25
Towards a flexible OLED display with an organic active matrix backplane P. Heremans 1 , J. Genoe 1 , S. Steudel 1 , K. Myny 1 , S. Smout 1 , P. Vicca 1 , L. Ruppel 3 , C. Grillberger 3 , O. R. Hild 3 , F. Furthner 2 , B. van der Putten 2 , A. K. Tripathi 2 , G. H. Gelinck 2 1 2 3 4

Towards a flexible OLED display with an organic · Towards a flexible OLED display with an organic active matrix backplane ... – Technology for flexible and rollableOLED ... Flexible

Embed Size (px)

Citation preview

Towards a flexible OLED display with an organic active matrix backplane

P. Heremans1, J. Genoe1, S. Steudel1, K. Myny1, S. Smout1, P. Vicca1, L. Ruppel3, C. Grillberger3, O. R. Hild3, F. Furthner2, B. van der Putten2, A. K. Tripathi2, G. H. Gelinck2

1 2 3 4

Acknowledgement

FP7 STREP project #216546

start Jan 2008

Flexible Organic Active Matrix OLED displays forNomadic Applications

FLAME

http://www.imec.be/FLAME

Paul Heremans, SID-ME 2010, Dresden 2

Paul Heremans, SID-ME 2010, Dresden 3

Introduction

• Goal: – Technology for flexible and rollable OLED display

• Implementation:– Plastic foil substrate (with moisture barrier)

– Organic transistor backplane

– Small molecule top-emitting OLED stack

– Topstrate barrier foil

State of the art

• 48X48 bottom-emitting monochrome OLEDs on flexible substrateT. Jackson: Pentacene TFT driven AM OLED displays, Electron device letters 26, 640 (2005)T. Jackson: All-organic active matrix flexible display, Appl. Phys. Lett. 88, 083502 (2006)

• 12X12 (2mm pixel size), Ta2O5 gate dielectric, aperture ratio 37% M. Mizukami et al.: Flexible AM OLED panel driven by bottom-contact OTFTs, IEEE El. Dev. Lett. 26, 9 (2006)

• SONYSID07-1753QQVGA full color

• T. Someya and T. Sekitani: many other backplane appliations!Examples: pressure sensors, image scanner, actuators, …

Paul Heremans, SID-ME 2010, Dresden 4

Outline

• Backplane

• OLED

• Integration

• Moisture Barrier

Paul Heremans, SID-ME 2010, Dresden 5

Pixel

< 1pAIOFF

Requirement

Mobility 0.5 ± 0.03 cm2/Vs

L 5 µm

Cox > 20 nF/cm2

∆VT 0.2 V

Paul Heremans, SID-ME 2010, Dresden 6

Technology

• Laminate foil on carrier– Freedom of foil type

– Flexibility in process

Paul Heremans, SID-ME 2010, Dresden 7

Technology

• Laminate foil on carrier– Freedom of foil type

– Flexibility in process

• Use of conventional process technology– Transferable to flat panel line

– CD ≥ 2 µm

cfr. DowCorning

cfr. Yokogawa

Paul Heremans, SID-ME 2010, Dresden 8

Technology

• Laminate foil on carrier– Freedom of foil type

– Flexibility in process

• Use of conventional process technology– Transferable to flat panel line

– CD ≥ 2 µm

• Organic thin-film transistors– Pentacene (and soluble derivatives) semiconductor (p-type only)

– Bottom-gate bottom-contact geometry

Paul Heremans, SID-ME 2010, Dresden 9

Paul Heremans, SID-ME 2010, Dresden 10

Carrier

glue

PEN Teonex™

Planarization

Au (30nm)

resist

Al2O3 (100-150 nm)

Carrier

glue

PEN Teonex™

Planarization

Au (30nm)

resist

Al2O3 (100-150 nm)

Drop-on-demand Ink jet

Au (30nm) Au (30nm)

Organic Vapor Phase Deposition

C. Rolin et al., Appl. Phys. Expr. 2, 086503 (2009) C. Kjellander et al., MRS Fall (2009)

J. Anthony,

JACS123, 9482, (2001)

T. Jackson,

AdvMat15,2009 (2003)

Backplane process

Performance evaporated pentacene

7

6

5

4

3

2

1

0

Number

1.00.80.60.40.20.0

µ [cm2 / Vs]

µ (AVG) = 0.472 cm2 / Vs

µ (StDev) = 0.0174 cm2 / Vs

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Number

-10 -5 0 5 10VT [V]

VT (AVG) = 0.906096 V

VT (StDev) = 0.496683 V

Paul Heremans, SID-ME 2010, Dresden 11

Inkjet printed TIPS pentacene formulation

Paul Heremans, SID-ME 2010, Dresden 12

Performance

< 1pA< 1pAIOFF

Requirement Pentacene/Al2O3

Mobility 0.5 ± 0.03 cm2/Vs 0.5 ± 0.05 cm2/Vs

L 5 µm 5 µm

Cox > 20 nF/cm2 50-70 nF/cm2

∆VT 0.2 V 0.4 V

Paul Heremans, SID-ME 2010, Dresden 13

Array

• Generation 1:– 32 x 32

– Pixels 1 mm2

Paul Heremans, SID-ME 2010, Dresden 14

OLED on foil

• Top emitting (transparent cathode)

• Silver anode

Paul Heremans, SID-ME 2010, Dresden 15

target

Transparent cathode

OLED layer stack

interlayer dielectric

Integration of OLED on backplane

Carrier

glue

PEN Teonex™

Planarization

Au (30nm)

resist

Al2O3 (100-150 nm)

Au (30nm)pentacene

Via hole

Ag anode

Paul Heremans, SID-ME 2010, Dresden 16

Example green OLED

Paul Heremans, SID-ME 2010, Dresden 17

Example orange OLED

Paul Heremans, SID-ME 2010, Dresden 18

Aperture ratio

Top-emitting OLED

Aperture ratio : 79.7%

off

on

Paul Heremans, SID-ME 2010, Dresden 19

Brightness

D65 white color point

100

80

60

40

20

0

Cox [nF/cm2]

2 3 4 5 6

0.12 3 4 5 6

12 3 4

Carrier Mobility [cm2/Vs]

2000 Cd/m2

500 Cd/m2

200 Cd/m2

800 Cd/m2

Al2O3

Polymer gate dielectrics

Paul Heremans, SID-ME 2010, Dresden 20

Brightness

Paul Heremans, SID-ME 2010, Dresden 21

Moisture barrier

Paul Heremans, SID-ME 2010, Dresden 22

5 X 5 µmRMS 1.1 nmRmax 10 nm

Barrier foil

• Integration of barrier with OLED on foil

Radius 0.8 cm

Paul Heremans, SID-ME 2010, Dresden 23

OLED stack

Summary

• Status :– Pentacene/Al2O3 backplane with green and orange OLEDs integrated

on foil in 32x32 test vehicles

– Moisture barrier with OLEDs integrated on foil and tested for rollability

Paul Heremans, SID-ME 2010, Dresden 24

• Near future :– Integrate row and column drivers

– Develop top-emitting blue OLED pixels on foil

– Apply 3 colors on backplane

– Scale pixel size

– Integrate all in demonstrator

Thank you

Paul Heremans, SID-ME 2010, Dresden 25