61
TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE • Motivations • Review of Vortex Model • Tower Shadow Model • Conclusion 45 th AIAA Aerospace Sciences Meeting and Exhibit 26 th ASME Wind Energy Symposium, Reno, NV,

TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

Embed Size (px)

Citation preview

Page 1: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD

Jean-Jacques ChattotUniversity of California Davis

OUTLINE

• Motivations

• Review of Vortex Model

• Tower Shadow Model

• Conclusion

45th AIAA Aerospace Sciences Meeting and Exhibit26th ASME Wind Energy Symposium, Reno, NV, Jan.8-11, 2007

Page 2: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

MOTIVATIONS

• Take Advantage of Model Simplicity and Efficiency for Analysis of Unsteady Effects with Impact on Blade Fatigue Life and Acoustic Signature

- Include Tower Interference Model (Upwind 2006)

- Include Tower Shadow Model (Downwind 2007)

Page 3: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

REVIEW OF VORTEX MODEL

• Goldstein Model• Simplified Treatment of Wake- Rigid Wake Model- “Ultimate Wake” Equilibrium Condition- Base Helix Geometry Used for Steady and

Unsteady Flows• Application of Biot-Savart Law• Blade Element Flow Conditions• 2-D Viscous Polar

Page 4: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

GOLDSTEIN MODEL

Vortex sheet constructed as perfect helix with variable pitch

Page 5: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

SIMPLIFIED TREATMENT OF WAKE

- No stream tube expansion, no sheet edge roll-up (second-order effects)-Vortex sheet constructed as perfect helix called the “base helix” corresponding to zero yaw

Page 6: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

“ULTIMATE WAKE” EQUILIBRIUM CONDITION

Induced axial velocity from average power:

bbav uuadvR

P 23

53)1(4

2

Page 7: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

BASE HELIX GEOMETRY USED FOR STEADY AND UNSTEADY

FLOWS

Vorticity is convected along the base helix, not the displaced helix, a first-order approximation

Page 8: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPLICATION OF BIOT-SAVART LAW

jijiss

jijitt

vorticitysheds

vorticitytraileds

,,1

,1,

Page 9: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

BLADE ELEMENT FLOW CONDITIONS

)()(cossin

)(costan)()()( 1 yt

ywadvyyu

ytyy

Page 10: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

2-D VISCOUS POLAR

S809 profile at Re=500,000 using XFOIL+ linear extrapolation to deg90

deg200

Page 11: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

FLEXIBLE BLADE MODEL

• Blade Treated as a Nonhomogeneous Beam

• Modal Decomposition (Bending and Torsion)

• NREL Blades Structural Properties

• Damping Estimated

Page 12: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

TOWER SHADOW MODELDOWNWIND CONFIGURATION

Page 13: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

TOWER SHADOW MODEL

•Model includes Wake Width and Velocity Deficit Profile, Ref: Coton et Al. 2002

•Model Based on Wind Tunnel Measurements Ref: Snyder and Wentz ’81•Parameters selected: Wake Width 2.5 Tower Radius, Velocity Deficit 30%

Page 14: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

SIMPLIFIED MODEL

)'''

'1(

''

')',','(

222222

ZYX

Z

YX

XVaZYX

LINE OF DOUBLETSPERTURBATION POTENTIAL

•If |Y’|>2.5 a, Outside Wake, Use Where:

•If |Y’|<2.5 a, Inside Wake:

0,3.0 ''' ZYX UUVU

Page 15: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS

• V=5 m/s, Yaw=0, 5, 10, 20 and 30 deg• V=7 m/s, Yaw=0, 5, 10 and 20 deg• V=10 m/s, Yaw=0, 5, 10 and 20 deg• V=12 m/s, Yaw=0, 10 and 30 deg

Comparison With NREL Sequence B Data

Page 16: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=0 deg

Page 17: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=5 deg

Page 18: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=10 deg

Page 19: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=20 deg

Page 20: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=30 deg

Page 21: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

EFFECT OF ROTOR INDUCED VELOCITY ON WAKE

V=5 m/s, yaw=30 deg

Page 22: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=30 deg

deg4.3yaw

Page 23: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=7 m/s, yaw=0 deg

Page 24: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=7 m/s, yaw=5 deg

Page 25: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=7 m/s, yaw=10 deg

Page 26: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=7 m/s, yaw=20 deg

Page 27: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=10 m/s, yaw=0 deg

Page 28: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=10 m/s, yaw=5 deg

Page 29: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=10 m/s, yaw=10 deg

Page 30: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=10 m/s, yaw=20 deg

Page 31: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=12 m/s, yaw=0 deg

Page 32: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=12 m/s, yaw=10 deg

Page 33: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=12 m/s, yaw=30 deg

Page 34: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

CONCLUSIONS

• Simple model for tower shadow easy to implement• Good results obtained for “downwind” configuration• Some remaining unsteady effects possibly due to

tower motion• Vortex Model proves very efficient and versatile

Page 35: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg CN at 80%

Page 36: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg CT at 80%

Page 37: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg

Page 38: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg

Page 39: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 40: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 41: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 42: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 43: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 44: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 45: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 46: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CHomogeneous blade; First mode

Page 47: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CHomogeneous blade; Second mode

Page 48: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CHomogeneous blade; Third mode

Page 49: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CNonhomogeneous blade; M’ distribution

Page 50: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CNonhomog. blade; EIx distribution

Page 51: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CNonhomogeneous blade; First mode

Page 52: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CNonhomogeneous blade; Second mode

Page 53: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX CNonhomogeneous blade; Third mode

Page 54: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX DKUTTA-JOUKOWSKI LIFT THEOREM

)]([)()(21

)( yCyqycy l

Page 55: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX DNONLINEAR TREATMENT

• Discrete equations:

• If

Where

)(21

jljjj Cqc

jjljj

j

Clj Cqc

)()( 21

max

jjj 1

Page 56: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX DNONLINEAR TREATMENT (continued)

• If

• is the coefficient of artificial viscosity

• Solved using Newton’s method

onpenalizatitsj Clj max)(..

)2()( 1121

jjjjljjj Cqc

0

Page 57: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX ECONVECTION IN THE WAKE

• Mesh system: stretched mesh from blade

To x=1 where

Then constant steps to

• Convection equation along vortex filament j:

Boundary condition

3

1 10x)100.2( 2

max

Ox20Tx

0)1(

xu

tjj

jj ,1)0(

Page 58: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX ECONVECTION IN THE WAKE (continued)

tt

n

ji

n

ji

n

ji

n

ji

,11

,1,1

, )1(

0)1(1

,1,

1

1,1

1,

ii

n

ji

n

ji

ii

n

ji

n

ji

xxxx

Page 59: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX FBlade working conditions: attached/stalled

Page 60: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX GSTEADY FLOW

Power output comparison

Page 61: TOWER SHADOW MODELIZATION WITH HELICOIDAL VORTEX METHOD Jean-Jacques Chattot University of California Davis OUTLINE Motivations Review of Vortex Model

APPENDIX HYAWED FLOW

Time-averaged power versus velocity at different yaw angles

=5 deg

=10 deg

=20 deg =30 deg