58
HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE • Challenges in Wind Turbine Flows • The Analysis Problem and Simulation Tools • The Vortex Model • The Structural Model • Some Results • Conclusions Fourth M.I.T. Conferenc June 13-15, 2007

HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

Embed Size (px)

Citation preview

Page 1: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION

Jean-Jacques ChattotUniversity of California Davis

OUTLINE• Challenges in Wind Turbine Flows• The Analysis Problem and Simulation Tools• The Vortex Model• The Structural Model• Some Results• Conclusions

Fourth M.I.T. ConferenceJune 13-15, 2007

Page 2: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

CHALLENGES IN WIND TURBINE FLOW ANALYSIS

• Vortex Structure

- importance of maintaining vortex structure 10-20 D

- free wake vs. prescribed wake models

• High Incidence on Blades

- separated flows and 3-D viscous effects

• Unsteady Effects

- yaw, tower interaction, earth boundary layer

• Blade Flexibility

Page 3: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

THE ANALYSIS PROBLEM AND SIMULATION TOOLS

• Actuator Disk Theory (1-D Flow)• Empirical Dynamic Models (Aeroelasticity)• Vortex Models

- prescribed wake + equilibrium condition- free wake

• Euler/Navier-Stokes Codes- 10 M grid points, still dissipates wake- not practical for design- expensive to couple with structural model

• Hybrid Models

Page 4: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

REVIEW OF VORTEX MODEL

• Goldstein Model• Simplified Treatment of Wake- Rigid Wake Model- “Ultimate Wake” Equilibrium Condition- Base Helix Geometry Used for Steady and

Unsteady Flows• Application of Biot-Savart Law• Blade Element Flow Conditions• 2-D Viscous Polar

Page 5: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

GOLDSTEIN MODEL

Vortex sheet constructed as perfect helix with variable pitch

Page 6: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

SIMPLIFIED TREATMENT OF WAKE

- No stream tube expansion, no sheet edge roll-up (second-order effects)-Vortex sheet constructed as perfect helix called the “base helix” corresponding to zero yaw

Page 7: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

“ULTIMATE WAKE” EQUILIBRIUM CONDITION

Induced axial velocity from average power:

bbav uuadvR

P 23

53)1(4

2

Page 8: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

BASE HELIX GEOMETRY USED FOR STEADY AND UNSTEADY

FLOWS

Vorticity is convected along the base helix, not the displaced helix, a first-order approximation

Page 9: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPLICATION OF BIOT-SAVART LAW

jijiss

jijitt

vorticitysheds

vorticitytraileds

,,1

,1,

Page 10: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

BLADE ELEMENT FLOW CONDITIONS

)()(cossin

)(costan)()()( 1 yt

ywadv

yyu

ytyy

Page 11: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

2-D VISCOUS POLAR

S809 profile at Re=500,000 using XFOIL+ linear extrapolation to deg90

deg200

Page 12: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

CONVECTION IN THE WAKE• Mesh system: stretched mesh from blade

To x=1 where

Then constant steps to

• Convection equation along vortex filament j:

Boundary condition

3

1 10x

)100.2( 2

max

Ox20Tx

0)1(

xu

tjj

jj ,1)0(

Page 13: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

CONVECTION IN THE WAKE

tt

n

ji

n

ji

n

ji

n

ji

,11

,1,1

, )1(

0)1(1

,1,

1

1,1

1,

ii

n

ji

n

ji

ii

n

ji

n

ji

xxxx

Page 14: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

ATTACHED/STALLED FLOWS

Blade working conditions: attached/stalled

Page 15: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS: STEADY FLOW

Power output comparison

Page 16: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS: YAWED FLOWTime-averaged power versus velocity at different yaw angles

=5 deg

=10 deg

=20 deg =30 deg

Page 17: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

STRUCTURAL MODEL

• Blade Treated as a Nonhomogeneous Beam

• Modal Decomposition (Bending and Torsion)

• NREL Blades Structural Properties

• Damping Estimated

Page 18: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL BLADES

• Structural Coefficients:- M’=5 kg/m- EIx=800,000 Nm2

- cfb=4• First Mode Frequency- f1=7.28 Hz (vs. 7.25 Hz for NREL blade)

Page 19: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

TIME AND SPACE APPROACHES

• Typical Time Steps:- Taero=0.0023 s (1 deg azimuthal angle)- Tstruc=0.00004 s (with 21 points on blade)• Explicit SchemeLarge integration errors due to drifting• Implicit SchemeSecond-Order in time unstableFirst-order not accurate enough• Modal DecompositionVery accurate. Integration error only in source term

Page 20: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=5 m/s, yaw=10 deg

Page 21: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

TOWER SHADOW MODELDOWNWIND CONFIGURATION

Page 22: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

TOWER SHADOW MODEL

•Model includes Wake Width and Velocity Deficit Profile, Ref: Coton et Al. 2002

•Model Based on Wind Tunnel Measurements Ref: Snyder and Wentz ’81•Parameters selected: Wake Width 2.5 Tower Radius, Velocity Deficit 30%

