19
Towards Independent Subspace Analysis in Controlled Dynamical Systems Zoltán Szabó, András L ˝ orincz Neural Information Processing Group, Department of Information Systems, Eötvös Loránd University, Budapest, Hungary ICA Research Network 2008 Acknowledgements: Zoltán Szabó, András L ˝ orincz nipg.inf.elte.hu

Towards Independent Subspace Analysis in Controlled

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Towards Independent Subspace Analysis in Controlled

Towards Independent Subspace Analysis inControlled Dynamical Systems

Zoltán Szabó, András Lorincz

Neural Information Processing Group,Department of Information Systems,

Eötvös Loránd University,Budapest, Hungary

ICA Research Network 2008

Acknowledgements:

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 2: Towards Independent Subspace Analysis in Controlled

Tools to Integrate-1 (Independent Subspace Analysis)

Cocktail party problemGeneralization of ICA:

multidimensional components,groups of ’people/music bands’

Hidden, independent, multidimensional processes – NOCONTROL.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 3: Towards Independent Subspace Analysis in Controlled

Tools to Integrate-2 (D-optimal Identification ofDynamical Systems)

Problem: estimate the parameters of a fully observablecontrolled dynamical system by the ‘optimal’ choice of thecontrol.

’Parameters’: dynamics, noise.’Optimal’: in information theoretical sense → D-optimality.

Synonyms: active learning, optimal experimental design.

For ARX models: QP in Bayesian framework.

Controlled dynamical system – FULLY OBSERVABLE.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 4: Towards Independent Subspace Analysis in Controlled

Motivation

Goal: integrate the former methodologieshidden multidimensional sources,optimal design in controlled systems.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 5: Towards Independent Subspace Analysis in Controlled

Motivation

Goal: integrate the former methodologieshidden multidimensional sources,optimal design in controlled systems.

EEG data analysis: recognition + prediction, e.g., epileptic

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 6: Towards Independent Subspace Analysis in Controlled

Motivation

Goal: integrate the former methodologieshidden multidimensional sources,optimal design in controlled systems.

EEG data analysis: recognition + prediction, e.g., epileptic

EU-FP7: interested in partnership

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 7: Towards Independent Subspace Analysis in Controlled

Contents

1 Independent Subspace Analysis2 D-optimal ARX Identification

︸ ︷︷ ︸

3 D-optimal Hidden ARX Identification4 Illustrations

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 8: Towards Independent Subspace Analysis in Controlled

Independent Subspace Analysis (ISA/MICA)

ISA equations: Observation x is linear mixture ofindependent multidimensional components:

x(t) = As(t),

s(t) = [s1(t); . . . ; sM(t)],

wheresm(t) ∈ R

dm are i.i.d. sampled random variables in time,I(s1, . . . , sM) = 0,mixing matrix A ∈ R

D×D is invertible, with D := dim(s).

Goal: s. Specially for ∀dm = 1: ICA.

Ambiguities: permutation, linear (/orth.) transformation.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 9: Towards Independent Subspace Analysis in Controlled

D-optimal ARX Identification

Observation equation (ARX model; u: control, e: noise):

s(t + 1) = Fs(t) + Bu(t + 1) + e(t + 1).

Task: ’efficient’ estimation ofsystem parameters: Θ = [F, B, parameters(e)], ornoise: e

by the ’optimal’ choice of control u.

Optimality (D-optimal/’InfoMax’):

Jpar (ut+1) := I(Θ, st+1|st , st−1, . . . , ut+1, ut , . . .) → maxut+1∈U

, or

Jnoise(ut+1) := I(et+1, st+1|st , st−1, . . . , ut+1, ut , . . .) → maxut+1∈U

.

Result (Póczos & Lorincz, 2008): In the Bayesian setting,optimization of J can be reduced to QP.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 10: Towards Independent Subspace Analysis in Controlled

D-optimal Hidden ARX Identification

State (s) + observation (x) equation:

s(t + 1) = Fs(t) + Bu(t + 1) + e(t + 1), (1)

x(t) = As(t). (2)

Assumptions: I(e1, . . . , eM) = 0 – hidden non-Gaussianindependent multiD componentsTrick: reduce the problem to the fully observable case(d-dep. CLT) + ISA:

x(t + 1) = [AFA−1]x(t) + [AB]u(t + 1) + [Ae(t + 1)],x – ’fully observable tool’ → [AFA−1], [AB], Ae,Ae – ISA→ A} ⇒ F, B, e.

