • 7/29/2019 Trajectory Tracking for High Aspect-Ratio Flying Wings

    18/18

    Thank you !

    Questions ?

    (Virginia Tech) HALE Trajectory Tracking AFM 08 18 / 18

    http://find/