Page 23: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

SOME RESULTS

• V=5 m/s, Yaw=0, 5, 10, 20 and 30 deg• V=10 m/s, Yaw=0 and 20 deg• V=12 m/s, Yaw=0, 10 and 30 deg

Comparison With NREL Sequence B Data

Page 24: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=0 deg

Page 25: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=5 deg

Page 26: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=10 deg

Page 27: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=20 deg

Page 28: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RESULTS FOR ROOT FLAP BENDING MOMENTV=5 m/s, yaw=30 deg

Page 29: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=10 m/s, yaw=0 deg

Page 30: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=10 m/s, yaw=20 deg

Page 31: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=12 m/s, yaw=0 deg

Page 32: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=12 m/s, yaw=10 deg

Page 33: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

NREL ROOT FLAP BENDING MOMENT COMPARISON

V=12 m/s, yaw=30 deg

Page 34: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

CONCLUSIONS

• Stand-alone Navier-Stokes: too expensive, dissipates wake, cannot be used for design or aeroelasticity• Vortex Model: simple, efficient, can be used for design and aeroelasticity• Remaining discrepancies possibly due to tower motion

Page 35: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

HYBRID APPROACH

•Use Best Capabilities of Physical Models- Navier-Stokes for near-field viscous flow- Vortex model for far-field inviscid wake

•Couple Navier-Stokes with Vortex Model- improved efficiency- improved accuracy

Page 36: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

Navier-Stokes

Vortex Method

)()( 1 jjj yy Vortex Filament

Biot-Savart Law (discrete)

j

Bound

Vortex

j

j

Vortex

Filament

j

r

rl

r

rlv

3

_

3

4

4

Boundary of Navier-Stokes Zone

Converged for …

51 10)()( njnj yy

j jL Aj dAdsvy ..)( Bound Vortex

Fig. 1 Coupling Methodology

HYBRID METHODOLOGY

Page 37: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

RECENT PUBLICATIONS• J.-J. Chattot, “Helicoidal vortex model for steady and unsteady

flows”, Computers and Fluids, Special Issue, 35, : 742-745 (2006).• S. H. Schmitz, J.-J. Chattot, “A coupled Navier-Stokes/Vortex-

Panel solver for the numerical analysis of wind turbines”, Computers and Fluids, Special Issue, 35: 742-745 (2006).

• J. M. Hallissy, J.J. Chattot, “Validation of a helicoidal vortex model with the NREL unsteady aerodynamic experiment”, CFD Journal, Special Issue, 14:236-245 (2005).

• S. H. Schmitz, J.-J. Chattot, “A parallelized coupled Navier-Stokes/Vortex-Panel solver”, Journal of Solar Energy Engineering, 127:475-487 (2005).

• J.-J. Chattot, “Extension of a helicoidal vortex model to account for blade flexibility and tower interference”, Journal of Solar Energy Engineering, 128:455-460 (2006).

• S. H. Schmitz, J.-J. Chattot, “Characterization of three-dimensional effects for the rotating and parked NREL phase VI wind turbine”, Journal of Solar Energy Engineering, 128:445-454 (2006).

• J.-J. Chattot, “Helicoidal vortex model for wind turbine aeroelastic simulation”, Computers and Structures, to appear, 2007.

Page 38: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg CN at 80%

Page 39: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg CT at 80%

Page 40: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg

Page 41: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX AUAE Sequence Q

V=8 m/s pitch=18 deg

Page 42: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 43: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 44: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 45: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 46: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 47: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 48: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX BOptimum Rotor R=63 m P=2 MW

Page 49: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CHomogeneous blade; First mode

Page 50: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CHomogeneous blade; Second mode

Page 51: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CHomogeneous blade; Third mode

Page 52: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CNonhomogeneous blade; M’ distribution

Page 53: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CNonhomog. blade; EIx distribution

Page 54: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CNonhomogeneous blade; First mode

Page 55: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CNonhomogeneous blade; Second mode

Page 56: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX CNonhomogeneous blade; Third mode

Page 57: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX D: NONLINEAR

TREATMENT• Discrete equations:

• If

Where

)(21

jljjj Cqc

jjljj

j

Clj Cqc

)()( 21

max

jjj 1

Page 58: HELICOIDAL VORTEX MODEL FOR WIND TURBINE AEROELASTIC SIMULATION Jean-Jacques Chattot University of California Davis OUTLINE Challenges in Wind Turbine

APPENDIX D: NONLINEAR TREATMENT

• If

• is the coefficient of artificial viscosity

• Solved using Newton’s method

onpenalizatitsj Clj max)(..

)2()( 1121

jjjjljjj Cqc

0