Note: for higher order ARX systems the same idea holds.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 11: Towards Independent Subspace Analysis in Controlled

Databases, Performance Measure, Questions

Databases (3D-geom, ABC, celebrities):

Performance measure: Amari-index (r ) ∈ [0, 1], 0–perfect.Questions:

1 Dependence on δu = |Ucontrol|,2 Dependence on J = deg(Bcontrol[z]),3 Dependencies on I = deg(FAR[z]) and λ:

FAR[z] =

I−1∏

i=0

(I − λOiz) (|λ| < 1, λ ∈ R, Oi : RND orth.).

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 12: Towards Independent Subspace Analysis in Controlled

Illustrations: Dependence on δu = |Ucontrol|

Decline of the estimation error: power-law [r(T ) ∝ T−c (c > 0)]

1 2 5 10 20 50

10−2

10−1

100

3D−geom (I=3, J=3, λ=0.95)

Number of samples (T)

Am

ari−

inde

x (r

)

δu:0.01

δu:0.1

δu:0.2

δu:0.5

δu:1

x1031 2 5 10 20 50

10−2

10−1

100

I=3, J=3, δu=0.2, λ=0.95

Number of samples (T)A

mar

i−in

dex

(r)

3D−geomABCcelebrities

x103

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 13: Towards Independent Subspace Analysis in Controlled

Illustration: 3D-geom

observation:

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 14: Towards Independent Subspace Analysis in Controlled

Illustration: 3D-geom

observation:

estimated innovation (input of ISA):

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 15: Towards Independent Subspace Analysis in Controlled

Illustration: 3D-geom

observation:

estimated innovation (input of ISA):

Hinton-diagram, estimated components:

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 16: Towards Independent Subspace Analysis in Controlled

Illustration: Dependencies on J = deg(Bcontrol[z]),I = deg(FAR[z])

Precise even for J = 50; I = 50 (ր, λ ց)

1 2 5 10 20 50

10−2

10−1

100

3D−geom (I=3, δu=0.2, λ=0.95)

Number of samples (T)

Am

ari−

inde

x (r

)

J:3J:5J:10J:20J:50

x1031 2 5 10 20 50

10−2

10−1

100

3D−geom (J=1, δu=0.2)

Number of samples (T)

Am

ari−

inde

x (r

)

I:5, λ:0.8I:5, λ:0.85I:5, λ:0.9I:10, λ:0.6I:10, λ:0.65I:10, λ:0.7I:50, λ:0.25I:50, λ:0.3

x103

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 17: Towards Independent Subspace Analysis in Controlled

Summary

Integration of two methodologies:hidden independent multidimensional sources,optimal design in controlled dynamical systems.

Numerical experiences:Decline of the estimation error follows power-law.Robust against:

the order of the AR process,temporal memory of the control.

Possibility to apply ICA, ISA, . . . in controlled systems.

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 18: Towards Independent Subspace Analysis in Controlled

TYFYA!

Zoltán Szabó, András Lorincz nipg.inf.elte.hu

Page 19: Towards Independent Subspace Analysis in Controlled

References

B. Póczos and A. Lorincz.

D-optimal Bayesian interrogation for parameter and noise identificationof recurrent neural networks.

2008.

(submitted; available at http://arxiv.org/abs/0801.1883).

V. V. Petrov.

Central limit theorem for m-dependent variables.

In Proceedings of the All-Union Conference on Probability Theory andMathematical Statistics, pages 38–44, 1958.

Z. Szabó.

Separation Principles in Independent Process Analysis.PhD thesis, Eötvös Loránd University, Budapest, 2008.

(submitted; available at nipg.inf.elte.hu: Download).

Zoltán Szabó, András Lorincz nipg.inf.elte.hu